Figure 15 Chemical structures of acceptor materials mentioned.
4. Conclusions and Perspectives
The unique features of imide-functionalized building blocks, including their electron-withdrawing ability, rigid and co-planar structure and easy attachment of various chains on imide functionalities endow them substantial advantages for constructing high-performance organic conjugated polymers. Some of imide-functionalized polymers based OSCs have been realized a PCE as high as 18 %,[33,77,114] which suggest the great promise of imide-functionalized polymer. Despite the numerous imide-functionalized polymers and their enhancing device performances in OSCs, there are still issues that need to be settled down for the future commercialization of imide-functionalized conjugated polymers.
(1) The imide functionalized polymers continue to face the challenge of high cost. There is an urgent need for new synthesis methods and new imide units to simplify the synthesis of high-performance polymers and promote their large-scale production.
(2) How to design new imide functionalized polymers by further reducing energy loss and suppressing charge recombination to further boost efficiency over 20 %.
(3) Further development of high-performance, active layer thickness insensitive and green solvent processing conjugated polymers for organic solar cells.
Acknowledgement
#These authors made equal contribution. This work was supported by the National Natural Science Foundation of China (22179076), Fund for Zhujiang Young Scholar (18220203), Natural Science Foundation of Guangdong Province (2022A1515011803) and the Department of Education of Guangdong Province (2021KCXTD032).
References
  1. He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.-Q.; Min, J.; Zhang, C.; Zuo, L.; Chen, H. Manipulating the D:A interfacial energetics and intermolecular packing for 19.2 % efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15 , 2537-2544.
  2. Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; Zhang, J.; Wei, Z.; Zhang, X.; Huang, H. Binary Organic Solar Cells Breaking 19 % via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34 , 2204718.
  3. Luo, S.; Li, C.; Zhang, J.; Zou, X.; Zhao, H.; Ding, K.; Huang, H.; Song, J.; Yi, J.; Yu, H.; Wong, K. S.; Zhang, G.; Ade, H.; Ma, W.; Hu, H.; Sun, Y.; Yan, H. Auxiliary sequential deposition enables 19 %-efficiency organic solar cells processed from halogen-free solvents. Nat. Commun. 2023, 14 , 6964
  4. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27 , 1170-1174.
  5. Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H. J.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15 % Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3 , 1140-1151.
  6. Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18 % efficiency in organic solar cells. Nat. Energy 2021, 6 , 605-613.
  7. Jiang, K.; Wei, Q.; Lai, J. Y. L.; Peng, Z.; Kim, H. K.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H. Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule2019, 3 , 3020-3033.
  8. Li, S.; Li, C.-Z.; Shi, M.; Chen, H. New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives. ACS Energy Lett. 2020, 5 , 1554-1567.
  9. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13 % Efficiency in Organic Solar Cells. JJ. Am. Chem. Soc. 2017, 139 , 7148-7151.
  10. Liu, W.; Xu, S.; Lai, H.; Liu, W.; He, F.; Zhu, X. Near-Infrared All-Fused-Ring Nonfullerene Acceptors Achieving an Optimal Efficiency-Cost-Stability Balance in Organic Solar Cells. CCS Chem. 2023, 5 , 654-668.
  11. Lai, H J..; Lai, X.; Chen, Z.-Y.; Zhu, Y.; Wang, H.; Chen, H.; Tan, P.; Zhu, Y.; Zhang, Y.; He, F. Crystallography, Packing Mode, and Aggregation State of Chlorinated Isomers for Efficient Organic Solar Cells. CCS Chem. 2022, 5 , 1118-1129.
  12. Tan, P.; Cao, C.; Cheng, Y.; Chen, H.; Lai, H.; Zhu, Y.; Han, L.; Qu, J.; Zheng, N.; Zhang, Y.; He, F. Achieving high performance organic solar cells with a closer π–π distance in branched alkyl-chain acceptors. J. Mater. Chem. A 2023, 11 , 9538-9545.
  13. Wang, H. Q.; Han, L.; Zhou, J. D.; Liu, T.; Mo, D. Z.; Chen, H.; Lai, H.; Zheng, N.; Xie, Z. Q.; Zheng, W. H.; He, F. Isomerism: Minor Changes in the Bromine Substituent Positioning Lead to Notable Differences in Photovoltaic Performance. CCS Chem.2021, 3 , 2591-2601
  14. He, K.; Kumar, P.; Yuan, Y.; Li, Y. Wide bandgap polymer donors for high efficiency non-fullerene acceptor based organic solar cells.Mater. Adv. 2021, 2 , 115-145.
  15. Ning, H. J.; Zhang, G. Y.; Chen, H.; Wang, Z.; Ni, S.; Lu, F.; Liu, F.; Dang, L.; Liu, J.; He, F.; Wu, Q. H. Naphthalenothiophene Imide-Based Polymer Donor for High-Performance Polymer Solar Cells.Chem. Mater. 2021, 33 , 1976-1982.
  16. Ning, H.; Jiang, Q.; Han, P.; Lin, M.; Zhang, G.; Chen, J.; Chen, H.; Zeng, S.; Gao, J.; Liu, J.; He, F.; Wu, Q. Manipulating the solubility properties of polymer donors for high-performance layer-by-layer processed organic solar cells. Energy Environ. Sci.2021, 14 , 5919-5928.
  17. Fu, H.; Wang, Z.; Sun, Y. Polymer Donors for High-Performance Non-Fullerene Organic Solar Cells. Angew. Chem., Int. Ed.2019, 58 , 4442-4453.
  18. Han, P. W.; Lin, M.; Jiang, Q.J.; Ning, H.J.; Su, M.B.; Dang, L.; He, F.; Wu, Q. H. Ladder-Type Thienoacenaphthopyrazine-Based Molecules: Synthesis, Properties, and Application to Construct High-Performance Polymer for Organic Solar Cells. CCS Chem. 2023,5 , 1318-1331.
