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Abstract 16 

The north-south seismic belt of China poses a high risk of earthquakes, necessitating the need for 17 

accurate and rapid prediction of intensity measures (IMs) to prevent and mitigate potential 18 

damage. We have developed a new multi-task model, CRAQuake, to predict IMs for the north-19 

south seismic belt of China. Using initial arrival seismic waves recorded at a single station as 20 

input, CRAQuake simultaneously predicts six IMs without relying on pre-configured parameters 21 

such as earthquake source, path, and location. The model was trained on 4281 sets of strong 22 

motion records datasets at 822 stations and tested to show highly correlated results with the 23 

target IMs. The prediction performance continues to improve as the input initial arrival seismic 24 

wave time window increases. CRAQuake promises to enhance the accuracy and timeliness of 25 

IMs prediction in the north-south seismic belt of China. 26 

 27 

Plain Language Summary 28 

The north-south seismic belt of China, a region at high risk for earthquakes, necessitates the 29 

accurate and rapid prediction of earthquake intensity measures (IMs) to minimize potential 30 

damage. We have developed a powerful tool, CRAQuake, to address this critical need. This 31 

advanced model leverages initial seismic waves recorded at a single station to simultaneously 32 

predict six different IMs without relying on preset information like earthquake source, path, or 33 

location. Trained on a vast dataset of strong motion records from 822 stations, our testing has 34 

shown that CRAQuake's predictions are highly aligned with the actual IMs. Furthermore, 35 

increasing the time window of the initial seismic waves used as input significantly improves the 36 

model's prediction accuracy. With CRAQuake, we can look forward to more accurate and timely 37 

predictions of IMs in the north-south seismic belt of China, empowering us to better prepare for 38 

and respond to earthquakes. 39 

1 Introduction 40 

Assessing the damage caused by earthquakes is a crucial task for earthquake early 41 

warning systems (EEWs). This assessment is necessary for emergency disaster response and 42 

providing early warning information to the public (R. M. Allen & Melgar, 2019; Cremen & 43 

Galasso, 2020; Zollo et al., 2023). However, it can be challenging to determine the severity of an 44 

earthquake based solely on the seismic waves it generates. To address this challenge and reduce 45 

the damage caused by earthquakes, researchers have proposed using intensity measures (IMs) to 46 

quantify the impacts of ground motion. Currently, there are several IMs in use, such as Peak 47 

Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD), 48 

and Spectral Acceleration (SA). These IMs characterize the amplitude and spectral properties of 49 

ground motion. IMs have contributed significantly to the development of EEWs, so rapid and 50 

precise prediction of IMs is essential for EEWs. 51 

There are currently two primary methods for predicting IMs during an earthquake. The 52 

first method involves using a Ground Motion Prediction Equation (GMPE) or Ground Motion 53 

Models (GMMs). This method is commonly used in regional EEWs (Zollo et al., 2009; Cremen 54 

& Galasso, 2020). Researchers have successfully established GMPE or GMMs for predicting 55 

IMs by using seismic data from various regions (K. Campbell & Bozorgnia, 2008; Bindi et al., 56 

2011; K. W. Campbell & Bozorgnia, 2014; Du & Ning, 2021). This method is advantageous as it 57 

uses information from more ground motion stations near the epicenter and, as a result, provides 58 
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more accurate predictions. However, regional EEWs may need help with delays in receiving and 59 

analyzing initial seismic waves from various stations. This delay can create "blind zones" for 60 

early warning as there may not be sufficient time to issue warnings before the arrival of 61 

destructive seismic waves (R. Allen et al., 2009; Caruso et al., 2017). Additionally, determining 62 

earthquake source parameters during seismic events proves challenging. For instance, the 63 

magnitude cannot be accurately measured due to the saturation of large earthquakes (Kanamori, 64 

2005; Wu & Zhao, 2006; Peng et al., 2017; Y. Wang et al., 2021), and the fault distance cannot 65 

be obtained before the fault ruptures, hindering the accuracy and timeliness of GMPE 66 

predictions. Another approach involves using empirical formulas that rely on seismic wave 67 

features and IMs. This method is commonly utilized in on-site EEWs and has been studied 68 

extensively (Wu & Kanamori, 2005; Wu et al., 2007; Wu & Kanamori, 2008; Zollo et al., 2010; 69 

