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Abstract

In the processing industry, dynamic product transitions are essential for achieving high product quality, min-
imizing the use of raw materials and energy and reducing production costs. However, optimizing dynamic
product transitions is a challenging task due to the complex dynamics of the process and the uncertainty in
the measurements. In this work, a data-driven Bayesian approach for optimal dynamic product transitions is
proposed. The proposed approach is based on a dynamic optimization problem that is solved using a Bayesian
optimization algorithm. One of the advantages of this approach for process optimization tasks is that it does
not require a first-principles dynamic mathematical model for drawing optimal solutions. The approach is ap-
plied to three case studies, and the results are comparable in performance quality with those obtained using a
traditional gradient-based optimization approach. The results show that the proposed approach is able to find
optimal transition trajectories that meet the product composition requirements using smooth control actions.
The approach is also able to cope with noisy measurements, which is an important feature in real-world applica-
tions. The proposed approach has several advantages over traditional optimization approaches, including being
data-driven, able to cope with noisy measurements, computationally efficient, and it requires modest compu-
tational effort. Complex on-line optimal control problems can benefit from adopting a data-driven Bayesian
optimization scheme.

Keywords:: Bayesian optimization, non-linear systems, noisy measurements, dynamic optimization, data-
driven systems.
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1 INTRODUCTION

1 Introduction

Dynamic product transitions are an ubiquitous operation within the processing industry.1–3 The primary aim
is to transition a given processing system from its initial steady-state to a predetermined final target steady-
state.4–12 This transition encompasses the dynamic alteration of the manipulated variables. Furthermore, the
dynamic operational transition must be executed with the optimization of specific performance metrics in mind.
This type of operations are also known under the name of optimal open-loop dynamic operation policies, since
they are off-line calculated and can be later implemented by a control system. Of course, dynamic optimal product
transition operations can also be achieved by an on-line real time optimization system, although this can involve
large computational demands, noisy measurements and lack of model fidelity.

Implicit in the preceding remarks is the necessity of employing a first-principles dynamic mathematical model
for optimization calculations through traditional gradient-based optimization algorithms.13–15 This is owing to
the essential need for derivative information by these algorithms. However, meeting the prerequisite of having a
dependable first-principles dynamic model can be a challenging endeavor. In reality, there are instances where
these models can be arduous to develop, as the fundamental physical and chemical mechanisms that underlie
them may not be well understood. The process of formulating and validating such models can be time-consuming.
Additionally, the model parameters might be inadequately known or subject to time-dependent variations. The
difficulty in finding an adequate optimal solution, from a strictly engineering point of view, to this type of problem
lies in the fact that its formulation involves dealing with discontinuities, non-differentiable expressions, excessively
bounded feasible regions, or the existence of a multiplicity of local solutions.16

Black-box optimization represents an approach to system optimization that finds its ideal application in cases
where a first-order model is unavailable.17–20 In this method, optimization relies upon an empirical model or
an approximation of the target system. Subsequently, this approximated or surrogate model can be subject to
optimization. Generic or heuristic algorithms have been extensively employed for black-box optimization. However,
one of their primary shortcomings is the absence of a solid theoretical foundation and a guarantee of attaining a true
optimal solution. These types of approaches have been widely used in the solution of nonlinear or mixed integer
nonlinear problems, trying to obtain valid optimal solutions and, in some cases, aspiring to the global solutions to
complex problems. However, even the most optimistic approaches still lack a mathematical guarantee of optimality
based on classical criteria, and in some cases, the reproducibility of the computational experiments performed is
still in question.16,21–24 One way to enhance these approaches has been the use of machine learning algorithms.
However, this coupling can result in additional computational costs that end up being counterproductive. In
attempts to address this, there have been endeavors to construct black-box models through the utilization of
quadratic model representations, followed by the application of classical unconstrained optimization techniques.
More recently, there has been a burgeoning interest in adopting a data-driven approach for the creation of reliable
surrogate models, subsequently employing formal Bayesian statistics for system optimization.25–28 Accordingly,
data science,29 materials design,30 hyper-parameters tuning in modern machine learning strategies31 and the
optimal design of experiments32 have been among the main fields where Bayesian optimization (BO) has been
applied. Specifically, applications of BO in the PET chemical recycling process,33 computational fluid dynamics,34

tuning of process controllers,35 heating, ventilation, and air conditioning (HVAC) plants,36 chemical reactor design
using computational fluid dynamics,37 extending BO tools to deploy parallel computer architectures,38 among other
applications, have been recently published.