  19. Zhao, T.; Cao, C.; Wang, H.; Shen, X.; Lai, H.; Zhu, Y.; Chen, H.; Han, L.; Rehman, T.; He, F. Highly Efficient All-Polymer Solar Cells from a Dithieno[3,2-f:2′,3′-h]quinoxaline-Based Wide Band Gap Donor. Macromolecules 2021, 54 , 11468-11477.
  20. Xiao, M.; Liu, L.; Meng, Y.; Fan, B.; Su, W.; Jin, C.; Liao, L.; Yi, F.; Xu, C.; Zhang, R.; Jen, A. K. Y.; Ma, W.; Fan, Q. Approaching 19 % efficiency and stable binary polymer solar cells enabled by a solidification strategy of solvent additive. Sci. China Chem.2023, 66 , 1500-1510.
  21. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-Junction Organic Photovoltaic Cell with 19 % Efficiency.Adv. Mater. 2021, 33 , 2102420.
  22. Zhang, G.Y.; Ning, H. J.; Chen, H.; Jiang, Q. J.; Jiang, J. Q.; Han, P. W.; Dang, L.; Xu, M.; Shao, M.; He, F.; Wu, Q. H. Naphthalenothiophene imide-based polymer exhibiting over 17 % efficiency. Joule 2021, 5 , 931-944.
  23. Samson, S.; Rech, J.; Perdigón-Toro, L.; Peng, Z.; Shoaee, S.; Ade, H.; Neher, D.; Stolterfoht, M.; You, W. Organic Solar Cells with Large Insensitivity to Donor Polymer Molar Mass across All Acceptor Classes.ACS Appl. Polym. Mater. 2020, 2 , 5300-5308.
  24. Li, D. Y.; Wang, H. J.; Chen, J. M.; Wu, Q. H. Fluorinated Polymer Donors for Nonfullerene Organic Solar Cells. Chem. Eur. J.2023, n/a , e202303155
  25. Pron, A.; Leclerc, M. Imide/amide based π-conjugated polymers for Orgnic Electronics. Prog. Polym. Sci. 2013, 38 , 1815-1831.
  26. Sun, H. L.; Wang, L.; Wang, Y.; Guo, X. Imide‐Functionalized Polymer Semiconductors. Chem. Eur. J. 2018, 25 , 87-105.
  27. Nielsen, C. B.; Ashraf, R. S.; Treat, N. D.; Schroeder, B. C.; Donaghey, J. E.; White, A. J. P.; Stingelin, N.; McCulloch, I. 2,1,3-Benzothiadiazole-5,6-Dicarboxylic Imide – A Versatile Building Block for Additive- and Annealing-Free Processing of Organic Solar Cells with Efficiencies Exceeding 8 %. Adv. Mater.2015, 27 , 948-953.
  28. Guo, X. G.; Ortiz, R. P.; Zheng, Y.; Hu, Y.; Noh, Y.-Y.; Baeg, K.-J.; Facchetti, A.; Marks, T. J. Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structure−Property Correlations, Charge Carrier Polarity, and Device Stability. J. Am. Chem. Soc. 2011, 133 , 1405-1418.
  29. Qiao, X. L.; Chen, W. C.; Wu, Q. H.; Zhang, S. Q.; Wu, H. Z.; Liu, Z.; Yang, R. Q.; Li, H. X. Bithienopyrroledione vs. thienopyrroledione based copolymers: dramatic increase of power conversion efficiency in bulk heterojunction solar cells. Chem. Commun. 2017,53 , 3543-3546.
  30. Liao, M.; Duan, J.; Peng, P. a.; Zhang, J.; Zhou, M. Progress in the synthesis of imide-based N-type polymer semiconductor materials.RSC Adv. 2020, 10 , 41764-41779.
  31. Ha, J.-W.; Park, H. J.; Kang, I.-N.; Hwang, D.-H. Bithienopyrroledione-based polymeric donors for efficient fullerene- and non-fullerene-based organic photovoltaic cells. Dyes Pigments 2022, 200 , 110176.
  32. Guo, X.; Zhou, N.; Lou, S. J.; Hennek, J. W.; Ponce Ortiz, R.; Butler, M. R.; Boudreault, P.-L. T.; Strzalka, J.; Morin, P.-O.; Leclerc, M.; López Navarrete, J. T.; Ratner, M. A.; Chen, L. X.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. Bithiopheneimide–Dithienosilole/Dithienogermole Copolymers for Efficient Solar Cells: Information from Structure–Property–Device Performance Correlations and Comparison to Thieno[3,4-c]pyrrole-4,6-dione Analogues. J. Am. Chem. Soc.2012, 134 , 18427-18439.
  33. Jiang, Q. J; Han, P. W; Ning, H. J; Jiang, J. Q.; Chen, H.; Xiao, Y.; Ye, C.-R.; Chen, J.; Lin, M.; He, F.; Huang, X.-C.; Wu, Q. H. Reducing steric hindrance around electronegative atom in polymer simultaneously enhanced efficiency and stability of organic solar cells. Nano Energy 2022, 101 , 107611.
  34. Guo, X. G; Facchetti, A.; Marks, T. J. Imide- and Amide-Functionalized Polymer Semiconductors. Chem. Rev. 2014, 114 , 8943-9021.
  35. Wang, H.; Shi, Q.; Lin, Y.; Fan, H.; Cheng, P.; Zhan, X.; Li, Y.; Zhu, D. Conjugated Polymers Based on a New Building Block: Dithienophthalimide. Macromolecules 2011, 44 , 4213-4221.
  36. Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J. n-Channel Polymers by Design: Optimizing the Interplay of Solubilizing Substituents, Crystal Packing, and Field-Effect Transistor Characteristics in Polymeric Bithiophene-Imide Semiconductors. J. Am. Chem. Soc. 2008, 130 , 9679-9694.
  37. Shen, X.; Lai, X.; Lai, H.; Zhao, T.; Zhu, Y.; Pu, M.; Wang, H.; Tan, P.; He, F. Isomerism Strategy to Optimize Aggregation and Morphology for Superior Polymer Solar Cells. Macromolecules 2022,55 , 6384-6393.
