References
Adams, R. A. (2018). Dark side of climate change: Species-specific responses and first indications of disruption in spring altitudinal migration in myotis bats. Journal of Zoology, 304(4), 268–275. https://doi.org/10.1111/jzo.12526
Alerstam, T., & Bäckman, J. (2018). Ecology of animal migration. Current Biology,28(17), R968–R972. https://doi.org/10.1016/j.cub.2018.04.043
Bacon, B., Khatiri, A., Palmer, J., Freeth, T., Pettitt, P., & Kentridge, R. (2023). An Upper Palaeolithic Proto-writing System and Phenological Calendar.Cambridge Archaeological Journal, 33(3), 371–389. https://doi.org/10.1017/S0959774322000415
Barçante, L., M. Vale, M., & S. Alves, M. A. (2017). Altitudinal migration by birds: A review of the literature and a comprehensive list of species. Journal of Field Ornithology, 88(4), 321–335. https://doi.org/10.1111/jofo.12234
Battey, C. J., & Klicka, J. (2017). Cryptic speciation and gene flow in a migratory songbird Species Complex: Insights from the Red-Eyed Vireo (Vireo olivaceus). Molecular Phylogenetics and Evolution,113, 67–75.https://doi.org/10.1016/j.ympev.2017.05.006Börger, L., Bijleveld, A. I., Fayet, A. L., Machovsky‐Capuska, G. E., Patrick, S. C., Street, G. M., & Vander Wal, E. (2020). Biologging Special Feature. Journal of Animal Ecology, 89(1), 6–15.https://doi.org/10.1111/1365-2656.13163Boyle, W. A., Guglielmo, C. G., Hobson, K. A., & Norris, D. R. (2011). Lekking birds in a tropical forest forego sex for migration.Biology Letters, 7(5), 661–663. https://doi.org/10.1098/rsbl.2011.0115
Boyle, W. A. (2017). Altitudinal bird migration in North America. The Auk,134(2), 443–465. https://doi.org/10.1642/AUK-16-228.1
Brodie, J. F., Williams, S., & Garner, B. (2021). The decline of mammal functional and evolutionary diversity worldwide. Proceedings of the National Academy of Sciences, 118(3), e1921849118. https://doi.org/10.1073/pnas.1921849118
Burgess, N. D., & Mlingwa, C. O. F. (2000). Evidence for altitudinal migration of forest birds between montane Eastern Arc and lowland forests in East Africa. Ostrich, 71(1–2), 184–190. https://doi.org/10.1080/00306525.2000.9639908 Carboneras, C., Jutglar, F., & Kirwan, G. M. (2020). Snow Petrel (Pagodroma nivea). Birds of the World. https://birdsoftheworld.org/bow/species/snopet1/cur/introduction Chapman, B. B., Skov, C., Hulthén, K., Brodersen, J., Nilsson, P. A., Hansson, L.-A., & Brönmark, C. (2012). Partial migration in fishes: Definitions, methodologies and taxonomic distribution. Journal of Fish Biology, 81(2), 479–499. https://doi.org/10.1111/j.1095-8649.2012.03349.x
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range Shifts of Species Associated with High Levels of Climate Warming.Science, 333(6045), 1024–1026. https://doi.org/10.1126/science.1206432
Cheng, Y., Wen, Z., He, X., Dong, Z., Zhangshang, M., Li, D., Wang, Y., Jiang, Y., and Wu, Y. (2022). Ecological traits affect the seasonal migration patterns of breeding birds along a subtropical altitudinal gradient. Avian Research 13:100066.