The majority of documented applications of BO primarily focus on the optimization of steady-state systems.
Nevertheless, when addressing dynamic optimization environments, distinct challenges may arise that are not en-
countered in the optimization of steady-state systems. These challenges encompass issues like managing transitions
between unstable operational points and the necessity of achieving minimal time transitions without resorting to
aggressive control actions. This work aims to illustrate how dynamic optimal product transitions can be achieved
using solely measurements of the manipulated and controlled variables. This approach signifies a black-box data-
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2 BAYESIAN OPTIMIZATION OF DYNAMIC SYSTEMS

driven strategy for addressing the optimization of uncertain dynamic systems. In this work, we demonstrate the
implementation of Bayesian optimal dynamic transitions through the examination of three practical industrial
instances. These instances comprise two highly nonlinear behavior continuous stirred tank reactors and an ideal
binary distillation column. Each example showcases intricate steady-state and dynamic behaviours, and serve to
illustrate potential issues when calculating optimal transition trajectories by Bayesian techniques. Moreover, they
serve as a foundation for extending these methodologies to address other intricate processing systems, including
reactive distillation, pressure-swing adsorption, and full-scale processing plants.

2 Bayesian optimization of dynamic systems

About the Bayesian optimization approach

Bayesian optimization is especially suited for the optimization of complex and expensive-to-evaluate objective
functions. In fact, BO is particularly useful when dealing with objective functions which are costly to compute
and noisy measuring environments. Because Bayesian optimization is a type of iterative probabilistic optimization
technique that recently came into use,28,39,40 especially when compared to well established unconstrained and
constrained optimization techniques, we will highlight the following points regarding advantages/disadvantages of
this technique as follows. In Figure 1 a flowsheet of the steps taken during BO is shown.

• Initially, a selection of input and output measured variables must be made. The output variables pertain to
the target aspects, serving as control variables, while the input variables, considered manipulated variables,
actively steer the system dynamic behavior. Subsequently, an objective function should be formulated,
aligning with the intended goals, such as meeting purity standards or minimizing the consumption of raw
materials and energy. The objective function hinges upon the set of controlled and manipulated variables.
Hence, the primary goal of the objective function lies in furnishing a quantifiable metric to track advancements
toward achieving optimal conditions. While this stage theoretically allows for the utilization of extensive
datasets, such vast data repositories are not strictly mandatory. In fact, one of the advantages of Bayesian
optimization techniques lies in their capability to start iterations with a minimal set of measurements. This
attribute proves especially beneficial when confronted with extensive and costly experimental setups.

• In BO the target objective function is commonly modelled in terms of a probabilistic surrogate model,
like probabilistic or Bayesian neural networks, or using a Gaussian Process (GP) which is an extension of
traditional finite dimension multivariable normal distributions to non-parametric infinite dimension mean
and kernel functions. This extension allows to model random processes with improved prediction capabilities
and it is theoretically supported by the Kolmogorov extension theorem.28 In any case the aim of the surrogate
approximation is to provide estimates of the objective function and to draw uncertainty levels associated with
such estimates.

• Using estimates of the objective function, provided by the surrogate model, BO makes use of an activation
function to draw new values of the decision variables to guide the search toward optimal process conditions.
In this phase during the search for optimal conditions, BO iteratively balances two aspects: (a) exploration
(searching in regions with high uncertainty) and (b) exploitation (focusing on regions with high expected
objective values). The aim of the activation function is to decide where and how much to sample the objective
function (i.e. to draw the values of the decision variables) such to gather the most valuable information.

