Figure 15 Chemical structures of acceptor materials mentioned.
4. Conclusions and Perspectives
The unique features of
imide-functionalized building blocks, including their
electron-withdrawing ability, rigid and co-planar structure and easy
attachment of various chains on imide functionalities endow them
substantial advantages for constructing high-performance organic
conjugated polymers. Some of imide-functionalized polymers based OSCs
have been realized a PCE as high as 18
%,[33,77,114] which suggest the great promise of
imide-functionalized polymer.
Despite the numerous imide-functionalized polymers and their enhancing
device performances in OSCs, there are still issues that need to be
settled down for the future commercialization of imide-functionalized
conjugated polymers.
(1) The imide functionalized polymers continue to face the challenge of
high cost. There is an urgent need for new synthesis methods and new
imide units to simplify the synthesis of high-performance polymers and
promote their large-scale production.
(2) How to design new imide functionalized polymers by further reducing
energy loss and suppressing charge recombination to further boost
efficiency over 20 %.
(3) Further development of high-performance, active layer thickness
insensitive and green solvent processing conjugated polymers for organic
solar cells.
Acknowledgement
#These authors made equal contribution. This work was
supported by the National Natural Science Foundation of China
(22179076), Fund for Zhujiang Young Scholar (18220203), Natural Science
Foundation of Guangdong Province (2022A1515011803) and the Department of
Education of Guangdong Province (2021KCXTD032).
References
- He, C.; Pan, Y.; Ouyang, Y.;
Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.-Q.; Min, J.;
Zhang, C.; Zuo, L.; Chen, H. Manipulating the D:A interfacial
energetics and intermolecular packing for 19.2 % efficiency organic
photovoltaics. Energy Environ. Sci. 2022, 15 ,
2537-2544.
- Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.;
Lu, G.; Tang, Z.; Zhang, J.; Wei, Z.; Zhang, X.; Huang, H. Binary
Organic Solar Cells Breaking 19 % via Manipulating the Vertical
Component Distribution. Adv. Mater. 2022, 34 ,
2204718.
- Luo, S.; Li, C.; Zhang, J.; Zou, X.; Zhao, H.; Ding, K.; Huang, H.;
Song, J.; Yi, J.; Yu, H.; Wong, K. S.; Zhang, G.; Ade, H.; Ma, W.; Hu,
H.; Sun, Y.; Yan, H. Auxiliary sequential deposition enables 19
%-efficiency organic solar cells processed from halogen-free
solvents. Nat. Commun. 2023, 14 , 6964
- Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An
Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar
Cells. Adv. Mater. 2015, 27 , 1170-1174.
- Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H.-L.; Lau,
T.-K.; Lu, X.; Zhu, C.; Peng, H. J.; Johnson, P. A.; Leclerc, M.; Cao,
Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell
with over 15 % Efficiency Using Fused-Ring Acceptor with
Electron-Deficient Core. Joule 2019, 3 ,
1140-1151.
- Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.;
Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan,
H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched
side chains and improved molecular packing to exceed 18 % efficiency
in organic solar cells. Nat. Energy 2021, 6 ,
605-613.
- Jiang, K.; Wei, Q.; Lai, J. Y. L.; Peng, Z.; Kim, H. K.; Yuan, J.; Ye,
L.; Ade, H.; Zou, Y.; Yan, H. Alkyl Chain Tuning of Small Molecule
Acceptors for Efficient Organic Solar Cells. Joule2019, 3 , 3020-3033.
- Li, S.; Li, C.-Z.; Shi, M.; Chen, H. New Phase for Organic Solar Cell
Research: Emergence of Y-Series Electron Acceptors and Their
Perspectives. ACS Energy Lett. 2020, 5 ,
1554-1567.
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J.
Molecular Optimization Enables over 13 % Efficiency in Organic Solar
Cells. JJ. Am. Chem. Soc. 2017, 139 , 7148-7151.
- Liu, W.; Xu, S.; Lai, H.; Liu, W.; He, F.; Zhu, X. Near-Infrared
All-Fused-Ring Nonfullerene Acceptors Achieving an Optimal
Efficiency-Cost-Stability Balance in Organic Solar Cells. CCS
Chem. 2023, 5 , 654-668.
- Lai, H J..; Lai, X.; Chen, Z.-Y.; Zhu, Y.; Wang, H.; Chen, H.; Tan,
P.; Zhu, Y.; Zhang, Y.; He, F. Crystallography, Packing Mode, and
Aggregation State of Chlorinated Isomers for Efficient Organic Solar
Cells. CCS Chem. 2022, 5 , 1118-1129.
- Tan, P.; Cao, C.; Cheng, Y.; Chen, H.; Lai, H.; Zhu, Y.; Han, L.; Qu,
J.; Zheng, N.; Zhang, Y.; He, F. Achieving high performance organic
solar cells with a closer π–π distance in branched alkyl-chain
acceptors. J. Mater. Chem. A 2023, 11 ,
9538-9545.
- Wang, H. Q.; Han, L.; Zhou, J. D.; Liu, T.; Mo, D. Z.; Chen, H.; Lai,
H.; Zheng, N.; Xie, Z. Q.; Zheng, W. H.; He, F. Isomerism: Minor
Changes in the Bromine Substituent Positioning Lead to Notable
Differences in Photovoltaic Performance. CCS Chem.2021, 3 , 2591-2601
- He, K.; Kumar, P.; Yuan, Y.; Li, Y. Wide bandgap polymer donors for
high efficiency non-fullerene acceptor based organic solar cells.Mater. Adv. 2021, 2 , 115-145.
- Ning, H. J.; Zhang, G. Y.; Chen, H.; Wang, Z.; Ni, S.; Lu, F.; Liu,
F.; Dang, L.; Liu, J.; He, F.; Wu, Q. H. Naphthalenothiophene
Imide-Based Polymer Donor for High-Performance Polymer Solar Cells.Chem. Mater. 2021, 33 , 1976-1982.
- Ning, H.; Jiang, Q.; Han, P.; Lin, M.; Zhang, G.; Chen, J.; Chen, H.;
Zeng, S.; Gao, J.; Liu, J.; He, F.; Wu, Q. Manipulating the solubility
properties of polymer donors for high-performance layer-by-layer
processed organic solar cells. Energy Environ. Sci.2021, 14 , 5919-5928.