Chowdhury, S., Fuller, R. A., Dingle, H., Chapman, J. W., & Zalucki, M. P. (2021). Migration in butterflies: A global overview. Biological Reviews, brv.12714. https://doi.org/10.1111/brv.12714
Cosgrove, A. J., McWhorter, T. J., & Maron, M. (2018). Consequences of impediments to animal movements at different scales: A conceptual framework and review.Diversity and Distributions, 24(4), 448–459. https://doi.org/10.1111/ddi.12699
Crossin, G. T., Hinch, S. G., Farrell, A. P., Higgs, D. A., Lotto, A. G., Oakes, J. D., & Healey, M. C. (2004). Energetics and morphology of sockeye salmon: Effects of upriver migratory distance and elevation.Journal of Fish Biology, 65(3), 788–810.https://doi.org/10.1111/j.0022-1112.2004.00486.xDeSaix, M. G., Bulluck, L. P., Eckert, A. J., Viverette, C. B., Boves, T. J., Reese, J. A., Tonra, C. M., & Dyer, R. J. (2019). Population assignment reveals low migratory connectivity in a weakly structured songbird. Molecular Ecology, 28(9), 2122–2135.https://doi.org/10.1111/mec.15083
DeSaix, M. G., Anderson, E. C., Bossu, C. M., Rayne, C. E., Schweizer, T. M., Bayly, N. J., Narang, D. S., Hagelin, J. C., Gibbs, H. L., Saracco, J. F., Sherry, T. W., Webster, M. S., Smith, T. B., Marra, P. P., & Ruegg, K. C. (2023). Low-coverage whole genome sequencing for highly accurate population assignment: Mapping migratory connectivity in the American Redstart (Setophaga ruticilla). Molecular Ecology, 32, 5528–5540. https://doi-org.libezp.lib.lsu.edu/10.1111/mec.17137
Dingle, H., & Drake, V. A. (2007). What Is Migration?BioScience, 57(2), 113–121.https://doi.org/10.1641/B570206Do, H., and Dobrovic, A. (2015). Sequence Artifacts in DNA from Formalin-Fixed Tissues: Causes and Strategies for Minimization. Clinical Chemistry 61:64–71. Edwards, M. S., T. F. Turner, and Z. D. Sharp (2022). Short- and Long-Term Effects of Fixation and Preservation on Stable Isotope Values (s13C, s’5N, 834S) of Fluid-Preserved Museum Specimens. Coepia.
Eggert, L. S., Terwilliger, L. A., Woodworth, B. L., Hart, P. J., Palmer, D., & Fleischer, R. C. (2008). Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria. BMC Evolutionary Biology, 8(1), 315. https://doi.org/10.1186/1471-2148-8-315
Gadek, C. R., Newsome, S. D., Beckman, E. J., Chavez, A. N., Galen, S. C., Bautista, E., & Witt, C. C. (2018). Why are tropical mountain passes “low” for some species? Genetic and stable-isotope tests for differentiation, migration and expansion in elevational generalist songbirds. Journal of Animal Ecology, 87(3), 741–753.https://doi.org/10.1111/1365-2656.12779Gomez, L., Larsen, K. W., & Gregory, Patrick. T. (2015). Contrasting Patterns of Migration and Habitat Use in Neighboring Rattlesnake Populations. Journal of Herpetology, 49(3), 371–376. https://doi.org/10.1670/13-138
Gómez-Bahamón, V., Márquez, R., Jahn, A. E., Miyaki, C. Y., Tuero, D. T., Laverde-R, O., Restrepo, S., & Cadena, C. D. (2020). Speciation Associated with Shifts in Migratory Behavior in an Avian Radiation. Current Biology,30(7), 1312-1321.e6. https://doi.org/10.1016/j.cub.2020.01.064
Green, K. (2010). Alpine taxa exhibit differing responses to climate warming in the Snowy Mountains of Australia. Journal of Mountain Science, 7(2), 167–175. https://doi.org/10.1007/s11629-010-1115-2