• During each iteration, BO extracts values for the decision variables and the objective function. With this
data in hand, the process can either continue seeking enhancement in the objective function or conclude the
iterative procedure. Should additional iterations be necessary, the current measurements augment the previ-
ous set. The underlying concept involves employing posterior Bayesian inference to generate improved values
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Figure 1: Flowsheet of the data-driven Bayesian Optimization approach. Starting from an initial set of process
measurements a probabilistic surrogate model is built. Then, trough the optimization of an acquisition function,
the values of the decision variables are updated. The aim of the acquisition function is to guide toward the searching
of optimal conditions improving, at each iteration step, the probability of drawing the best optimal conditions.
After some iterations an optimal solution can be found or the number of iterations can be exhausted. When the
optimal solution has not been found, the information of the present iteration (i.e. objective function and decision
variables) is accumulated and use it to draw a new surrogate model approximation and to infer new values of the
decision variables. The dashed box comprises the two major steps of the Bayesian optimization strategy.
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2 BAYESIAN OPTIMIZATION OF DYNAMIC SYSTEMS

for the decision variables. As iterations progress and more information becomes accessible, the Gaussian
Process approach typically yields improved predictive capabilities for the objective function.

BO is a well rooted theoretically sound optimization method which makes use of probabilistic models to guide
search towards optimal and feasible optimality regions. BO has been widely used in Machine Learning tasks for
hyper-parameters tuning31 and to improve the performance of physical experiments.32,39 In these scenarios it can
be difficult or computationally demanding to deploy traditional or classical optimization techniques.

About the optimization of dynamic systems

When a first principles dynamic mathematical model of the system to be optimized is available, then gradient-
based optimization techniques have been widely deployed for this purpose.3,4 However, gradient-based dynamic
optimization problems can be hard to use, especially when it comes to consider large scale, highly nonlinear
behaviour, uncertainties and noisy measurements. Therefore, for this type of problems, it can be useful to deploy
an efficient and reliable gradient-free optimization technique which does not require a first principles mathematical
description to draw dynamic optimal transition trajectories. This type of free-gradient optimization techniques
are known as black-box optimization techniques and have been deployed for tackling the problem addressed in
the present work. Genetic and metaheuristic optimization techniques have been popular optimization techniques
to deal with black-box optimization tasks.41,42 However, these algorithms have not a solid theoretical foundation
making difficult to assess the quality and validity of the solution found by these techniques. To partially cope
with this issue some other black-box optimization works solve the dynamic optimization problem by building an
approximate surrogate (i.e. quadractic function) around the intended dynamic trajectory, turning the problem
into an unconstrained optimization problem that can be solved by traditional optimization techniques.17

Nowadays, particularly within the paradigms of Industry 4.0 and artificial intelligence, there exists a compelling
imperative to address the efficient and reliable solution of optimization challenges through a predominantly data-
driven methodology.43 Within this framework, the fundamental concept revolves around the utilization of solely the
measurements of process variables to both construct and address black-box optimization problems. This endeavor
draws upon theoretically sound mathematical foundations, notably employing Bayesian statistical tools.

Relationship between Bayesian statistics and Bayesian optimization

Since BO techniques are rooted in Bayesian statistics inference concepts,44–46 it is important to highlight the
connections between these two disciplines.

• Probabilistic Modeling: Both Bayesian statistics and Bayesian optimization rely on probabilistic modeling.
In Bayesian statistics, probability distributions are used to describe uncertainty in parameters or data. In
Bayesian optimization, a Gaussian process as a probabilistic model is used to approximate the objective
function and capture uncertainty in the optimization process.

• Bayesian Inference: Bayesian statistics is concerned with updating beliefs about parameters or data as new
evidence is obtained. Bayesian optimization, on the other hand, involves iteratively updating the probabilistic
surrogate model of the objective function with new evaluations. The Bayesian inference framework is used
in both cases to make informed decisions.