- Fu, H.; Wang, Z.; Sun, Y. Polymer Donors for High-Performance
Non-Fullerene Organic Solar Cells. Angew. Chem., Int. Ed.2019, 58 , 4442-4453.
- Han, P. W.; Lin, M.; Jiang, Q.J.; Ning, H.J.; Su, M.B.; Dang, L.; He,
F.; Wu, Q. H. Ladder-Type Thienoacenaphthopyrazine-Based Molecules:
Synthesis, Properties, and Application to Construct High-Performance
Polymer for Organic Solar Cells. CCS Chem. 2023,5 , 1318-1331.
- Zhao, T.; Cao, C.; Wang, H.; Shen, X.; Lai, H.; Zhu, Y.; Chen, H.;
Han, L.; Rehman, T.; He, F. Highly Efficient All-Polymer Solar Cells
from a Dithieno[3,2-f:2′,3′-h]quinoxaline-Based Wide Band Gap
Donor. Macromolecules 2021, 54 , 11468-11477.
- Xiao,
M.; Liu, L.; Meng, Y.; Fan, B.; Su, W.; Jin, C.; Liao, L.; Yi, F.; Xu,
C.; Zhang, R.; Jen, A. K. Y.; Ma, W.; Fan, Q. Approaching 19 %
efficiency and stable binary polymer solar cells enabled by a
solidification strategy of solvent additive. Sci. China Chem.2023, 66 , 1500-1510.
- Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang,
T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J.
Single-Junction Organic Photovoltaic Cell with 19 % Efficiency.Adv. Mater. 2021, 33 , 2102420.
- Zhang, G.Y.; Ning, H. J.; Chen, H.; Jiang, Q. J.; Jiang, J. Q.; Han,
P. W.; Dang, L.; Xu, M.; Shao, M.; He, F.; Wu, Q. H.
Naphthalenothiophene imide-based polymer exhibiting over 17 %
efficiency. Joule 2021, 5 , 931-944.
- Samson, S.; Rech, J.; Perdigón-Toro, L.; Peng, Z.; Shoaee, S.; Ade,
H.; Neher, D.; Stolterfoht, M.; You, W. Organic Solar Cells with Large
Insensitivity to Donor Polymer Molar Mass across All Acceptor Classes.ACS Appl. Polym. Mater. 2020, 2 , 5300-5308.
- Li, D. Y.; Wang, H. J.; Chen, J. M.; Wu, Q. H. Fluorinated Polymer
Donors for Nonfullerene Organic Solar Cells. Chem. Eur. J.2023, n/a , e202303155
- Pron, A.; Leclerc, M. Imide/amide based π-conjugated polymers for
Orgnic Electronics. Prog. Polym. Sci. 2013, 38 ,
1815-1831.
- Sun, H. L.; Wang, L.; Wang, Y.; Guo, X. Imide‐Functionalized Polymer
Semiconductors. Chem. Eur. J. 2018, 25 , 87-105.
- Nielsen, C. B.; Ashraf, R. S.; Treat, N. D.; Schroeder, B. C.;
Donaghey, J. E.; White, A. J. P.; Stingelin, N.; McCulloch, I.
2,1,3-Benzothiadiazole-5,6-Dicarboxylic Imide – A Versatile Building
Block for Additive- and Annealing-Free Processing of Organic Solar
Cells with Efficiencies Exceeding 8 %. Adv. Mater.2015, 27 , 948-953.
- Guo, X. G.; Ortiz, R. P.; Zheng, Y.; Hu, Y.; Noh, Y.-Y.; Baeg, K.-J.;
Facchetti, A.; Marks, T. J. Bithiophene-Imide-Based Polymeric
Semiconductors for Field-Effect Transistors: Synthesis,
Structure−Property Correlations, Charge Carrier Polarity, and Device
Stability. J. Am. Chem. Soc. 2011, 133 ,
1405-1418.
- Qiao, X. L.; Chen, W. C.; Wu, Q. H.; Zhang, S. Q.; Wu, H. Z.; Liu, Z.;
Yang, R. Q.; Li, H. X. Bithienopyrroledione vs. thienopyrroledione
based copolymers: dramatic increase of power conversion efficiency in
bulk heterojunction solar cells. Chem. Commun. 2017,53 , 3543-3546.
- Liao, M.; Duan, J.; Peng, P. a.; Zhang, J.; Zhou, M. Progress in the
synthesis of imide-based N-type polymer semiconductor materials.RSC Adv. 2020, 10 , 41764-41779.
- Ha, J.-W.; Park, H. J.; Kang, I.-N.; Hwang, D.-H.
Bithienopyrroledione-based polymeric donors for efficient fullerene-
and non-fullerene-based organic photovoltaic cells. Dyes
Pigments 2022, 200 , 110176.
- Guo, X.; Zhou, N.; Lou, S. J.; Hennek, J. W.; Ponce Ortiz, R.; Butler,
M. R.; Boudreault, P.-L. T.; Strzalka, J.; Morin, P.-O.; Leclerc, M.;
López Navarrete, J. T.; Ratner, M. A.; Chen, L. X.; Chang, R. P. H.;
Facchetti, A.; Marks, T. J.
Bithiopheneimide–Dithienosilole/Dithienogermole Copolymers for
Efficient Solar Cells: Information from Structure–Property–Device
Performance Correlations and Comparison to
Thieno[3,4-c]pyrrole-4,6-dione Analogues. J. Am. Chem. Soc.2012, 134 , 18427-18439.
- Jiang, Q. J; Han, P. W; Ning, H. J; Jiang, J. Q.; Chen, H.; Xiao, Y.;
Ye, C.-R.; Chen, J.; Lin, M.; He, F.; Huang, X.-C.; Wu, Q. H. Reducing
steric hindrance around electronegative atom in polymer simultaneously
enhanced efficiency and stability of organic solar cells. Nano
Energy 2022, 101 , 107611.
- Guo, X. G; Facchetti, A.; Marks, T. J. Imide- and Amide-Functionalized
Polymer Semiconductors. Chem. Rev. 2014, 114 ,
8943-9021.
- Wang, H.; Shi, Q.; Lin, Y.; Fan, H.; Cheng, P.; Zhan, X.; Li, Y.; Zhu,
D. Conjugated Polymers Based on a New Building Block:
Dithienophthalimide. Macromolecules 2011, 44 ,
4213-4221.
- Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner,
M. A.; Marks, T. J. n-Channel Polymers by Design: Optimizing the
Interplay of Solubilizing Substituents, Crystal Packing, and
Field-Effect Transistor Characteristics in Polymeric Bithiophene-Imide
Semiconductors. J. Am. Chem. Soc. 2008, 130 ,
9679-9694.
- Shen, X.; Lai, X.; Lai, H.; Zhao, T.; Zhu, Y.; Pu, M.; Wang, H.; Tan,
P.; He, F. Isomerism Strategy to Optimize Aggregation and Morphology
for Superior Polymer Solar Cells. Macromolecules 2022,55 , 6384-6393.
- Hadmojo, W. T.; Wibowo, F. T. A.; Ryu, D. Y.; Jung, I. H.; Jang, S.-Y.
Fullerene-Free Organic Solar Cells with an Efficiency of 10.2 % and
an Energy Loss of 0.59 eV Based on a
Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer
Donor. ACS Appl. Mater. Interfaces 2017, 9 ,
32939-32945.
- Yasa, M.; Toppare, L. Thieno[3,4‐c]pyrrole‐4,6‐dione‐Based
Conjugated Polymers for Nonfullerene Organic Solar Cells.Macromol. Chem. Phys. 2022, 223 .
- Zhou, Y.; Zhang, W.; Yu, G. Recent structural evolution of lactam- and
imide-functionalized polymers applied in organic field-effect
transistors and organic solar cells. Chem. Sci. 2021,12 , 6844-6878.
- Dutta, T., Li, Y., Thornton, A.L., Zhu, D.-M. and Peng, Z.
Imide-functionalized naphthodithiophene based donor-acceptor
conjugated polymers for solar cells. J. Polym. Sci. Part A:
Polym. Chem. 2013 ,51 , 3818-3828
- Keshtov, M.L., Shikin, D.Y., Khokhlov, A.R., Ostapov, I.E., Alekseev,
V.G., Singh, M.K. and Sharma, G.D.
Dithieno[2,3-e:3′,2′-g]isoindole-7,9(8H)-Dione and
Dithieno[3′,2′:5,6;2″,3″:7,8]naphtho[2,3-d]imidazol-9(10H)-One-Based
Wide Bandgap Copolymer for Efficient Polymer Solar Cells. Energy
Technol. 2023 , 11 , 2201211.
- Chen, J. H.; Qiu, F. L.; Liao, Q. G.; Peng, C. L.; Liu, F.; Guo, X. G.
Side‐Chain Optimization of Phthalimide−Bithiophene Copolymers for
Efficient All‐Polymer Solar Cells with Large Fill Factors. Asian
J. Org. Chem. 2018, 7 , 2239-2247.
- Guo, X. G.; Kim, F. S.; Seger, M. J.; Jenekhe, S. A.; Watson, M. D.
Naphthalene Diimide-Based Polymer Semiconductors: Synthesis,
Structure–Property Correlations, and n-Channel and Ambipolar
Field-Effect Transistors. Chem. Mater. 2012,24 , 1434-1442.
- Wu, Q. H.; Zhao, D.; Schneider, A. M.; Chen, W.; Yu, L. Covalently
Bound Clusters of Alpha-Substituted PDI—Rival Electron Acceptors to
Fullerene for Organic Solar Cells. J. Am. Chem. Soc.2016, 138 , 7248-7251.
- Zhao, C.; Yang, F.; Xia, D.; Zhang, Z.; Zhang, Y.; Yan, N.; You, S.;
Li, W. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers
for organic solar cells. Chem. Commun. 2020,56 , 10394-10408.
- Lin, F.; Huang, W.; Sun, H.; Xin, J.; Zeng, H.; Yang, T.; Li, M.;
Zhang, X.; Ma, W.; Liang, Y. Thieno[3,4-c]pyrrole-4,6(5H)-dione
Polymers with Optimized Energy Level Alignments for Fused-Ring
Electron Acceptor Based Polymer Solar Cells. Chem. Mater.2017, 29 , 5636-5645.
- Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D. Phthalimide-Based
Polymers for High Performance Organic Thin-Film Transistors. J.
Am. Chem. Soc. 2009, 131 , 7206-7207.
- Yu, J.; Yang, J.; Zhou, X.; Yu, S.; Tang, Y.; Wang, H.; Chen, J.;
Zhang, S.; Guo, X. Phthalimide-Based Wide Bandgap Donor Polymers for
Efficient Non-Fullerene Solar Cells. Macromolecules2017, 50 , 8928-8937.
- Lan, L.; Cai, P.; Mai, Y.; Hu, Z.; Wen, W.; Zhang, J.; Li, Y.; Shi,
H.; Zhang, J. A new wide-bandgap conjugated polymer based on
imide-fused benzotriazole for highly efficient nonfullerene polymer
solar cells. Dyes Pigments 2018, 158 , 219-224.
- Lan, L. Y.; Chen, Z. M.; Hu, Q.; Ying, L.; Zhu, R.; Liu, F.; Russell,
T. P.; Huang, F.; Cao, Y. High‐Performance Polymer Solar Cells Based
on a Wide‐Bandgap Polymer Containing
Pyrrolo[3,4‐f]benzotriazole‐5,7‐dione with a Power Conversion
Efficiency of 8.63 %. Adv. Sci. 2016,3, 1600032.
- Zhang, L.; Zhang, Z. L.; Liang, H. Y.; Guo, X.; Zhang, M. J. A
Non‐Halo,genated Polymer Donor Based on Imide Unit for Organic Solar
Cells with Efficiency Nearly 16 %. Chin. J. Chem.2023, 41 , 2095-2102.
- Feng, K.; Guo, H.; Sun, H.; Guo, X. G. n-Type Organic and Polymeric
Semiconductors Based on Bithiophene Imide Derivatives. Acc.
Chem. Res. 2021, 54 , 3804-3817.
- Li, Z.; Yang, D. L.; Zhao, X. L.; Zhang, T.; Zhang, J.; Yang, X.
Achieving an Efficiency Exceeding 10 % for Fullerene‐based Polymer
Solar Cells Employing a Thick Active Layer via Tuning Molecular
Weight. Adv. Funct. Mater. 2017, 28, 1705257.
- Su, M. B.; Lin, M.; Mo, S. M.; Chen, J. M.; Shen, X.; Xiao, Y.; Wang,
M.; Gao, J.; Dang, L.; Huang, X.-c.; He, F.; Wu, Q. H. Manipulating
the Alkyl Chains of Naphthodithiophene Imide-Based Polymers to
Concurrently Boost the Efficiency and Stability of Organic Solar
Cells. ACS Appl. Mater. Interfaces 2023, 15 ,
37371-37380.