  38. Hadmojo, W. T.; Wibowo, F. T. A.; Ryu, D. Y.; Jung, I. H.; Jang, S.-Y. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2 % and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor. ACS Appl. Mater. Interfaces 2017, 9 , 32939-32945.
  39. Yasa, M.; Toppare, L. Thieno[3,4‐c]pyrrole‐4,6‐dione‐Based Conjugated Polymers for Nonfullerene Organic Solar Cells.Macromol. Chem. Phys. 2022, 223 .
  40. Zhou, Y.; Zhang, W.; Yu, G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chem. Sci. 2021,12 , 6844-6878.
  41. Dutta, T., Li, Y., Thornton, A.L., Zhu, D.-M. and Peng, Z. Imide-functionalized naphthodithiophene based donor-acceptor conjugated polymers for solar cells. J. Polym. Sci. Part A: Polym. Chem. 2013 ,51 , 3818-3828
  42. Keshtov, M.L., Shikin, D.Y., Khokhlov, A.R., Ostapov, I.E., Alekseev, V.G., Singh, M.K. and Sharma, G.D. Dithieno[2,3-e:3′,2′-g]isoindole-7,9(8H)-Dione and Dithieno[3′,2′:5,6;2″,3″:7,8]naphtho[2,3-d]imidazol-9(10H)-One-Based Wide Bandgap Copolymer for Efficient Polymer Solar Cells. Energy Technol. 2023 , 11 , 2201211.
  43. Chen, J. H.; Qiu, F. L.; Liao, Q. G.; Peng, C. L.; Liu, F.; Guo, X. G. Side‐Chain Optimization of Phthalimide−Bithiophene Copolymers for Efficient All‐Polymer Solar Cells with Large Fill Factors. Asian J. Org. Chem. 2018, 7 , 2239-2247.
  44. Guo, X. G.; Kim, F. S.; Seger, M. J.; Jenekhe, S. A.; Watson, M. D. Naphthalene Diimide-Based Polymer Semiconductors: Synthesis, Structure–Property Correlations, and n-Channel and Ambipolar Field-Effect Transistors. Chem. Mater. 2012,24 , 1434-1442.
  45. Wu, Q. H.; Zhao, D.; Schneider, A. M.; Chen, W.; Yu, L. Covalently Bound Clusters of Alpha-Substituted PDI—Rival Electron Acceptors to Fullerene for Organic Solar Cells. J. Am. Chem. Soc.2016, 138 , 7248-7251.
  46. Zhao, C.; Yang, F.; Xia, D.; Zhang, Z.; Zhang, Y.; Yan, N.; You, S.; Li, W. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chem. Commun. 2020,56 , 10394-10408.
  47. Lin, F.; Huang, W.; Sun, H.; Xin, J.; Zeng, H.; Yang, T.; Li, M.; Zhang, X.; Ma, W.; Liang, Y. Thieno[3,4-c]pyrrole-4,6(5H)-dione Polymers with Optimized Energy Level Alignments for Fused-Ring Electron Acceptor Based Polymer Solar Cells. Chem. Mater.2017, 29 , 5636-5645.
  48. Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D. Phthalimide-Based Polymers for High Performance Organic Thin-Film Transistors. J. Am. Chem. Soc. 2009, 131 , 7206-7207.
  49. Yu, J.; Yang, J.; Zhou, X.; Yu, S.; Tang, Y.; Wang, H.; Chen, J.; Zhang, S.; Guo, X. Phthalimide-Based Wide Bandgap Donor Polymers for Efficient Non-Fullerene Solar Cells. Macromolecules2017, 50 , 8928-8937.
  50. Lan, L.; Cai, P.; Mai, Y.; Hu, Z.; Wen, W.; Zhang, J.; Li, Y.; Shi, H.; Zhang, J. A new wide-bandgap conjugated polymer based on imide-fused benzotriazole for highly efficient nonfullerene polymer solar cells. Dyes Pigments 2018, 158 , 219-224.
  51. Lan, L. Y.; Chen, Z. M.; Hu, Q.; Ying, L.; Zhu, R.; Liu, F.; Russell, T. P.; Huang, F.; Cao, Y. High‐Performance Polymer Solar Cells Based on a Wide‐Bandgap Polymer Containing Pyrrolo[3,4‐f]benzotriazole‐5,7‐dione with a Power Conversion Efficiency of 8.63 %. Adv. Sci. 2016,3, 1600032.
  52. Zhang, L.; Zhang, Z. L.; Liang, H. Y.; Guo, X.; Zhang, M. J. A Non‐Halo,genated Polymer Donor Based on Imide Unit for Organic Solar Cells with Efficiency Nearly 16 %. Chin. J. Chem.2023, 41 , 2095-2102.
  53. Feng, K.; Guo, H.; Sun, H.; Guo, X. G. n-Type Organic and Polymeric Semiconductors Based on Bithiophene Imide Derivatives. Acc. Chem. Res. 2021, 54 , 3804-3817.
  54. Li, Z.; Yang, D. L.; Zhao, X. L.; Zhang, T.; Zhang, J.; Yang, X. Achieving an Efficiency Exceeding 10 % for Fullerene‐based Polymer Solar Cells Employing a Thick Active Layer via Tuning Molecular Weight. Adv. Funct. Mater. 2017, 28, 1705257.
  55. Su, M. B.; Lin, M.; Mo, S. M.; Chen, J. M.; Shen, X.; Xiao, Y.; Wang, M.; Gao, J.; Dang, L.; Huang, X.-c.; He, F.; Wu, Q. H. Manipulating the Alkyl Chains of Naphthodithiophene Imide-Based Polymers to Concurrently Boost the Efficiency and Stability of Organic Solar Cells. ACS Appl. Mater. Interfaces 2023, 15 , 37371-37380.
  56. Li, H., Sun, S., Salim, T., Bomma, S., Grimsdale, A.C. and Lam, Y.M. Conjugated polymers based on dicarboxylic imide-substituted isothianaphthene and their applications in solar cells. J. Polym. Sci. A Polym 2012, 50, 250-260.