• Acquisition Functions: In Bayesian optimization, an acquisition function is used to determine the next
point to evaluate. These acquisition functions balance exploration (sampling in regions of high uncertainty)
and exploitation (sampling in regions with high expected improvement). Bayesian statistics plays a role in
estimating uncertainty, which is a crucial part of the acquisition function.

5



4 CASE STUDIES

• Sequential Decision-Making: Both Bayesian statistics and Bayesian optimization involve making sequen-
tial decisions. In Bayesian statistics, beliefs are updated after each observation, and in Bayesian optimization,
a decision is taken about where to evaluate the objective function next, continually refining the progress to-
wards the optimal solution.

In summary, Bayesian optimization is a specific application of Bayesian statistics, where the focus is on finding
the optimal solution for an expensive or unknown objective function through a sequence of data-driven decisions.
Bayesian statistics provides the underlying framework and tools for modeling uncertainty, updating beliefs, and
making informed decisions in the context of Bayesian optimization.

3 Problem definition

The issue to be elucidated within this study may be defined as follows. In the context of a data-driven processing
system working in an initial steady-state operating point, the challenge at hand is to draw the control actions
that facilitate the system transition from the aforementioned initial state to a designated target steady-state using
only measurements of the controlled and manipulated variables. These control actions are to be drawn with the
intent of minimizing or maximizing a predetermined objective function. Because these dynamic optimal transitions
between the initial and final steady-states necessitate the implementation of time-dependent control actions, this
turns the addressed optimization task into a black-box open-loop dynamic optimization problem.

4 Case studies

In this section, we demonstrate the methodology for delineating optimal dynamic transition trajectories through a
data-driven Bayesian Optimization (BO) approach. The BO computations were executed utilizing an open-source
Python implementation of the BO strategy.47 Across all scenarios, a dynamic model representing the system under
consideration was employed to emulate real-system behavior and generate samples utilized within the optimization
methodology.

Hicks reactor

The reaction system, as proposed by Hicks and Ray,48 has been extensively employed as a benchmark problem to
assess algorithms designed for addressing non-linear multiplicity patterns and optimal product transition control
policies.6 In this study, we utilize this system to formulate Bayesian optimization data-driven optimal control
policies. The dynamic mathematical model reads as follows.

dy1
dt

=
1− y1
θ
− k10e−N/y2y1 (1)

dy2
dt

=
yf − y2

θ
+ k10e

−N/y2y1 − αu(y2 − yc) (2)

where y1 stands for concentration, y2 is the temperature, yf is the feed stream temperature and u is the cooling
flowrate. Additional parameter values are as follows: θ = 20 , k10 = 300, N = 5, α = 1.95x10−4, tf = 300, J =
100, cf = 7.6, tc = 290. Moreover, yc = tc/(J · cf ) and yf = tf/(J · cf ).

For this case study the objective function (Ω) was defined as follows:

Ω = λ1(y2 − yt2)2 + λ2

(
u− ut

ut

)2

(3)

where the super-script tmeans target values, λ1 and λ2 are weighting function whose role is to stress the importance
of the terms of the objective function such as to draw smooth control actions. As it can seen from the above equation,
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Figure 2: Nonlinear steady-state multiplicity map of the Hicks reactor. The continuous line stands for stable states, while
the dashed line represent unstable steady-states.

we used an scaled version of the control action such that all decision variables in the objective function features
similar order of magnitude values. By trial and error, we came to the conclusion that setting λ1 = 1, λ2 = 10

leads to acceptable performance of the manipulated variables over the output variables. Notice, that the y1 output
variable does not appear in the above objective function. Since we only have available a single input variable
(u) it would be hard to meet both output variables. Anyway, as shown later, good tracking behaviour of y1 was
also observed. For running the Bayesian optimization calculations the cooling flowrate was set within the bonds:
[200,460], the Expected Improvement acquisition function was also used and a sampling rate of 15 minutes was
enforced. Even when the Bayesian optimization approach can use a set of initial measurements of the input-output
variables for building an initial Gaussian Process surrogate, we decided to use just a single initial measurement. It
makes sense to use this single measurement as the initial steady-state conditions vector. In fact, one of the claimed
advantages28 of Bayesian optimization lies in its advantage of finding optimal operating conditions considering only
a small set of measurements. As the optimization search progress more information would be available leading to
better model representation. In this sense, Bayesian optimization offers a clear advantage over traditional machine
learning models which commonly require large data sets for model representation. This advantage is also clear
when contrasted with approaches that couple machine learning with evolutionary algorithms, where the size of the
dataset ends up becoming a problem for the convergence and performance of evolutionary algorithms.24,49