- Li, H., Sun, S., Salim, T., Bomma, S., Grimsdale, A.C. and Lam, Y.M.
Conjugated polymers based on dicarboxylic imide-substituted
isothianaphthene and their applications in solar cells. J.
Polym. Sci. A Polym 2012, 50, 250-260.
- Xu, X.; Wang, C.; Bäcke, O.; James, D. I.; Bini, K.; Olsson, E.;
Andersson, M. R.; Fahlman, M.; Wang, E.
Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers
for bulk heterojunction solar cells with high photovoltages.Polym. Chem. 2015, 6 , 4624-4633.
- Lan, L.; Chen, Z.; Li, Y.; Ying, L.; Huang, F.; Cao, Y.
Donor–acceptor conjugated polymers based on cyclic imide substituted
quinoxaline or dibenzo[a,c]phenazine for polymer solar cells.Polym. Chem. 2015, 6 , 7558-7569.
- Yu, J.; Ornelas, J. L.; Tang, Y.; Uddin, M. A.; Guo, H.; Yu, S.; Wang,
Y.; Woo, H. Y.; Zhang, S.; Xing, G.; Guo, X.; Huang, W.
2,1,3-Benzothiadiazole-5,6-dicarboxylicimide-Based Polymer
Semiconductors for Organic Thin-Film Transistors and Polymer Solar
Cells. ACS Appl. Mater. Interfaces 2017, 9 ,
42167-42178.
- Wang, L.; Cai, D.; Zheng, Q.; Tang, C.; Chen, S.-C.; Yin, Z. Low Band
Gap Polymers Incorporating a Dicarboxylic Imide-Derived Acceptor
Moiety for Efficient Polymer Solar Cells. ACS Macro Letters2013, 2 , 605-608.
- Luo, C.; Shen, Z.; Meng, X.; Han, L.; Sun, S.; Lin, T.; Sun, J.; Peng,
H.; Chu, J. Design and synthesis of pyromellitic diimide-based
donor–acceptor conjugated polymers for photovoltaic application.Polym. Adv. Technol. 2014, 25 , 809-815.
- Li, H.; Kim, F. S.; Ren, G.; Hollenbeck, E. C.; Subramaniyan, S.;
Jenekhe, S. A. Tetraazabenzodifluoranthene Diimides: Building Blocks
for Solution‐Processable n‐Type Organic Semiconductors. Angew.
Chem. Int. Ed. 2013, 52 , 5513-5517.
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.;
Zhan, X. Non-fullerene acceptors for organic solar cells. Nat.
Rev. Mater. 2018, 3 , 18003.
- Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.;
Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk
Heterojunction Organic Solar Cells. Chem. Rev. 2018,118 , 3447-3507.
- Zhou, N.; Facchetti, A. Naphthalenediimide (NDI) polymers for
all-polymer photovoltaics. Mater. Today 2018,21 , 377-390.
- Hwang, H.; Ko, H.; Park, S.; Suranagi, S. R.; Sin, D. H.; Cho, K.
Fluorine-functionalization of an isoindoline-1,3-dione-based
conjugated polymer for organic solar cells. Org. Electron.2018, 59 , 247-252.
- Xu, W.; Li, X.; Jeong, S. Y.; Son, J. H.; Zhou, Z.; Jiang, Q.; Woo, H.
Y.; Wu, Q.; Zhu, X.; Ma, X.; Zhang, F. Achieving 17.5 % efficiency
for polymer solar cells via a donor and acceptor layered optimization
strategy. J. Mater. Chem. C 2022, 10 ,
5489-5496.
- Ma, X.; Jiang, Q.; Xu, W.; Xu, C.; Young Jeong, S.; Young Woo, H.; Wu,
Q.; Zhang, X.; Yuan, G.; Zhang, F. Layered optimization strategy
enables over 17.8 % efficiency of layer-by-layer organic
photovoltaics. Chem. Eng. J. 2022, 442 , 136368.
- Li, Y.; Chen, H.; Lai, H. J.; Lai, X.; Rehman, T.; Zhu, Y.; Wang, Y.;
Wu, Q.; He, F. Efficient and Stable Quasiplanar Heterojunction Solar
Cells with an Acetoxy-Substituted Wide-Bandgap Polymer. ACS
Mater. Lett. 2022, 4 , 1322-1331.
- Chen, H.; Lai, H. J.; Jiang, Q. J.; Lai, X.; Zhu, Y.; Qu, J.; Wu, Q.;
He, F. 3D network acceptor with gradient hydrogen bond interaction as
a bifunctional layer in quasiplanar heterojunction organic solar
cells. Nano Energy 2023, 113 ,108593.
- Gao, Y.; Liao, J.; Chen, H.; Ning, H.; Wu, Q. H.; Li, Z.; Wang, Z.;
Zhang, X.; Shao, M.; Yu, Y. High Performance Polarization‐Resolved
Photodetectors Based on Intrinsically Stretchable Organic
Semiconductors. Adv. Sci. 2022, 10 .
- Sice, J. SUBSTITUTED THENOIC ACIDS. J. Org. Chem.1954, 19 , 70-73.
- Zhang, Q. T.; Tour, J. M. Low Optical Bandgap Polythiophenes by an
Alternating Donor/Acceptor Repeat Unit Strategy. J. Am. Chem.
Soc. 1997, 119 , 5065-5066.
- Nielsen, C. B.; Bjørnholm, T. New Regiosymmetrical Dioxopyrrolo- and
Dihydropyrrolo-Functionalized Polythiophenes. Org. Lett.2004, 6 , 3381-3384.
- Berrouard, P.; Grenier, F.; Pouliot, J.-R.; Gagnon, E.; Tessier, C.;
Leclerc, M. Synthesis and Characterization of
5-Octylthieno[3,4-c]pyrrole-4,6-dione Derivatives As New Monomers
for Conjugated Copolymers. Org. Lett. 2011, 13 ,
38-41.
- Fuse, S.; Takahashi, R.; Takahashi, T. Facile, One‐Step Synthesis of
5‐Substituted Thieno[3,4‐c]pyrrole‐4,6‐dione by
Palladium‐Catalyzed Carbonylative Amidation. Eur. J. Org. Chem.2015, 2015 , 3430-3434.