Guaraldo, A. de C., Bczuska, J. C., & Manica, L. T. (2022).Turdus flavipes altitudinal migration in the Atlantic Forest The Yellow-legged Thrush is a partial altitudinal migrant in the Atlantic Forest. Avian Biology Research, 15(3), 117–124. https://doi.org/10.1177/17581559221097269 Gutiérrez, D., & Wilson, R. J. (2014). Climate conditions and resource availability drive return elevational migrations in a single-brooded insect. Oecologia, 175(3), 861–873. https://doi.org/10.1007/s00442-014-2952-4 Harzing, A.W. (2007). Publish or Perish, available from https://harzing.com/resources/publish-or-perish Hobson, K. A., S. L. Van Wilgenburg, L. I. Wassenaar, and K. Larson (2012). Linking hydrogen (δ2H) isotopes in feathers and precipitation: sources of variance and consequences for assignment to isoscapes. PLoS ONE 7:e35137. Hobson, K. A., Wassenaar, L. I., Bowen, G. J., Courtiol, A., Trueman, C. N., Voigt, C. C., West, J. B., McMahon, K. W., & Newsome, S. D. (2019). Outlook for Using Stable Isotopes in Animal Migration Studies. InTracking Animal Migration with Stable Isotopes (pp. 237–244). Elsevier. https://doi.org/10.1016/B978-0-12-814723-8.00010-6 Holton, M. D., Wilson, R. P., Teilmann, J., & Siebert, U. (2021). Animal tag technology keeps coming of age: An engineering perspective.Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1831), 20200229.https://doi.org/10.1098/rstb.2020.0229Holzhaider, J. & Zahn, A. (2001). Bats in the Bavarian Alps: Species composition and utilization of higher altitudes in summer.Mammalian Biology, 66, 144–154. Hsiung, A. C., Boyle, W. A., Cooper, R. J., & Chandler, R. B. (2018). Altitudinal migration: Ecological drivers, knowledge gaps, and conservation implications: Animal altitudinal migration review.Biological Reviews, 93(4), 2049–2070. https://doi.org/10.1111/brv.12435
Inouye, D. W., Barr, B., Armitage, K. B., & Inouye, B. D. (2000). Climate change is affecting altitudinal migrants and hibernating species.Proceedings of the National Academy of Sciences, 97(4), 1630–1633. https://doi.org/10.1073/pnas.97.4.1630
Jacobsen, D. (2020). The dilemma of altitudinal shifts: Caught between high temperature and low oxygen. Frontiers in Ecology and the Environment,18(4), 211–218. https://doi.org/10.1002/fee.2161
Justen, H., & Delmore, K. E. (2022). The genetics of bird migration. Current Biology, 32(20), R1144–R1149. https://doi.org/10.1016/j.cub.2022.07.008
Kimura, M. T. (2021). Altitudinal migration of insects.Entomological Science, 24(1), 35–47.https://doi.org/10.1111/ens.12444
Leeming J. (2023) Searching the web for science: how small mistakes create big problems. Nature. 2023 Apr 6. doi: 10.1038/d41586-023-01011-2. Epub ahead of print. PMID: 37024585.
Liang, D., Pan, X. Luo, X., Wenda, C., Zhao, Y., Hu, Y., Robinson, S. K., and Liu, Y. (2021). Seasonal variation in community composition and distributional ranges of birds along a subtropical elevation gradient in China. Diversity and Distributions 27:2527–2541.
Loiselle, B. A., & Blake, J. G. (1992). Population Variation in a Tropical Bird Community.BioScience, 42(11), 838–845. https://doi.org/10.2307/1312083
Maicher, V., Sáfián, S., Murkwe, M., Delabye, S., Przybyłowicz, Ł., Potocký, P., Kobe, I. N., Janeček, Š., Mertens, J. E. J., Fokam, E. B., Pyrcz, T., Doležal, J., Altman, J., Hořák, D., Fiedler, K., & Tropek, R. (2020). Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. Journal of Biogeography, 47(2), 342–354. https://doi.org/10.1111/jbi.13740
Mallory, M. L., Stenhouse, I. J., Gilchrist, H. G., Robertson, G. J., Haney, J. C., & Macdonald, S. D. (2020). Ivory Gull (Pagophila eburnea). Birds of the World.https://birdsoftheworld.org/bow/species/ivogul/cur/introductionMatsubayashi, J., Y. Osada, K. Tadokoro, Y. Abe, A. Yamaguchi, K. Shirai, K. Honda, C. Yoshikawa, N. O. Ogawa, N. Ohkouchi, N. F. Ishikawa, et al. (2020). Tracking long‐distance migration of marine fishes using compound‐specific stable isotope analysis of amino acids. Ecology Letters 23:881–890.
McGuire, L. P., & Boyle, W. A. (2013). Altitudinal migration in bats: Evidence, patterns, and drivers: Bat altitudinal migration. Biological Reviews,88(4), 767–786. https://doi.org/10.1111/brv.12024
McMahon, K. W., and S. D. Newsome (2019). Amino Acid Isotope Analysis: A New Frontier in Studies of Animal Migration and Foraging Ecology. In Tracking Animal Migration with Stable Isotopes. Elsevier, pp. 173–190.