Following, to get a clearer idea about the issues when drawing dynamical optimal product transitions, the
nonlinear steady-state multiplicity map of this system is displayed in Figure 2. If the multiplicity map shows
monotonic behaviour, then dynamical optimal product transitions should not be difficult to attain. However, some
problems could emerge when multiple steady-states are present within the optimality region, since there is the
chance of not being able to draw the target steady-states. Accordingly, Figure 2 displays the nonlinear multiplicity
map of the Hicks reaction system. As shown in this Figure, the Hicks reaction system clearly features highly
nonlinear behaviour around the intended operating region of the reactor.

To test the advantages of the data-driven Bayesian optimization approach for optimally driving the Hicks
reactor between steady-states some optimal dynamic state transitions are next detailed. First, we drawn the
A → B open-loop optimal dynamic transition whose location is shown in Figure 2. This is a dynamic transition
where A stands for the initial steady-state and B is the final or target steady-state. In addition, as clearly noted
from Figure 2, both steady-states are stable. The states and manipulated variables dynamic optimal transitions
are shown in Figure 3. As displayed in this Figure, the Bayesian optimization strategy finds the optimal dynamic
transition in just a few steps. After hitting the bounds, the input variable stays close to the target operating
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region. Moreover, as previously mentioned, even when the y1 variable was not part of the objective function, it
also achieves is final steady-state value as a consequence of the reactor dynamic behaviour. Those results can be
compared with similar dynamic optimal transitions results drawn using a first-principles dynamic mathematical
model (see Figure 6 in Flores et. al.6). As noticed, the proposed BO data-driven approach provides acceptable
dynamical optimal transition trajectories.
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(c) Cooling flowrate.

Figure 3: Hicks reactor optimal dynamic transition using a pure data-driven Bayesian optimization approach:
A → B product transition. The dashed line stands for the target values of the variables. Initial steady state
(y1, y2, u):[0.0944, 0.7766,340], final steady-state (y1, y2, u): [0.1367,0.7293,390].

For testing the advantages of the optimization approach an optimal dynamic transition in the opposite direction
(B → A) was also attempted. The results are shown in Figure 4. As displayed in this Figure, the Bayesian
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optimization approach again quickly finds the dynamic transition trajectory. It should be stressed that this time,
to test the ability of the Gaussian Process surrogate to build a reliable process representation and the acquisition
function to provide good sampling points, the initial measured operating point was not taken as the initial steady-
state. Instead, the single measurement point was set as the final target steady-staten operating vector. Even
with this modification the results turn out to be satisfactory. Once again, the y1 output variable attains its final
steady-state value as well.
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(c) Cooling flowrate.

Figure 4: Hicks reactor optimal dynamic transition using a pure data-driven Bayesian optimization approach:
B → A product transition.

However, as displayed in Figure 5 for the A → C transition, when it comes to consider dynamic optimal
transitions where the target steady-state (C) is an open-loop unstable operating point, the Bayesian optimization
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(c) Cooling flowrate.