- Xu, L.-Y.; Gao, Y.; Wang, W.; Shao, Y.; Chen, M.; Yang, X.; Fu, Y.;
Zhang, M.; Lu, X.; Sun, R.; Min, J. A facile synthetic approach based
on thieno[3,4-c]pyrrole-4,6-dione to construct polymer donors for
highly efficient organic solar cells. Energy Environ. Sci.2023, 16 , 3942-3950.
- Xu, X. F.; Li, Z. J.; Zhang, W.; Meng, X.; Zou, X. S.; Di Carlo Rasi,
D.; Ma, W.; Yartsev, A.; Andersson, M. R.; Janssen, R. A. J.; Wang, E.
8.0 % Efficient All‐Polymer Solar Cells with High Photovoltage of 1.1
V and Internal Quantum Efficiency near Unity. Adv. Energy
Mater. 2017, 8 ,1700908.
- Zhao, B. F.; Wu, H. M.; Wang, W. P.; Liu, H. L.; Liu, J.; Cong, Z. Y.;
Gao, C. Efficient non-fullerene polymer solar cells enabled by
side-chain conjugated thieno[3,4-c]pyrrole-4,6-dione-based polymer
and small molecular acceptors. React. Funct. Polym.2019, 145 , 104378.
- Liao, C.-Y.; Chen, Y.; Lee, C.-C.; Wang, G.; Teng, N.-W.; Lee, C.-H.;
Li, W.-L.; Chen, Y.-K.; Li, C.-H.; Ho, H.-L.; Tan, P. H.-S.; Wang, B.;
Huang, Y.-C.; Young, R. M.; Wasielewski, M. R.; Marks, T. J.; Chang,
Y.-M.; Facchetti, A. Processing Strategies for an Organic Photovoltaic
Module with over 10 % Efficiency. Joule 2020,4 , 189-206.
- Wu, J.; Liao, C.-Y.; Chen, Y.; Jacobberger, R. M.; Huang, W.; Zheng,
D.; Tsai, K.-W.; Li, W.-L.; Lu, Z.; Huang, Y.; Wasielewski, M. R.;
Chang, Y.-M.; Marks, T. J.; Facchetti, A. To Fluorinate or Not to
Fluorinate in Organic Solar Cells: Achieving a Higher PCE of 15.2 %
when the Donor Polymer is Halogen-Free. Adv. Energy Mater.2021, 11 , 2102648.
- Park, J. S.; Kim, G. U.; Lee, D.; Lee, S.; Ma, B.; Cho, S.; Kim, B. J.
Importance of Optimal Crystallinity and Hole Mobility of BDT‐Based
Polymer Donor for Simultaneous Enhancements of Voc, Jsc, and FF in
Efficient Nonfullerene Organic Solar Cells. Adv. Funct. Mater.2020, 30 , 2005787.
- Park, J. B.; Ha, J.-W.; Jung, I. H.; Hwang, D.-H. High-Performance
Nonfullerene Organic Photovoltaic Cells Using a TPD-Based Wide Bandgap
Donor Polymer. ACS Appl. Energy Mater. 2019, 2 ,
5692-5697.
- Zhang, C.-H.; Wang, W.; Huang, W.; Wang, J.; Hu, Z.; Lin, Z.; Yang,
T.; Lin, F.; Xing, Y.; Bai, J.; Sun, H.; Liang, Y. Methyl Thioether
Functionalization of a Polymeric Donor for Efficient Solar Cells
Processed from Non-Halogenated Solvents. Chem. Mater.2019, 31 , 3025-3033.
- Yang, N.; Cheng, Y.; Kim, S.; Huang, B.; Liu, Z.; Deng, J.; Wang, J.;
Yang, C.; Wu, F.; Chen, L. Random Copolymerization Strategy for Host
Polymer Donor PM6 Enables Improved Efficiency Both in Binary and
Ternary Organic Solar Cells. ChemSusChem 2022,15 , e202200138.
- Pang, S. T.; Zhang, R. W.; Duan, C. H.; Zhang, S.; Gu, X. D.; Liu, X.;
Huang, F.; Cao, Y. Alkyl Chain Length Effects of Polymer Donors on the
Morphology and Device Performance of Polymer Solar Cells with
Different Acceptors. Adv. Energy Mater. 2019,9 ,1901740.
- Yasa, M.; Depci, T.; Alemdar, E.; Hacioglu, S. O.; Cirpan, A.;
Toppare, L. Non-fullerene organic photovoltaics based on
thienopyrroledione comprising random copolymers; effect of alkyl
chains. Renew. Energy 2021, 178 , 202-211.
- Zou, Y.; Najari, A.; Berrouard, P.; Beaupré, S.; Réda Aïch, B.; Tao,
Y.; Leclerc, M. A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer
for Efficient Solar Cells. J. Am. Chem. Soc. 2010,132 , 5330-5331.
- Chen, J.; Cao, Y. Development of Novel Conjugated Donor Polymers for
High-Efficiency Bulk-Heterojunction Photovoltaic Devices. Acc.
Chem. Res. 2009, 42 , 1709-1718.
- Li, Y. Molecular Design of Photovoltaic Materials for Polymer Solar
Cells: Toward Suitable Electronic Energy Levels and Broad Absorption.Acc. Chem. Res. 2012, 45 , 723-733.
- Fan, Q.; Fu, H.; Wu, Q.; Wu, Z.; Lin, F.; Zhu, Z.; Min, J.; Woo, H.
Y.; Jen, A. K. Y. Multi-Selenophene-Containing Narrow Bandgap Polymer
Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and
High Reproducibility. Angew. Chem. Int. Ed. 2021,60 , 15935-15943.
- Britel, O.; Fitri, A.; Benjelloun, A. T.; Slimi, A.; Benzakour, M.;
McHarfi, M. Theoretical investigation of the influence of π-spacer on
photovoltaic performances in carbazole-based dyes for dye-sensitized
solar cells applications. J. Photochem. Photobiol. A Chem.2022, 428 , 113870.
- Agneeswari, R.; Kim, D.; Park, S. W.; Jang, S.; Yang, H. S.; Shin, I.;
Jeong, J. H.; Tamilavan, V.; Jung, Y. K.; Park, S. H. Influence of
thiophene and furan π–bridge on the properties of
poly(benzodithiophene-alt-bis(π–bridge)pyrrolopyrrole-1,3-dione) for
organic solar cell applications. Polymer 2021,229 , 123991.