  57. Xu, X.; Wang, C.; Bäcke, O.; James, D. I.; Bini, K.; Olsson, E.; Andersson, M. R.; Fahlman, M.; Wang, E. Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages.Polym. Chem. 2015, 6 , 4624-4633.
  58. Lan, L.; Chen, Z.; Li, Y.; Ying, L.; Huang, F.; Cao, Y. Donor–acceptor conjugated polymers based on cyclic imide substituted quinoxaline or dibenzo[a,c]phenazine for polymer solar cells.Polym. Chem. 2015, 6 , 7558-7569.
  59. Yu, J.; Ornelas, J. L.; Tang, Y.; Uddin, M. A.; Guo, H.; Yu, S.; Wang, Y.; Woo, H. Y.; Zhang, S.; Xing, G.; Guo, X.; Huang, W. 2,1,3-Benzothiadiazole-5,6-dicarboxylicimide-Based Polymer Semiconductors for Organic Thin-Film Transistors and Polymer Solar Cells. ACS Appl. Mater. Interfaces 2017, 9 , 42167-42178.
  60. Wang, L.; Cai, D.; Zheng, Q.; Tang, C.; Chen, S.-C.; Yin, Z. Low Band Gap Polymers Incorporating a Dicarboxylic Imide-Derived Acceptor Moiety for Efficient Polymer Solar Cells. ACS Macro Letters2013, 2 , 605-608.
  61. Luo, C.; Shen, Z.; Meng, X.; Han, L.; Sun, S.; Lin, T.; Sun, J.; Peng, H.; Chu, J. Design and synthesis of pyromellitic diimide-based donor–acceptor conjugated polymers for photovoltaic application.Polym. Adv. Technol. 2014, 25 , 809-815.
  62. Li, H.; Kim, F. S.; Ren, G.; Hollenbeck, E. C.; Subramaniyan, S.; Jenekhe, S. A. Tetraazabenzodifluoranthene Diimides: Building Blocks for Solution‐Processable n‐Type Organic Semiconductors. Angew. Chem. Int. Ed. 2013, 52 , 5513-5517.
  63. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3 , 18003.
  64. Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018,118 , 3447-3507.
  65. Zhou, N.; Facchetti, A. Naphthalenediimide (NDI) polymers for all-polymer photovoltaics. Mater. Today 2018,21 , 377-390.
  66. Hwang, H.; Ko, H.; Park, S.; Suranagi, S. R.; Sin, D. H.; Cho, K. Fluorine-functionalization of an isoindoline-1,3-dione-based conjugated polymer for organic solar cells. Org. Electron.2018, 59 , 247-252.
  67. Xu, W.; Li, X.; Jeong, S. Y.; Son, J. H.; Zhou, Z.; Jiang, Q.; Woo, H. Y.; Wu, Q.; Zhu, X.; Ma, X.; Zhang, F. Achieving 17.5 % efficiency for polymer solar cells via a donor and acceptor layered optimization strategy. J. Mater. Chem. C 2022, 10 , 5489-5496.
  68. Ma, X.; Jiang, Q.; Xu, W.; Xu, C.; Young Jeong, S.; Young Woo, H.; Wu, Q.; Zhang, X.; Yuan, G.; Zhang, F. Layered optimization strategy enables over 17.8 % efficiency of layer-by-layer organic photovoltaics. Chem. Eng. J. 2022, 442 , 136368.
  69. Li, Y.; Chen, H.; Lai, H. J.; Lai, X.; Rehman, T.; Zhu, Y.; Wang, Y.; Wu, Q.; He, F. Efficient and Stable Quasiplanar Heterojunction Solar Cells with an Acetoxy-Substituted Wide-Bandgap Polymer. ACS Mater. Lett. 2022, 4 , 1322-1331.
  70. Chen, H.; Lai, H. J.; Jiang, Q. J.; Lai, X.; Zhu, Y.; Qu, J.; Wu, Q.; He, F. 3D network acceptor with gradient hydrogen bond interaction as a bifunctional layer in quasiplanar heterojunction organic solar cells. Nano Energy 2023, 113 ,108593.
  71. Gao, Y.; Liao, J.; Chen, H.; Ning, H.; Wu, Q. H.; Li, Z.; Wang, Z.; Zhang, X.; Shao, M.; Yu, Y. High Performance Polarization‐Resolved Photodetectors Based on Intrinsically Stretchable Organic Semiconductors. Adv. Sci. 2022, 10 .
  72. Sice, J. SUBSTITUTED THENOIC ACIDS. J. Org. Chem.1954, 19 , 70-73.
  73. Zhang, Q. T.; Tour, J. M. Low Optical Bandgap Polythiophenes by an Alternating Donor/Acceptor Repeat Unit Strategy. J. Am. Chem. Soc. 1997, 119 , 5065-5066.
  74. Nielsen, C. B.; Bjørnholm, T. New Regiosymmetrical Dioxopyrrolo- and Dihydropyrrolo-Functionalized Polythiophenes. Org. Lett.2004, 6 , 3381-3384.
  75. Berrouard, P.; Grenier, F.; Pouliot, J.-R.; Gagnon, E.; Tessier, C.; Leclerc, M. Synthesis and Characterization of 5-Octylthieno[3,4-c]pyrrole-4,6-dione Derivatives As New Monomers for Conjugated Copolymers. Org. Lett. 2011, 13 , 38-41.
  76. Fuse, S.; Takahashi, R.; Takahashi, T. Facile, One‐Step Synthesis of 5‐Substituted Thieno[3,4‐c]pyrrole‐4,6‐dione by Palladium‐Catalyzed Carbonylative Amidation. Eur. J. Org. Chem.2015, 2015 , 3430-3434.