Figure 5: Hicks reactor optimal dynamic transition using a pure data-driven Bayesian optimization approach:
A → C product transition. Initial steady state (y1, y2, u):[0.0944, 0.7766,340], final steady-state (y1, y2, u):
[0.1926,0.6881,430].

approach fails to draw the optimal trajectory. From Figure 2, it is clear that the optimization approach converges
towards the corresponding lower branch stable steady-state. This is a well known drawback of dynamic optimization
procedures which directly take into account the dynamic process behaviour for this purpose. As far as we know, the
full discretization approach is the only known approach for carrying out this type of calculations4 (optimal dynamic
transitions involving open-loop unstable operating points). However, the full discretization approach requires an
explicit first-principles dynamic mathematical model. As mentioned in the discussion about data-driven approaches
to process optimization, we have made the assumption that this type of model is not available. There are at least
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two ways to cope with this problem. First, we could try to stabilise the reaction system by incorporating a control
mechanism and then draw the transition trajectories and, second, the transition trajectories can be drawn by using
an on-line control algorithm. The first approach leads to the calculation of open-loop optimal trajectories that
ought to be later implemented, while the second approach enforces simultaneously drawing optimal trajectories
and its implementation. This is a point for future consideration.
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(c) Cooling flowrate.

Figure 6: Hicks reactor optimal dynamic transition using a pure data-driven Bayesian optimization approach:
A → C product transition. Initial steady state (y1, y2, u):[0.0944, 0.7766,340], final steady-state (y1, y2, u):
[0.1926,0.6881,430]. To assess the influence of noisy measurements on the Bayesian optimization performance
20% noise error was added to the objective function.

In practical scientific and technical applications the presence of noise, when measurements are drawn, is inevitable.
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Figure 7: Nonlinear steady-state multiplicity map of the consecutive reaction system. The continuous line stands for stable
states, while the dashed line represent unstable steady-states.

The presence of noisy measurements tends also to outperform the performance of numerical optimization algorithms
making difficult to draw optimality operating regions. However, since noise effects are inevitable, its impact on
the quality of the optimal dynamic transition trajectories should be assessed. Therefore, to take into account the
presence of noisy measurements on the performance of the Bayesian optimization approach, we have added 20%
noise to the objective function shown in Equation 3 by just drawing random numbers in the [-1,+1] interval. The
dynamic optimal transition trajectories are displayed in Figure 6. As observed, even in presence of significant noise
levels, the Bayesian optimization strategy successfully tracks the dynamic optimal transition trajectory meeting
the product requirements. However, to tolerate this noise level and to draw the optimality region we have to set
the weight value (λ2) in Equation 3 up to 1x105. This change makes sense since its effect is to give priority to the
effect of the manipulated variables on the output system response.

Consecutive reaction system

In this case study we will address the data-driven dynamic optimization of a consecutive reaction system.6 As dis-
played in Figure 7 the system exhibits multiplicity steady-state nonlinear behaviour around the intended operating
region. The dynamic mathematical model of this system reads as follows:

dx1
dt

= q(x1f − x1)− x1k1φ (4)

dx2
dt

= q(x2f − x2)− x2φSk2 + x1φk1 (5)

dx3
dt

= q(x3f − x3) + δ(x4 − x3) + βφ(x1k1 + αx2k2S) (6)

dx4
dt

= δ1(qc(x4f − x4) + δδ2(x3 − x4)) (7)

where,

k1 = ex3/(1+(x3/γ)) (8)

k2 = eψx3/(1+(x3/γ)) (9)

in the above equations x1 is the dimensionless concentration of reactant X, x2 is the dimensionless concentration
of reactant Y , x3 is the dimensionless reactor temperature, and x4 is the dimensionless cooling jacket temperature.
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The nominal parameters values are given as follows: q = 1, x1f = 1, x2f = 0, x3f = 0, x4f = -1, β = 8, φ = 0.133,
δ = 1, α = 1, S = 0.01, ψ = 1, δ1 = 10, δ2 = 1, γ = 1000.