- Yilmaz, E. A.; Yasa, M.; Cirpan, A.; Toppare, L. A follow-up
investigation: Organic solar cells based on
chalcogenophene-Thieno[3,4-c]pyrrole-4,6-dione-chalcogenophene
containing rJ. Electroanal. Chem. 2023, 932 , 117213.
- Chao, P.; Guo, M.; Zhu, Y.; Chen, H.; Pu, M.; Huang, H.-H.; Meng, H.;
Yang, C.; He, F. Enhanced Photovoltaic Performance by Synergistic
Effect of Chlorination and Selenophene π-Bridge. Macromolecules2020, 53 , 2893-2901.
- Jo, J. W.; Jung, J. W.; Ahn, H.; Ko, M. J.; Jen, A. K. Y.; Son, H. J.
Effect of Molecular Orientation of Donor Polymers on Charge Generation
and Photovoltaic Properties in Bulk Heterojunction All-Polymer Solar
Cells. Adv. Energy Mater. 2017, 7 , 1601365.
- Li, H.; Liu, F.; Wang, X.; Gu, C.; Wang, P.; Fu, H.
Diketopyrrolopyrrole–Thiophene–Benzothiadiazole Random Copolymers:
An Effective Strategy To Adjust Thin-Film Crystallinity for Transistor
and Photovoltaic Properties. Macromolecules 2013,46 , 9211-9219.
- Zhao, J. J.; Li, Q. D.; Liu, S. J.; Cao, Z. X.; Jiao, X. C.; Cai,
Y.-P.; Huang, F. Bithieno[3,4-c]pyrrole-4,6-dione-Mediated
Crystallinity in Large-Bandgap Polymer Donors Directs Charge
Transportation and Recombination in Efficient Nonfullerene Polymer
Solar Cells. ACS Energy Lett. 2020, 5 , 367-375.
- Zhao, J. J.; Huang, X. L.; Li, Q. D.; Liu, S.; Fan, Z.; Zhang, D.; Ma,
S.; Cao, Z.; Jiao, X.; Cai, Y.-P.; Huang, F. Shorter alkyl chain in
thieno[3,4-c]pyrrole-4,6-dione (TPD)-based large bandgap polymer
donors – Yield efficient non-fullerene polymer solar cells. J.
Energy Chem. 2021, 53 , 69-76.
- Li, Q.; Huang, X.; Liu, S.; Zhao, J.; Zou, Y.; Ding, Y.; Cao, Z.;
Jiao, X.; Cai, Y.-P. The alkyl chain positioning of
thieno[3,4-c]pyrrole-4,6-dione (TPD)-Based polymer donors mediates
the energy loss, charge transport and recombination in polymer solar
cells. J. Power Sources 2020, 480 , 229098.
- Berrouard, P.; Grenier, F.; Pouliot, J.-R.; Gagnon, E.; Tessier, C.;
Leclerc, M. Synthesis and Characterization of
5-Octylthieno[3,4-c]pyrrole-4,6-dione Derivatives As New Monomers
for Conjugated Copolymers. Org. Lett. 2011, 13 ,
38-41.
- Qiao, X.; Wu, Q.; Wu, H.; Wang,
D.; Li, H. High performance thin film transistors based on
bi-thieno[3,4-c]pyrrole-4,6-dione-containing copolymers: tuning
the face-on and edge-on packing orientations. Polym. Chem.2016, 7 , 807-815.
- Fan, B. B.; Ying, L.; Wang, Z. F.; He, B.; Jiang, X.-F.; Huang, F.;
Cao, Y. Optimisation of processing solvent and molecular weight for
the production of green-solvent-processed all-polymer solar cells with
a power conversion efficiency over 9 %. Energy Environ. Sci.2017, 10 , 1243-1251.
- Fan, B. B.; Zhang, K.; Jiang, X. F.; Ying, L.; Huang, F.; Cao, Y.
High‐Performance Nonfullerene Polymer Solar Cells based on
Imide‐Functionalized Wide‐Bandgap Polymers. Adv. Mater.2017, 29 .
- Zhong, W.; Li, K.; Cui, J.; Gu, T.; Ying, L.; Huang, F.; Cao, Y.
Efficient All-Polymer Solar Cells Based on Conjugated Polymer
Containing an Alkoxylated Imide-Functionalized Benzotriazole Unit.Macromolecules 2017, 50 , 8149-8157.
- Fan, B. B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F. L.; Chen, J. W.;
Huang, F.; Cao, Y. All‐Polymer Solar Cells Based on a Conjugated
Polymer Containing Siloxane‐Functionalized Side Chains with Efficiency
over 10 %. Adv. Mater. 2017, 29 , 1703906.
- Li, Z. Y.; Zhong, W. K.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y.
Morphology optimization via molecular weight tuning of donor polymer
enables all-polymer solar cells with simultaneously improved
performance and stability. Nano Energy 2019,64 , 103931.
- Fan, B. B.; Du, X. Y.; Liu, F.; Zhong, W. K.; Ying, L.; Xie, R.; Tang,
X.; An, K.; Xin, J. M.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao,
Y. Fine-tuning of the chemical structure of photoactive materials for
highly efficient organic photovoltaics. Nat. Energy2018, 3 , 1051-1058.
- Fan, B. B.; Zhang, D. F.; Li, M. J.; Zhong, W. K.; Zeng, Z.; Ying, L.;
Huang, F.; Cao, Y. Achieving over 16 % efficiency for single-junction
organic solar cells. Sci. China Chem. 2019, 62 ,
746-752.
- Zhu, P.; Fan, B. B; Du, X. Y.; Tang, X. F.; Li, N.; Liu, F.; Ying, L.;
Li, Z.; Zhong, W. K.; Brabec, C. J.; Huang, F.; Cao, Y. Improved
Efficiency of Polymer Solar Cells by Modifying the Side Chain of
Wide-Band Gap Conjugated Polymers Containing
Pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione Moiety. ACS Appl.
Mater. Interfaces 2018, 10 , 22495-22503.
- Genene, Z.; Negash, A.; Abdulahi, B. A.; Eachambadi, R. T.; Liu, Z.;
Van den Brande, N.; D’Haen, J.; Wang, E.; Vandewal, K.; Maes, W.;
Manca, J.; Mammo, W.; Admassie, S. Comparative study on the effects of
alkylsilyl and alkylthio side chains on the performance of fullerene
and non-fullerene polymer solar cells. Org. Electron.2020, 77 .