  77. Xu, L.-Y.; Gao, Y.; Wang, W.; Shao, Y.; Chen, M.; Yang, X.; Fu, Y.; Zhang, M.; Lu, X.; Sun, R.; Min, J. A facile synthetic approach based on thieno[3,4-c]pyrrole-4,6-dione to construct polymer donors for highly efficient organic solar cells. Energy Environ. Sci.2023, 16 , 3942-3950.
  78. Xu, X. F.; Li, Z. J.; Zhang, W.; Meng, X.; Zou, X. S.; Di Carlo Rasi, D.; Ma, W.; Yartsev, A.; Andersson, M. R.; Janssen, R. A. J.; Wang, E. 8.0 % Efficient All‐Polymer Solar Cells with High Photovoltage of 1.1 V and Internal Quantum Efficiency near Unity. Adv. Energy Mater. 2017, 8 ,1700908.
  79. Zhao, B. F.; Wu, H. M.; Wang, W. P.; Liu, H. L.; Liu, J.; Cong, Z. Y.; Gao, C. Efficient non-fullerene polymer solar cells enabled by side-chain conjugated thieno[3,4-c]pyrrole-4,6-dione-based polymer and small molecular acceptors. React. Funct. Polym.2019, 145 , 104378.
  80. Liao, C.-Y.; Chen, Y.; Lee, C.-C.; Wang, G.; Teng, N.-W.; Lee, C.-H.; Li, W.-L.; Chen, Y.-K.; Li, C.-H.; Ho, H.-L.; Tan, P. H.-S.; Wang, B.; Huang, Y.-C.; Young, R. M.; Wasielewski, M. R.; Marks, T. J.; Chang, Y.-M.; Facchetti, A. Processing Strategies for an Organic Photovoltaic Module with over 10 % Efficiency. Joule 2020,4 , 189-206.
  81. Wu, J.; Liao, C.-Y.; Chen, Y.; Jacobberger, R. M.; Huang, W.; Zheng, D.; Tsai, K.-W.; Li, W.-L.; Lu, Z.; Huang, Y.; Wasielewski, M. R.; Chang, Y.-M.; Marks, T. J.; Facchetti, A. To Fluorinate or Not to Fluorinate in Organic Solar Cells: Achieving a Higher PCE of 15.2 % when the Donor Polymer is Halogen-Free. Adv. Energy Mater.2021, 11 , 2102648.
  82. Park, J. S.; Kim, G. U.; Lee, D.; Lee, S.; Ma, B.; Cho, S.; Kim, B. J. Importance of Optimal Crystallinity and Hole Mobility of BDT‐Based Polymer Donor for Simultaneous Enhancements of Voc, Jsc, and FF in Efficient Nonfullerene Organic Solar Cells. Adv. Funct. Mater.2020, 30 , 2005787.
  83. Park, J. B.; Ha, J.-W.; Jung, I. H.; Hwang, D.-H. High-Performance Nonfullerene Organic Photovoltaic Cells Using a TPD-Based Wide Bandgap Donor Polymer. ACS Appl. Energy Mater. 2019, 2 , 5692-5697.
  84. Zhang, C.-H.; Wang, W.; Huang, W.; Wang, J.; Hu, Z.; Lin, Z.; Yang, T.; Lin, F.; Xing, Y.; Bai, J.; Sun, H.; Liang, Y. Methyl Thioether Functionalization of a Polymeric Donor for Efficient Solar Cells Processed from Non-Halogenated Solvents. Chem. Mater.2019, 31 , 3025-3033.
  85. Yang, N.; Cheng, Y.; Kim, S.; Huang, B.; Liu, Z.; Deng, J.; Wang, J.; Yang, C.; Wu, F.; Chen, L. Random Copolymerization Strategy for Host Polymer Donor PM6 Enables Improved Efficiency Both in Binary and Ternary Organic Solar Cells. ChemSusChem 2022,15 , e202200138.
  86. Pang, S. T.; Zhang, R. W.; Duan, C. H.; Zhang, S.; Gu, X. D.; Liu, X.; Huang, F.; Cao, Y. Alkyl Chain Length Effects of Polymer Donors on the Morphology and Device Performance of Polymer Solar Cells with Different Acceptors. Adv. Energy Mater. 2019,9 ,1901740.
  87. Yasa, M.; Depci, T.; Alemdar, E.; Hacioglu, S. O.; Cirpan, A.; Toppare, L. Non-fullerene organic photovoltaics based on thienopyrroledione comprising random copolymers; effect of alkyl chains. Renew. Energy 2021, 178 , 202-211.
  88. Zou, Y.; Najari, A.; Berrouard, P.; Beaupré, S.; Réda Aïch, B.; Tao, Y.; Leclerc, M. A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells. J. Am. Chem. Soc. 2010,132 , 5330-5331.
  89. Chen, J.; Cao, Y. Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices. Acc. Chem. Res. 2009, 42 , 1709-1718.
  90. Li, Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption.Acc. Chem. Res. 2012, 45 , 723-733.
  91. Fan, Q.; Fu, H.; Wu, Q.; Wu, Z.; Lin, F.; Zhu, Z.; Min, J.; Woo, H. Y.; Jen, A. K. Y. Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15  % Efficiency and High Reproducibility. Angew. Chem. Int. Ed. 2021,60 , 15935-15943.
  92. Britel, O.; Fitri, A.; Benjelloun, A. T.; Slimi, A.; Benzakour, M.; McHarfi, M. Theoretical investigation of the influence of π-spacer on photovoltaic performances in carbazole-based dyes for dye-sensitized solar cells applications. J. Photochem. Photobiol. A Chem.2022, 428 , 113870.
  93. Agneeswari, R.; Kim, D.; Park, S. W.; Jang, S.; Yang, H. S.; Shin, I.; Jeong, J. H.; Tamilavan, V.; Jung, Y. K.; Park, S. H. Influence of thiophene and furan π–bridge on the properties of poly(benzodithiophene-alt-bis(π–bridge)pyrrolopyrrole-1,3-dione) for organic solar cell applications. Polymer 2021,229 , 123991.