In this case study we draw the dynamic optimal transition trajectories between steady-state around the multi-
plicity region. To this end we will consider that the cooling flowrate (qc) is the manipulated variable and that at
the end of the transition all states should achieve its target values. Because there is only a single input available
for driving the system, we will assume that good tracking of all states can be achieved trough the control of the
dimensionless reactor temperature (x3). Accordingly, the objective function (Ω) is defined as follows:

Ω = λ1(x3 − xt3)2 + λ2

(
qc − qtc
qtc

)2

(10)

where the superscript t stands for target values and, as in the past case study, λ1, λ2 are weighting functions used to
stress the importance of the input and output terms. For the noiseless measurements scenario the following values
of the weights provided good dynamic open-loop performance: λ1 = 1, λ2 = 10. Moreover, a 15 minutes sampling
rate was set and the manipulated variable (qc) was constrained within the following closed interval: [1,3]. The
optimal dynamic transition trajectories between the A and C operating points,6 shown in Figure 7, are displayed in
Figure 8. As shown in this Figure, good performance of the Bayesian optimization approach for drawing dynamic
optimal transition trajectories is observed. As done in the previous case study, the results of the present case study
can be compared with similar dynamic optimal transitions results (see Figure 2 in Flores et. al.6). Once again,
the proposed BO data-driven approach displays comparable quality dynamical optimal transition trajectories.
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(e) Cooling flowrate.

Figure 8: Consecutive reaction system. Optimal dynamic transition trajectories between the A and C steady-
states shown in Figure 7. Initial steady-state (x1, x2, x3, x4, qc) = [0.0016,0.1387,8.5188,2.1729,2]; Final steady-
state (x1, x2, x3, x4, qc) = [0.8495,0.1503,0.2871,-0.6323,2.5]

As done in the past case study, an assessment of the effect of noisy measurements on the performance of the
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optimization strategy was done. To this end 20% noise was added to the objective function. Figure 9 displays the
dynamic optimal trajectories under a noisy measurements scenario. To smooth the effect of noisy measurements
on optimal system response the weighting functions were set as follows: λ1 = 102, λ2 = 104. It should be stressed
that even in presence of considerable noise levels, the Bayesian optimization approach is clearly able to draw
dynamic optimal transition trajectories. This fact becomes notoriously important especially when highly nonlinear
processing systems are addressed.
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Figure 9: Consecutive reaction system for the A→ C transition as shown in Figure 7 under a noisy measurements
scenario.

Binary distillation column

This case study deals with the dynamic optimization of an ideal equilibrium binary distillation column as introduced
by Morari and Zafiriou.50 The model detailed in50 is a basic model of the distillation operation that only takes
into account composition dynamics, with no consideration for holdup dynamics as discussed in51 or tray thermal
effects. However, we decided to consider the relatively simple model discussed in50 because it suits our purpose of
demonstrating how to draw optimal dynamic transition trajectories by data-driven optimization techniques in a
complex large scale nonlinear system. Accordingly the composition dynamic model reads as follows.

• Reboiler (j = 1)
dxj
dt

=
Lxj+1 − V yj −Bxj

Mb
(11)

• Feed tray (j = Nf ) (saturated liquid feed stream)

dxj
dt

=
Lxj+1 + V yj−1 − Lxj − V yj + Fzf

Mt
(12)
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• Condenser (j = Nt)
dxj
dt

=
V yj−1 − Lxj −Dxj

Mc
(13)

• Inner trays other than feed, condenser and reboiler trays j 6= 1, j 6= Nf , j 6= Nt

dxj
dt

=
Lxj+1 + V yj−1 − Lxj − V yj

Mt
, ∀j > Nf (14)

dxj
dt

=
(L+ F )xj+1 + V yj−1 − (L+ F )xj − V yj

Mt
, ∀j < Nf (15)

• Ideal vapor and liquid equilibrium relationship

yj =
αxj

1 + (α− 1)xj
(16)

For dynamic optimization purposes we consider the operation of the column from a nominal steady-state and take
it to a final target steady state. For achieving the transition trajectory we assume that the reflux flowrate (L)
and the boilup flowrate (V ) are the manipulated variables, while the output target variables are the distillate and
bottoms compositions. This corresponds to a classical LV two-points control structure. Additional data are as
follows: α = 1.5, zf = 0.5, Nt = 40, Nf = 21, F = 1, Mc = 2, Mb = 5 and Mt = 0.5. Moreover, for Bayesian
optimization purposes box constraints on the manipulated variables were enforced as follows: L ∈ [2, 3], V ∈ [3, 4],
a sampling rate of 30 minutes was set, and decisions about where to take optimal samples were drawn using the
Expected Improvement acquisition function.