- Li, M. J.; Zeng, Z. Y.; Fan, B. B.; Zhong, W. K.; Zhang, D. F.; Zhang,
X.; Zhang, Y.; Ying, L.; Huang, F.; Cao, Y. Tailoring the side chain
of imide-functional benzotriazole based polymers to achieve internal
quantum efficiency approaching 100 %. J. Mater. Chem. A2020, 8 , 23519-23525.
- Fan, B. B.; Li, M. J.; Zhang, D. F.; Zhong, W. K.; Ying, L.; Zeng, Z.;
An, K.; Huang, Z.; Shi, L.; Bazan, G. C.; Huang, F.; Cao, Y. Tailoring
Regioisomeric Structures of π-Conjugated Polymers Containing
Monofluorinated π-Bridges for Highly Efficient Polymer Solar Cells.ACS Energy Lett. 2020, 5 , 2087-2094.
- An, K.; Zhong, W. K.; Peng, F.; Deng, W. Y.; Shang, Y.; Quan, H. L.;
Qiu, H.; Wang, C.; Liu, F.; Wu, H. B.; Li, N.; Huang, F.; Ying, L.
Mastering morphology of non-fullerene acceptors towards long-term
stable organic solar cells. Nat. Commun. 2023,14 , 2688.
- Tang, Y.; Xie, L.; Qiu, D.; Yang, C.; Liu, Y.; Shi, Y.; Huang, Z.;
Zhang, J.; Hu, J.; Lu, K.; Wei, Z. Optimizing the energy levels and
crystallinity of 2,2′-bithiophene-3,3′-dicarboximide-based polymer
donors for high-performance non-fullerene organic solar cells.J. Mater. Chem. C 2021, 9 , 7575-7582.
- Zhou, N. J.; Guo, X. G.; Ortiz, R. P.; Li, S.; Zhang, S. M.; Chang, R.
P. H.; Facchetti, A.; Marks, T. J. Bithiophene Imide and
Benzodithiophene Copolymers for Efficient Inverted Polymer Solar
Cells. Adv. Mater. 2012, 24 , 2242-2248.
- Yang, D. L.; Li, Z. L.; Li, Z. D.; Zhao, X. L.; Zhang, T.; Wu, F.;
Tian, Y.; Ye, F.; Sun, Z. Y.; Yang, X. N. Novel wide band gap
copolymers featuring excellent comprehensive performance towards the
practical application for organic solar cells. Polym. Chem.2017, 8 , 4332-4338.
- Zhang, T.; Zeng, G.; Ye, F.; Zhao, X. L.; Yang, X. N. Efficient
Non‐Fullerene Organic Photovoltaic Modules Incorporating As‐Cast and
Thickness‐Insensitive Photoactive Layers. Adv. Energy Mater.2018, 8 , 1801387.
- Zhang, T.; Zhao, X.; Yang, D. L.; Tian, Y. M.; Yang, X. N. Ternary
Organic Solar Cells with >11 % Efficiency Incorporating
Thick Photoactive Layer and Nonfullerene Small Molecule Acceptor.Adv. Energy Mater. 2017, 8 , 1701691.
- Shi, Y. Q.; Ma, R. J.; Wang, X.; Liu, T.; Li, Y. C.; Fu, S.; Yang, K.;
Wang, Y.; Yu, C. J.; Jiao, L.; Wei, X. W.; Fang, J. F.; Xue, D. F.;
Yan, H. Influence of Fluorine Substitution on the Photovoltaic
Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells.ACS Appl. Mater. Interfaces 2022, 14 ,
5740-5749.
- Yang, J.; Liu, B.; Lee, J. W.; Wang, Y.; Sun, H.; Chen, Z.; Bai, Q.;
Kim, B. J.; Jiang, Y.; Niu, L.; Guo, X. Revisiting the Bithiophene
Imide‐Based Polymer Donors: Molecular Aggregation and Orientation
Control Enabling New Polymer Donors for High‐Performance All‐Polymer
Solar Cells. Chin. J. Chem. 2022, 40 ,
2900-2908.
- Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D. Phthalimide-Based
Polymers for High Performance Organic Thin-Film Transistors.Journal of the American Chemical Society 2009,131 , 7206-7207
- Xin, H.; Guo, X.; Kim, F. S.; Ren, G.; Watson, M. D.; Jenekhe, S. A.
Efficient solar cells based on a new phthalimide-based donor–acceptor
copolymer semiconductor: morphology, charge-transport, and
photovoltaic properties. J. Mater. Chem. 2009,19 , 5303-5310.
- Du, M. Z.; Chen, Y.; Li, J. F.; Geng, Y. F.; Ji, H. G.; Li, G. Q.;
Tang, A.; Guo, Q.; Zhou, E. Wide-Band-Gap Phthalimide-Based D-π-A
Polymers for Nonfullerene Organic Solar Cells: The Effect of
Conjugated π-Bridge from Thiophene to Thieno[3,2-b]thiophene.J. Phys. Chem. C 2019, 124 , 230-236.
- Guo, X. J.; Liao, Q. G. D.; Manley, E. F.; Wu, Z.; Wang, Y.; Wang, W.;
Yang, T. B.; Shin, Y.-E.; Cheng, X.; Liang, Y. Y.; Chen, L. X.; Baeg,
K.-J.; Marks, T. J.; Guo, X. Materials Design via Optimized
Intramolecular Noncovalent Interactions for High-Performance Organic
Semiconductors. Chem. Mater. 2016, 28 ,
2449-2460.
- Liao, Q. G.; Yang, K.; Chen, J.; Koh, C. W.; Tang, Y. M.; Su, M. Y.;
Wang, Y.; Yang, Y. H.; Feng, X. Y.; He, Z.; Woo, H. Y.; Guo, X. G.
Backbone Coplanarity Tuning of
1,4-Di(3-alkoxy-2-thienyl)-2,5-difluorophenylene-Based Wide Bandgap
Polymers for Efficient Organic Solar Cells Processed from
Nonhalogenated Solvent. ACS Appl. Mater. Interfaces2019, 11 , 31119-31128.
- Yu, J. W.; Chen, P.; Koh, C. W.; Wang, H.; Yang, K.; Zhou, X.; Liu,
B.; Liao, Q. G.; Chen, J. H.; Sun, H. L.; Woo, H. Y.; Zhang, S. M.;
Guo, X. G. Phthalimide‐Based High Mobility Polymer Semiconductors for
Efficient Nonfullerene Solar Cells with Power Conversion Efficiencies
over 13 %. Adv. Sci. 2018, 6 , 1801743.