  94. Yilmaz, E. A.; Yasa, M.; Cirpan, A.; Toppare, L. A follow-up investigation: Organic solar cells based on chalcogenophene-Thieno[3,4-c]pyrrole-4,6-dione-chalcogenophene containing rJ. Electroanal. Chem. 2023, 932 , 117213.
  95. Chao, P.; Guo, M.; Zhu, Y.; Chen, H.; Pu, M.; Huang, H.-H.; Meng, H.; Yang, C.; He, F. Enhanced Photovoltaic Performance by Synergistic Effect of Chlorination and Selenophene π-Bridge. Macromolecules2020, 53 , 2893-2901.
  96. Jo, J. W.; Jung, J. W.; Ahn, H.; Ko, M. J.; Jen, A. K. Y.; Son, H. J. Effect of Molecular Orientation of Donor Polymers on Charge Generation and Photovoltaic Properties in Bulk Heterojunction All-Polymer Solar Cells. Adv. Energy Mater. 2017, 7 , 1601365.
  97. Li, H.; Liu, F.; Wang, X.; Gu, C.; Wang, P.; Fu, H. Diketopyrrolopyrrole–Thiophene–Benzothiadiazole Random Copolymers: An Effective Strategy To Adjust Thin-Film Crystallinity for Transistor and Photovoltaic Properties. Macromolecules 2013,46 , 9211-9219.
  98. Zhao, J. J.; Li, Q. D.; Liu, S. J.; Cao, Z. X.; Jiao, X. C.; Cai, Y.-P.; Huang, F. Bithieno[3,4-c]pyrrole-4,6-dione-Mediated Crystallinity in Large-Bandgap Polymer Donors Directs Charge Transportation and Recombination in Efficient Nonfullerene Polymer Solar Cells. ACS Energy Lett. 2020, 5 , 367-375.
  99. Zhao, J. J.; Huang, X. L.; Li, Q. D.; Liu, S.; Fan, Z.; Zhang, D.; Ma, S.; Cao, Z.; Jiao, X.; Cai, Y.-P.; Huang, F. Shorter alkyl chain in thieno[3,4-c]pyrrole-4,6-dione (TPD)-based large bandgap polymer donors – Yield efficient non-fullerene polymer solar cells. J. Energy Chem. 2021, 53 , 69-76.
  100. Li, Q.; Huang, X.; Liu, S.; Zhao, J.; Zou, Y.; Ding, Y.; Cao, Z.; Jiao, X.; Cai, Y.-P. The alkyl chain positioning of thieno[3,4-c]pyrrole-4,6-dione (TPD)-Based polymer donors mediates the energy loss, charge transport and recombination in polymer solar cells. J. Power Sources 2020, 480 , 229098.
  101. Berrouard, P.; Grenier, F.; Pouliot, J.-R.; Gagnon, E.; Tessier, C.; Leclerc, M. Synthesis and Characterization of 5-Octylthieno[3,4-c]pyrrole-4,6-dione Derivatives As New Monomers for Conjugated Copolymers. Org. Lett. 2011, 13 , 38-41.
  102. Qiao, X.; Wu, Q.; Wu, H.; Wang, D.; Li, H. High performance thin film transistors based on bi-thieno[3,4-c]pyrrole-4,6-dione-containing copolymers: tuning the face-on and edge-on packing orientations. Polym. Chem.2016, 7 , 807-815.
  103. Fan, B. B.; Ying, L.; Wang, Z. F.; He, B.; Jiang, X.-F.; Huang, F.; Cao, Y. Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9 %. Energy Environ. Sci.2017, 10 , 1243-1251.
  104. Fan, B. B.; Zhang, K.; Jiang, X. F.; Ying, L.; Huang, F.; Cao, Y. High‐Performance Nonfullerene Polymer Solar Cells based on Imide‐Functionalized Wide‐Bandgap Polymers. Adv. Mater.2017, 29 .
  105. Zhong, W.; Li, K.; Cui, J.; Gu, T.; Ying, L.; Huang, F.; Cao, Y. Efficient All-Polymer Solar Cells Based on Conjugated Polymer Containing an Alkoxylated Imide-Functionalized Benzotriazole Unit.Macromolecules 2017, 50 , 8149-8157.
  106. Fan, B. B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F. L.; Chen, J. W.; Huang, F.; Cao, Y. All‐Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxane‐Functionalized Side Chains with Efficiency over 10 %. Adv. Mater. 2017, 29 , 1703906.
  107. Li, Z. Y.; Zhong, W. K.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 2019,64 , 103931.
  108. Fan, B. B.; Du, X. Y.; Liu, F.; Zhong, W. K.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J. M.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao, Y. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat. Energy2018, 3 , 1051-1058.
  109. Fan, B. B.; Zhang, D. F.; Li, M. J.; Zhong, W. K.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16 % efficiency for single-junction organic solar cells. Sci. China Chem. 2019, 62 , 746-752.
  110. Zhu, P.; Fan, B. B; Du, X. Y.; Tang, X. F.; Li, N.; Liu, F.; Ying, L.; Li, Z.; Zhong, W. K.; Brabec, C. J.; Huang, F.; Cao, Y. Improved Efficiency of Polymer Solar Cells by Modifying the Side Chain of Wide-Band Gap Conjugated Polymers Containing Pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione Moiety. ACS Appl. Mater. Interfaces 2018, 10 , 22495-22503.
  111. Genene, Z.; Negash, A.; Abdulahi, B. A.; Eachambadi, R. T.; Liu, Z.; Van den Brande, N.; D’Haen, J.; Wang, E.; Vandewal, K.; Maes, W.; Manca, J.; Mammo, W.; Admassie, S. Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cells. Org. Electron.2020, 77 .
  112. Li, M. J.; Zeng, Z. Y.; Fan, B. B.; Zhong, W. K.; Zhang, D. F.; Zhang, X.; Zhang, Y.; Ying, L.; Huang, F.; Cao, Y. Tailoring the side chain of imide-functional benzotriazole based polymers to achieve internal quantum efficiency approaching 100 %. J. Mater. Chem. A2020, 8 , 23519-23525.