For this case study the objective function (Ω) was defined as follows:

Ω = (xb − xtb)2 + (xd − xtd)2 + λL(L− Lt)2 + λV (V − V t)2 (17)

where x stands for mol fraction, the sub-index d, b denote distillate and bottoms streams, respectively, and the
superscript t is the target value. λ is a weighting function to stress control actions. After trial and error, we came
to the conclusion that by setting λL = λV = 102 good performance of the dynamic optimization behaviour was
drawn. No scaling of the objective function variables was needed since all these variables feature values in the same
order of magnitude.

Accordingly, Figure 10 displays the dynamic optimal transition trajectory when changing from the A to the
C steady-state operating points as defined in the appendix section of Morari and Zafiriou.50 As observed, good
tracking behaviour is drawn successfully meeting product compositions targets within the manipulated variables
closed interval bounds. It should be stressed that the optimal control of distillation columns is a complex task
especially when dual composition control is requested. Even, so the Bayesian optimization strategy quickly draws
the dynamic trajectory. As in the past example, a single initial measurement was deployed. The single measurement
refers to the initial steady-state conditions of the A operating point.50 Since our aim is to draw optimal transition
trajectories, it makes sense to use this point as the initial measurement vector instead of using random initial
measurements.

Finally, as done in the previous case studies, the influence of noisy measurements on the performance of the
Bayesian optimization approach was assessed by adding 20% noise level to the objective function shown in Equation
17. The performance of the optimizationn scheme taking into account noisy measurements is displayed in Figure
11. To cope with noisy measurements and to draw the optimal transitions trajectories the weighting function values
in Equation 17 were set as follows: λL = λV = 103. As shown in 11, even in presence of noisy measurements, the
Bayesian approach successfully draws optimal transition trajectories meeting product composition requirements.
In fact, as shown from Figures 10 and 11, the dynamic shape of the manipulated variables is similar. Once again,
increasing the weighting functions values have the effect of stressing the importance of the manipulated variables
on the column distillate and bottoms compositions.
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5 Conclusions

In this work, a data-driven Bayesian approach for optimal dynamic product transitions has been proposed. The
approach is based on a dynamic optimization problem that is solved using a Bayesian optimization algorithm.
The approach has been applied to three case complex nonlinear behaviour case studies. The results show that the
proposed approach is able to find dynamical optimal transition trajectories that meet the product composition
requirements. The approach is also able to cope with noisy measurements, which is an important feature in real-
world applications. The results also show that the proposed approach is able to find optimal transition trajectories
that are similar to those obtained using a traditional optimization approach, but with a much lower computational
cost. The proposed approach has several advantages over traditional optimization approaches. First, it is data-
driven, which means that it does not require a priori knowledge of the system dynamics. Second, it is able to cope
with noisy measurements, which is an important feature in real-world applications. Third, it is computationally
efficient, which makes it suitable for on-line real-time optimization. In conclusion, the proposed data-driven
Bayesian approach for optimal dynamic product transitions is a promising approach that has the potential to
improve the efficiency and effectiveness of dynamic product transitions in the processing industry.
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(a) Distillate concentration.
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(b) bottoms concentration.
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(c) Reflux flowrate.
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(d) Boilup flowrate.

Figure 10: Ideal binary distillation column. Initial conditions vector (xd, xb, L, V ): [0.9016,0.0015,2.737,3.291],
Target conditions vector (xd, xb, L, V ): [0.995,0.005,2.706,3.206]. The dashed line stands for the corresponding
target values.
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(d) Boilup flowrate.

Figure 11: Ideal binary distillation column. Initial conditions vector (xd, xb, L, V ): [0.9016,0.0015,2.737,3.291],
Target conditions vector (xd, xb, L, V ): [0.995,0.005,2.706,3.206]. The dashed line stands for the corresponding
target values. To assess the influence of noisy measurements on the Bayesian optimization performane 20% noise
error was added to the objective function.
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