Merlin, C., & Liedvogel, M. (2019). The genetics and epigenetics of animal migration and orientation: Birds, butterflies and beyond. Journal of Experimental Biology, 222(Suppl_1), jeb191890. https://doi.org/10.1242/jeb.191890
Middleton, A. D., Sawyer, H., Merkle, J. A., Kauffman, M. J., Cole, E. K., Dewey, S. R., Gude, J. A., Gustine, D. D., McWhirter, D. E., Proffitt, K. M., & White, P. (2020). Conserving transboundary wildlife migrations: Recent insights from the Greater Yellowstone Ecosystem.Frontiers in Ecology and the Environment, 18(2), 83–91. https://doi.org/10.1002/fee.2145 Milligan, R. J., Scott, E. M., Jones, D. O. B., Bett, B. J., Jamieson, A. J., O’Brien, R., Pereira Costa, S., Rowe, G. T., Ruhl, H. A., Smith, K. L., Susanne, P., Vardaro, M. F., & Bailey, D. M. (2020). Evidence for seasonal cycles in deep‐sea fish abundances: A great migration in the deep SE Atlantic? Journal of Animal Ecology, 89(7), 1593–1603.https://doi.org/10.1111/1365-2656.13215Mitsui H, Beppu K, Kimura MT (2010) Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera; Drosophilidae) in Central Japan. Entomological Science 13,60–67. Morrissey, C. A., Bendell-Young, L. I., & Elliott, J. E. (2004). Seasonal trends in population density, distribution, and movement of American Dippers within a watershed of southwestern British Columbia, Canada. The Condor, 106, 815-825. Moussy, C., Hosken, D.J., Mathews, F., Smith, G.C., Aegerter, J.N. and Bearhop, S. (2013). Bat movements and genetic structure. Mammal Review, 43: 183-195. https://doi-org.10.1111/j.1365-2907.2012.00218.x Nachman, M. W., E. J. Beckman,E. J., Bowie, R. C., Cicero, C., Conroy, C. J., R. Dudley, R., Hayes, T. B., Koo, M. S., Lacey, E. A., Martin, C. H., McGuire, J. A., et al. (2023). Specimen collection is essential for modern science. PLOS Biology 21:e3002318. Newsome, S. D., Sabat, P., Wolf, N., Rader, J. A., & del Rio, C. M. (2015). Multi-tissue δ 2 H analysis reveals altitudinal migration and tissue-specific discrimination patterns inCinclodes. Ecosphere, 6(11), art213.https://doi.org/10.1890/ES15-00086.1
Newton, I. (2012). Obligate and facultative migration in birds: Ecological aspects.Journal of Ornithology, 153(S1), 171–180. https://doi.org/10.1007/s10336-011-0765-3
Norbu, N., Wikelski, M. C., Wilcove, D. S., Partecke, J., Ugyen, Tenzin, U., Sherub, & Tempa, T. (2013). Partial Altitudinal Migration of a Himalayan Forest Pheasant. PLoS ONE, 8(4), e60979. https://doi.org/10.1371/journal.pone.0060979
Nussbaumer, R., Gravey, M., Briedis, M., & Liechti, F. (2023). Global positioning with animal‐borne pressure sensors. Methods in Ecology and Evolution,14(4), 1104–1117. https://doi.org/10.1111/2041-210X.14043
O’Neill, J. P., & Parker, T. A. (1978). Responses of Birds to a Snowstorm in the Andes of Southern Peru. THE WILSON BULLETIN,90(3), 4.
Pageau, C., Vale, M. M., Menezes, M. A., Barçante, L., Shaikh, M., S. Alves, M. A., & Reudink, M. W. (2020). Evolution of altitudinal migration in passerines is linked to diet. Ecology and Evolution, 10(7), 3338–3345. https://doi.org/10.1002/ece3.6126
Presnall, C. C. (1935). Altitudinal migration in southern Utah.The Condor, 37(1) , 37-38.
Qu, Y., Tian, S., Han, N., Zhao, H., Gao, B., Fu, J., Cheng, Y., Song, G., Ericson, P. G. P., Zhang, Y. E., Wang, D., Quan, Q., Jiang, Z., Li, R., & Lei, F. (2015). Genetic responses to seasonal variation in altitudinal stress: Whole-genome resequencing of great tit in eastern Himalayas.Scientific Reports, 5(1), 14256. https://doi.org/10.1038/srep14256
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., & Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365(6458), 1108–1113. https://doi.org/10.1126/science.aax0149
Rappole, J. H. (2013).The avian migrant: The biology of bird migration. Columbia University Press.
Rappole, J. H., Aung, T., Rasmussen, P. C., & Renner, S. C. (2011). Ornithological Exploration in the Southeastern Sub-Himalayan Region of Myanmar.Ornithological Monographs, 70(1), 10–29. https://doi.org/10.1525/om.2011.70.1.10
Rime, Y., Nussbaumer, R., Briedis, M., Sander, M. M., Chamberlain, D., Amrhein, V., Helm, B., Liechti, F., & Meier, C. M. (2023). Multi-sensor geolocators unveil global and local movements in an Alpine-breeding long-distance migrant.Movement Ecology, 11(1), 19. https://doi.org/10.1186/s40462-023-00381-6
Rocque, D. A., and K. Winker (2005). Use of Bird Collections in Contaminant and Stable-isotope Studies. The Auk 122:990–994.