  113. Fan, B. B.; Li, M. J.; Zhang, D. F.; Zhong, W. K.; Ying, L.; Zeng, Z.; An, K.; Huang, Z.; Shi, L.; Bazan, G. C.; Huang, F.; Cao, Y. Tailoring Regioisomeric Structures of π-Conjugated Polymers Containing Monofluorinated π-Bridges for Highly Efficient Polymer Solar Cells.ACS Energy Lett. 2020, 5 , 2087-2094.
  114. An, K.; Zhong, W. K.; Peng, F.; Deng, W. Y.; Shang, Y.; Quan, H. L.; Qiu, H.; Wang, C.; Liu, F.; Wu, H. B.; Li, N.; Huang, F.; Ying, L. Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells. Nat. Commun. 2023,14 , 2688.
  115. Tang, Y.; Xie, L.; Qiu, D.; Yang, C.; Liu, Y.; Shi, Y.; Huang, Z.; Zhang, J.; Hu, J.; Lu, K.; Wei, Z. Optimizing the energy levels and crystallinity of 2,2′-bithiophene-3,3′-dicarboximide-based polymer donors for high-performance non-fullerene organic solar cells.J. Mater. Chem. C 2021, 9 , 7575-7582.
  116. Zhou, N. J.; Guo, X. G.; Ortiz, R. P.; Li, S.; Zhang, S. M.; Chang, R. P. H.; Facchetti, A.; Marks, T. J. Bithiophene Imide and Benzodithiophene Copolymers for Efficient Inverted Polymer Solar Cells. Adv. Mater. 2012, 24 , 2242-2248.
  117. Yang, D. L.; Li, Z. L.; Li, Z. D.; Zhao, X. L.; Zhang, T.; Wu, F.; Tian, Y.; Ye, F.; Sun, Z. Y.; Yang, X. N. Novel wide band gap copolymers featuring excellent comprehensive performance towards the practical application for organic solar cells. Polym. Chem.2017, 8 , 4332-4338.
  118. Zhang, T.; Zeng, G.; Ye, F.; Zhao, X. L.; Yang, X. N. Efficient Non‐Fullerene Organic Photovoltaic Modules Incorporating As‐Cast and Thickness‐Insensitive Photoactive Layers. Adv. Energy Mater.2018, 8 , 1801387.
  119. Zhang, T.; Zhao, X.; Yang, D. L.; Tian, Y. M.; Yang, X. N. Ternary Organic Solar Cells with >11 % Efficiency Incorporating Thick Photoactive Layer and Nonfullerene Small Molecule Acceptor.Adv. Energy Mater. 2017, 8 , 1701691.
  120. Shi, Y. Q.; Ma, R. J.; Wang, X.; Liu, T.; Li, Y. C.; Fu, S.; Yang, K.; Wang, Y.; Yu, C. J.; Jiao, L.; Wei, X. W.; Fang, J. F.; Xue, D. F.; Yan, H. Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells.ACS Appl. Mater. Interfaces 2022, 14 , 5740-5749.
  121. Yang, J.; Liu, B.; Lee, J. W.; Wang, Y.; Sun, H.; Chen, Z.; Bai, Q.; Kim, B. J.; Jiang, Y.; Niu, L.; Guo, X. Revisiting the Bithiophene Imide‐Based Polymer Donors: Molecular Aggregation and Orientation Control Enabling New Polymer Donors for High‐Performance All‐Polymer Solar Cells. Chin. J. Chem. 2022, 40 , 2900-2908.
  122. Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D. Phthalimide-Based Polymers for High Performance Organic Thin-Film Transistors.Journal of the American Chemical Society 2009,131 , 7206-7207
  123. Xin, H.; Guo, X.; Kim, F. S.; Ren, G.; Watson, M. D.; Jenekhe, S. A. Efficient solar cells based on a new phthalimide-based donor–acceptor copolymer semiconductor: morphology, charge-transport, and photovoltaic properties. J. Mater. Chem. 2009,19 , 5303-5310.
  124. Du, M. Z.; Chen, Y.; Li, J. F.; Geng, Y. F.; Ji, H. G.; Li, G. Q.; Tang, A.; Guo, Q.; Zhou, E. Wide-Band-Gap Phthalimide-Based D-π-A Polymers for Nonfullerene Organic Solar Cells: The Effect of Conjugated π-Bridge from Thiophene to Thieno[3,2-b]thiophene.J. Phys. Chem. C 2019, 124 , 230-236.
  125. Guo, X. J.; Liao, Q. G. D.; Manley, E. F.; Wu, Z.; Wang, Y.; Wang, W.; Yang, T. B.; Shin, Y.-E.; Cheng, X.; Liang, Y. Y.; Chen, L. X.; Baeg, K.-J.; Marks, T. J.; Guo, X. Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors. Chem. Mater. 2016, 28 , 2449-2460.
  126. Liao, Q. G.; Yang, K.; Chen, J.; Koh, C. W.; Tang, Y. M.; Su, M. Y.; Wang, Y.; Yang, Y. H.; Feng, X. Y.; He, Z.; Woo, H. Y.; Guo, X. G. Backbone Coplanarity Tuning of 1,4-Di(3-alkoxy-2-thienyl)-2,5-difluorophenylene-Based Wide Bandgap Polymers for Efficient Organic Solar Cells Processed from Nonhalogenated Solvent. ACS Appl. Mater. Interfaces2019, 11 , 31119-31128.
  127. Yu, J. W.; Chen, P.; Koh, C. W.; Wang, H.; Yang, K.; Zhou, X.; Liu, B.; Liao, Q. G.; Chen, J. H.; Sun, H. L.; Woo, H. Y.; Zhang, S. M.; Guo, X. G. Phthalimide‐Based High Mobility Polymer Semiconductors for Efficient Nonfullerene Solar Cells with Power Conversion Efficiencies over 13 %. Adv. Sci. 2018, 6 , 1801743.