- Zhang, W. C.; Huang, J. H.; Xu, J. Q.; Han, M. M.; Su, D.; Wu, N. N.;
Zhang, C. F.; Xu, A.; Zhan, C. L, Phthalimide Polymer Donor Guests
Enable over 17 % Efficient Organic Solar Cells via Parallel‐Like
Ternary and Quaternary Strategies. Adv. Energy Mater.2020, 10 , 2001436.
- Zhang, W. C.; Huang, J. H.; Lv, X. Y.; Zhang, M.; Liu, W.; Xu, T.;
Ning, J.; Hexig, A.; Liu, F.; Xu, A.; Zhan, C. Chlorinated phthalimide
polymer donor as ultra-wide bandgap and deep HOMO guest for achieving
highly efficient polymer solar cells. Chin. Chem. Lett.2023, 34 ,107436.
- Li, K.; Wu, Y.; Li, X.; Fu, H.; Zhan, C. 17.1 %-Efficiency organic
photovoltaic cell enabled with two higher-LUMO-level acceptor guests
as the quaternary strategy. Sci. China Chem. 2020,63 , 490-496.
- Arunagiri, L.; Peng, Z.; Zou, X.; Yu, H.; Zhang, G.; Wang, Z.; Lin
Lai, J. Y.; Zhang, J.; Zheng, Y.; Cui, C.; Huang, F.; Zou, Y.; Wong,
K. S.; Chow, P. C. Y.; Ade, H.; Yan, H. Selective Hole and Electron
Transport in Efficient Quaternary Blend Organic Solar Cells.Joule 2020, 4 , 1790-1805.
- Bi, Z. Z.; Zhu, Q. L.; Xu, X. B.; Naveed, H. B.; Sui, X.; Xin, J. M.;
Zhang, L.; Li, T. F.; Zhou, K.; Liu, X. F.; Zhan, X. W.; Ma, W.
Efficient Quaternary Organic Solar Cells with Parallel-Alloy
Morphology. Adv. Funct. Mater. 2019, 29 ,
1806804.
- Dai, G. L.; Chang, J. J.; Wu, J. S.; Chi, C.Y. Dithieno-naphthalimide
based copolymers for air-stable field effect transistors: synthesis,
characterization and device performance. J. Mater. Chem.2012, 22 , 21201.
- He, B. T.; Tang, L. T.; Zhang, J. M.; Xiao, M. J.; Chen, G. T.; Dai,
C. B. A polymer donor based on difluoro-quinoxaline with a
naphthalimide substituent unit exhibits a low-lying HOMO level for
efficient non-fullerene polymer solar cells. RSC Adv.2023, 13 , 29035-29042.
- Keshtov, M. L.; Kuklin, S. A.; Konstantinov, I. O.; Khokhlov, A. R.;
Nikolaev, A. Y.; Dou, C.; Zou, Y.; Suhtar, R.; Sharma, G. D. New
Conjugated Polymers Based on
Dithieno[2,3‐e:3′,2′‐g]Isoindole‐7,9(8H)‐Dione Derivatives for
Applications in Nonfullerene Polymer Solar Cells. Solar RRL2019, 4 , 1900475.
- Sun, A. X.; Xu, J. G.; Zong, G. H.; Xiao, Z.; Hua, Y.; Zhang, B.;
Ding, L. M. A wide-bandgap copolymer donor with a
5-methyl-4H-dithieno[3,2-e:2’,3’-g]isoindole-4,6(5H)-dione unit.J. Semicond. 2021, 42 , 100502.
- Li, L. H.; Meng, F.; Zhang, M.; Zhang, Z. G.; Zhao, D. Revisiting the
Dithienophthalimide Building Block: Improved Synthetic Method Yielding
New High‐Performance Polymer Donors for Organic Solar Cells.Angew. Chem. Int. Ed. 2022, 61 , e202206311.
- Keshtov, M. L.; Kuklin, S. A.; Zou, Y.; Dahiya, H.; Agrawal, A.;
Sharma, G. D. Wide bandgap D-A copolymers with same medium dithieno
[2,3-e;3′2′-g]isoindole-7,9 (8H) acceptor and different donors for
high-performance fullerene free polymer solar cells with efficiency up
to 14.76 %. Chem. Eng. J. 2022, 427 .
- Keshtov, M. L.; Konstantinov, I. O.; Kuklin, S. A.; Zou, Y.; Agrawal,
A.; Chen, F. C.; Sharma, G. D. Binary and Ternary Polymer Solar Cells
Based on a Wide Bandgap D-A Copolymer Donor and Two Nonfullerene
Acceptors with Complementary Absorption Spectral. ChemSusChem2021, 14 , 4731-4740.
- Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao,
X. Incorporation of 2,6‐Connected Azulene Units into the Backbone of
Conjugated Polymers: Towards High‐Performance Organic Optoelectronic
Materials. Angew. Chem. Int. Ed. 2017, 57 ,
1322-1326.
- Zhao, Z.; Zhang, F. J.; Zhang, X.; Yang, X. D.; Li, H. X.; Gao, X. K.;
Di, C.-a.; Zhu, D. B. 1,2,5,6-Naphthalenediimide Based Donor–Acceptor
Copolymers Designed from Isomer Chemistry for Organic Semiconducting
Materials. Macromolecules 2013, 46 , 7705-7714.
- Chen, S. C.; Zheng, Q. D.; Zhang, Q. K.; Cai, D. D.; Wang, J. Y.; Yin,
Z.; Tang, C. Q. Tuning the frontier molecular orbital energy levels of
n‐type conjugated copolymers by using angular‐shaped naphthalene
tetracarboxylic diimides, and their use in all‐polymer solar cells
with high open‐circuit voltages. Journal of Polymer Science Part
A: Polym. Chem. 2013, 51 , 1999-2005.
- Chen, J. H.; Zhang, X. H.; Wang, G.; Uddin, M. A.; Tang, Y.; Wang, Y.;
Liao, Q. G.; Facchetti, A.; Marks, T. J.; Guo, X. G.
Dithienylbenzodiimide: a new electron-deficient unit for n-type
polymer semiconductors. J. Mater. Chem. C 2017, 5,9559-9569.