Rougemont, Q., Xuereb, A., Dallaire, X., Moore, J.-S., Normandeau, E., Perreault-Payette, A., Bougas, B., Rondeau, E. B., Withler, R. E., Van Doornik, D. M., Crane, P. A., Naish, K. A., Garza, J. C., Beacham, T. D., Koop, B. F., & Bernatchez, L. (2023). Long-distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Molecular Ecology , 32, 542–559. https://doi-org.libezp.lib.lsu.edu/10.1111/mec.16339
Rueda-Uribe C., Herrera-Alsina L., Lancaster, L. T., Capellini, I., Layton, K. K. S., & Travis J. M. J. (2023). Citizen science data reveal altitudinal movement and seasonal ecosystem use by hummingbirds in the Andes Mountains. Ecography, 2023:e06735. https://doi-org.libezp.lib.lsu.edu/10.1111/ecog.06735
Ruegg, K. C., Anderson, E. C., Harrigan, R. J., Paxton, K. L., Kelly, J. F., Moore, F., & Smith, T. B. (2017). Genetic assignment with isotopes and habitat suitability ( gaiah ), a migratory bird case study.Methods in Ecology and Evolution, 8(10), 1241–1252.https://doi.org/10.1111/2041-210X.12800Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. and Fuller, R. A. 2014. Conserving mobile species. Frontiers in Ecology and the Environment, 12, 395–402. Schmitt, C. J., Cook, J. A., Zamudio, K. R., & Edwards, S. V. (2019). Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philosophical Transactions of the Royal Society B: Biological Sciences,374(1763), 20170387.https://doi.org/10.1098/rstb.2017.0387
Schunck, F., Silveira, L. F., & Candia-Gallardo, C. (2023). Seasonal altitudinal movements of birds in Brazil: A review. Zoologia (Curitiba), 40, e22037. https://doi.org/10.1590/s1984-4689.v40.e22037
Scott, G. R., Hawkes, L. A., Frappell, P. B., Butler, P. J., Bishop, C. M., & Milsom, W. K. (2015). How Bar-Headed Geese Fly Over the Himalayas. Physiology, 30(2), 107–115.https://doi.org/10.1152/physiol.00050.2014Sokolovskis, K., M. Lundberg, S. Åkesson, M. Willemoes, T. Zhao, V. Caballero-Lopez, and S. Bensch (2023). Migration direction in a songbird explained by two loci. Nature Communications 14:165.
Soriano-Redondo, A., Gutiérrez, J. S., Hodgson, D., & Bearhop, S. (2020). Migrant birds and mammals live faster than residents. Nature Communications,11(1), 5719. https://doi.org/10.1038/s41467-020-19256-0
Talla, V., Pierce, A. A., Adams, K. L., De Man, T. J. B., Nallu, S., Villablanca, F. X., Kronforst, M. R., & De Roode, J. C. (2020). Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance. Molecular Ecology, 29(14), 2567–2582. https://doi.org/10.1111/mec.15508
Teitelbaum, C. S., Fagan, W. F., Fleming, C. H., Dressler, G., Calabrese, J. M., Leimgruber, P., & Mueller, T. (2015). How far to go? Determinants of migration distance in land mammals. Ecology Letters,18(6), 545–552. https://doi.org/10.1111/ele.12435
Terrill, S. B., & Able, K. P. (1988). Bird Migration Terminology.The Auk, 105(1), 205–206. https://doi.org/10.1093/auk/105.1.205
Tigano, A., & Russello, M. A. (2022). The genomic basis of reproductive and migratory behaviour in a polymorphic salmonid. Molecular Ecology,31(24), 6588–6604. https://doi.org/10.1111/mec.16724
Tinoco, B. A., Astudillo, P. X., Latta, S. C., & Graham, C. H. (2009). Distribution, ecology and conservation of an endangered Andean hummingbird: The Violet-throated Metaltail ( Metallura baroni ).Bird Conservation International, 19(1), 63–76.https://doi.org/10.1017/S0959270908007703Todd W. E. & Carriker, M. A. (1922). The birds of the Santa Marta region of Colombia: a study in altitudinal distribution. Annals of the Carnegie Museum 14, 611 pp. Toews, D. P. L., S. A. Taylor, H. M. Streby, G. R. Kramer, and I. J. Lovette (2019). Selection on VPS13A linked to migration in a songbird. Proceedings of the National Academy of Sciences 116:18272–18274. Tsai, P., Ko, C., Chia, S. Y., Lu, Y., & Tuanmu, M. (2021). New insights into the patterns and drivers of avian altitudinal migration from a growing crowdsourcing data source. Ecography,44(1), 75–86. https://doi.org/10.1111/ecog.05196 Villeneuve, A. R., Thornhill, I., & Eales, J. (2019). Upstream migration and altitudinal distribution patterns of Nereina punctulata (Gastropoda: Neritidae) in Dominica, West Indies. Aquatic Ecology, 53(2), 205–215.https://doi.org/10.1007/s10452-019-09683-7Wandeler, P., P. E. A. Hoeck, and L. F. Keller (2007). Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution 22:634–642. Williamson, J. L., & Witt, C. C. (2021). Elevational niche-shift migration: Why the degree of elevational change matters for the ecology, evolution, and physiology of migratory birds. Ornithology, ukaa087. https://doi.org/10.1093/ornithology/ukaa087