  128. Zhang, W. C.; Huang, J. H.; Xu, J. Q.; Han, M. M.; Su, D.; Wu, N. N.; Zhang, C. F.; Xu, A.; Zhan, C. L, Phthalimide Polymer Donor Guests Enable over 17 % Efficient Organic Solar Cells via Parallel‐Like Ternary and Quaternary Strategies. Adv. Energy Mater.2020, 10 , 2001436.
  129. Zhang, W. C.; Huang, J. H.; Lv, X. Y.; Zhang, M.; Liu, W.; Xu, T.; Ning, J.; Hexig, A.; Liu, F.; Xu, A.; Zhan, C. Chlorinated phthalimide polymer donor as ultra-wide bandgap and deep HOMO guest for achieving highly efficient polymer solar cells. Chin. Chem. Lett.2023, 34 ,107436.
  130. Li, K.; Wu, Y.; Li, X.; Fu, H.; Zhan, C. 17.1 %-Efficiency organic photovoltaic cell enabled with two higher-LUMO-level acceptor guests as the quaternary strategy. Sci. China Chem. 2020,63 , 490-496.
  131. Arunagiri, L.; Peng, Z.; Zou, X.; Yu, H.; Zhang, G.; Wang, Z.; Lin Lai, J. Y.; Zhang, J.; Zheng, Y.; Cui, C.; Huang, F.; Zou, Y.; Wong, K. S.; Chow, P. C. Y.; Ade, H.; Yan, H. Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells.Joule 2020, 4 , 1790-1805.
  132. Bi, Z. Z.; Zhu, Q. L.; Xu, X. B.; Naveed, H. B.; Sui, X.; Xin, J. M.; Zhang, L.; Li, T. F.; Zhou, K.; Liu, X. F.; Zhan, X. W.; Ma, W. Efficient Quaternary Organic Solar Cells with Parallel-Alloy Morphology. Adv. Funct. Mater. 2019, 29 , 1806804.
  133. Dai, G. L.; Chang, J. J.; Wu, J. S.; Chi, C.Y. Dithieno-naphthalimide based copolymers for air-stable field effect transistors: synthesis, characterization and device performance. J. Mater. Chem.2012, 22 , 21201.
  134. He, B. T.; Tang, L. T.; Zhang, J. M.; Xiao, M. J.; Chen, G. T.; Dai, C. B. A polymer donor based on difluoro-quinoxaline with a naphthalimide substituent unit exhibits a low-lying HOMO level for efficient non-fullerene polymer solar cells. RSC Adv.2023, 13 , 29035-29042.
  135. Keshtov, M. L.; Kuklin, S. A.; Konstantinov, I. O.; Khokhlov, A. R.; Nikolaev, A. Y.; Dou, C.; Zou, Y.; Suhtar, R.; Sharma, G. D. New Conjugated Polymers Based on Dithieno[2,3‐e:3′,2′‐g]Isoindole‐7,9(8H)‐Dione Derivatives for Applications in Nonfullerene Polymer Solar Cells. Solar RRL2019, 4 , 1900475.
  136. Sun, A. X.; Xu, J. G.; Zong, G. H.; Xiao, Z.; Hua, Y.; Zhang, B.; Ding, L. M. A wide-bandgap copolymer donor with a 5-methyl-4H-dithieno[3,2-e:2’,3’-g]isoindole-4,6(5H)-dione unit.J. Semicond. 2021, 42 , 100502.
  137. Li, L. H.; Meng, F.; Zhang, M.; Zhang, Z. G.; Zhao, D. Revisiting the Dithienophthalimide Building Block: Improved Synthetic Method Yielding New High‐Performance Polymer Donors for Organic Solar Cells.Angew. Chem. Int. Ed. 2022, 61 , e202206311.
  138. Keshtov, M. L.; Kuklin, S. A.; Zou, Y.; Dahiya, H.; Agrawal, A.; Sharma, G. D. Wide bandgap D-A copolymers with same medium dithieno [2,3-e;3′2′-g]isoindole-7,9 (8H) acceptor and different donors for high-performance fullerene free polymer solar cells with efficiency up to 14.76 %. Chem. Eng. J. 2022, 427 .
  139. Keshtov, M. L.; Konstantinov, I. O.; Kuklin, S. A.; Zou, Y.; Agrawal, A.; Chen, F. C.; Sharma, G. D. Binary and Ternary Polymer Solar Cells Based on a Wide Bandgap D-A Copolymer Donor and Two Nonfullerene Acceptors with Complementary Absorption Spectral. ChemSusChem2021, 14 , 4731-4740.
  140. Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Incorporation of 2,6‐Connected Azulene Units into the Backbone of Conjugated Polymers: Towards High‐Performance Organic Optoelectronic Materials. Angew. Chem. Int. Ed. 2017, 57 , 1322-1326.
  141. Zhao, Z.; Zhang, F. J.; Zhang, X.; Yang, X. D.; Li, H. X.; Gao, X. K.; Di, C.-a.; Zhu, D. B. 1,2,5,6-Naphthalenediimide Based Donor–Acceptor Copolymers Designed from Isomer Chemistry for Organic Semiconducting Materials. Macromolecules 2013, 46 , 7705-7714.
  142. Chen, S. C.; Zheng, Q. D.; Zhang, Q. K.; Cai, D. D.; Wang, J. Y.; Yin, Z.; Tang, C. Q. Tuning the frontier molecular orbital energy levels of n‐type conjugated copolymers by using angular‐shaped naphthalene tetracarboxylic diimides, and their use in all‐polymer solar cells with high open‐circuit voltages. Journal of Polymer Science Part A: Polym. Chem. 2013, 51 , 1999-2005.
  143. Chen, J. H.; Zhang, X. H.; Wang, G.; Uddin, M. A.; Tang, Y.; Wang, Y.; Liao, Q. G.; Facchetti, A.; Marks, T. J.; Guo, X. G. Dithienylbenzodiimide: a new electron-deficient unit for n-type polymer semiconductors. J. Mater. Chem. C 2017, 5,9559-9569.