Winker, K. (2010). On the Origin of Species Through Heteropatric Differentiation: A Review and a Model of Speciation in Migratory Animals. Ornithological Monographs, 69(1), 1–30. https://doi.org/10.1525/om.2010.69.1.1
Wootton, K. L., Curtsdotter, A., Bommarco, R., Roslin, T., & Jonsson, T. (2023). Food webs coupled in space: Consumer foraging movement affects both stocks and fluxes. Ecology, 104(8), e4101. https://doi.org/10.1002/ecy.4101
Figure Legends
Figure 1:
: Altitudinal migration is a widespread phenomenon that occurs in many different taxonomic groups and across habitat types. Here, we show seven different examples of altitudinal migration that illustrate differences in the magnitude of altitudinal shifts as well as physiological and/or ecological changes across seasons. These examples are taken from recent studies of altitudinal migration on snails (Villeneuve et al., 2019), Common Brimstone (Gutiérrez & Wilson, 2014), Elk (Middleton et al., 2020), Northern Bat (Holzhaider & Zahn, 2001), Pacific Rattlesnake (Gomez et al., 2015), American Dipper (Morrissey et al., 2004), and Salmon (Crossin et al., 2004). Illustrations were provided by Ann Sanderson.
Figure 2:
A simplified, multivariate space that conceptualizes migration behavior continua. Altitudinal migration is part of the broader study of animal migration, which in turn is part of the even broader study of animal movement. Though most animal populations can be classified as either altitudinal or latitudinal migrants and obligate or partial migrants, many taxa and/or populations do not fit neatly into a single categorization. Rather, migrants may undertake both latitudinal and altitudinal migration, while populations or demographic classes within a species may vary in migratory behavior, such that species can be placed in a hypothetical “migration space” with continuous axes that describe variation in different aspects of migration. Here, we illustrate this conceptual framework with five examples: (1.) Gray-headed Flying FoxPteropus poliocephalus moves irruptively as food becomes available. Although this movement is often referred to as “migration”, it is not a regular seasonal occurrence. (2.) Geese are typically thought of as “traditional” latitudinal migrants, moving from their high-latitude breeding range to a low-latitude wintering range, but may also move across large vertical distances during their migration (e. g. Bar-headed Goose Anser indicus ). (3.) Monarchs Danaus plexippus show a complex partial migration pattern that transverses latitudinal and altitudinal distances, varies by population, and spans multiple generations. (4.) Plains Zebra Equus quagga is well known as part of the great Serengeti migration that is latitudinal but does not change in elevation. However, at the species level it is a partial migrant as some populations are resident. (5.) White-ruffed Manakin Corapipo altera is a partial altitudinal migrant that does not travel long longitudinal distances; only some age and sex classes migrate to lower elevations during their non-breeding season. Photos of the Gray-headed Flying Fox, White-ruffed Manakin, and Monarch were taken by David Vander Pluym, Plains Zebra photo was provided by Joachim Huber, CC BY-SA 2.0 <https://creativecommons.org/licenses/by-sa/2.0> via Wikimedia Commons. Geese photo was provided by Thermos - Own work, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1387483.
Figure 3: Histogram comparing the number of Google Scholar hits for search terms “altitudinal migration” in purple and “elevational migration” in yellow as quantified via the program Publish or Perish. Both terms have seen a steady increase in the number of publications over time, but altitudinal migration has historical precedence and is used more often.