Peng et al., 2013; Liu C. et al., 2019). By analyzing the initial arrival of seismic waves from a 70 

single station, this approach can predict IMs and issue early warning messages even in areas 71 

close to the earthquake epicenter. Compared to GMPE, this method is timelier and allows longer 72 

emergency response times in the target region (Peng et al., 2017). However, it may result in 73 

slightly lower prediction accuracy due to the limited amount of information that can be utilized. 74 

Additionally, because empirical formulas require human extraction of characteristic parameters, 75 

there is a risk of subjectivity and one-sidedness, which can lead to errors and limit the accuracy 76 

of the predictions. 77 

In recent years, Advances in science and technology have led to the gradual application 78 

of data-driven methods to earthquake engineering, which have yielded impressive outcomes 79 

(Mousavi & Beroza, 2022a, 2022b; Hajian et al., 2023). By analyzing vast data, data-driven 80 

approaches can uncover hidden patterns and laws, leading to accurate and widely applicable 81 

predictions. In the field of earthquake engineering, popular data-driven methods include machine 82 

learning techniques like Support Vector Machines (SVM), as well as deep learning methods such 83 

as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Self-84 

Attention Mechanism (SAM). Table 1 summarizes the practical uses of different data-driven 85 

techniques in earthquake engineering. Table S1 of the supplementary Information also shows the 86 

input information and data sources used for the data-driven model in Table 1. It is worth noting 87 

that many researchers are also employing data-driven methods to predict IMs, which can be 88 

categorized into two types: first type methods that use earthquake sources, paths, and site 89 

parameters as inputs(Fayaz et al., 2021; Hu et al., 2022; Fayaz & Galasso, 2022a; Fayaz et al., 90 

2023), similar to GMPE methods, inability to meet timeliness requirements, and another type 91 

methods that use seismic wave or P-wave features as inputs(Dai et al., 2024; Hsu et al., 2013; 92 

Jozinović et al., 2020; Y. Liu et al., 2024; Y. Wang et al., 2023). Using P-wave features as inputs 93 

can lead to human empirical and subjectivity, affecting the accuracy of prediction results. These 94 

studies are incredibly significant in advancing the prediction of IMs, but there is still room for 95 

improvement in these methods. For instance, most methods are single-task and can only predict 96 

one type of IMs, except the Jozinović et al. study (Jozinović et al., 2020). However, predicting a 97 

single IMs is insufficient for earthquake engineering and mitigation efforts because of the 98 

complexity of ground motion. Additionally, although there are numerous data-driven models for 99 

predicting IMs, none exist for multitasking prediction of IMs in the north-south seismic belt of 100 

China. As accurate post-earthquake prediction of IMs is crucial for minimizing seismic hazards 101 

in this region, it is imperative to develop a rapid and precise method for predicting IMs in the 102 

north-south seismic belt of China. 103 
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This study introduces a novel approach (CRAQuake) to predicting IMs in the north-south 104 

seismic belt of China. The CRAQuake model combines advanced data-driven techniques (CNN, 105 

RNN, and SAM) to predict six types of IMs (PGA, PGV, PGD, and SA at 0.3, 1, and 3 s periods) 106 

directly from initial seismic waves without requiring pre-configure of earthquake sources, paths, 107 

or site parameters. CRAQuake was trained, validated, and tested on strong motion data from 108 

China's north-south seismic belt. Test results show that CRAQuake can rapidly, accurately, and 109 

objectively predict IMs, eliminating human subjectivity and empiricism. The IMs predicted by 110 

CRAQuake are extremely important for earthquake early warning and have a non-negligible 111 

reference value for emergency disposal of some critical projects. 112 

Table 1. A brief review of some examples in the field of earthquake engineering using data-113 

driven methods 114 

Approach Applications in Earthquake Engineering Reference 

SVM 

Prediction IMs (PGA) (Hsu et al., 2013) 

Prediction IMs (Arias intensity, IA; cumulative 

absolute velocity, CAV; and significant 

duration, Ds) 

(Hu et al., 2022) 

XGBoost Prediction IMs (SA) (Dai et al., 2024) 

CNN 

Magnitude estimation (Y. Wang et al., 2022) 

Prediction IMs (CAV) (Y. Wang et al., 2023) 

Site classification (Ji et al., 2023) 

Prediction IMs (PGA, PGV, SA) (Jozinović et al., 2020) 

Prediction IMs (PGA) (Y. Liu et al., 2024) 

RNN 

Predict earthquake site response. (Zhu et al., 2023) 

Prediction IMs (PGA) (A. Wang et al., 2023) 

Prediction IMs (Ds, CAV, IA, SA) (Fayaz et al., 2021) 

Prediction IMs (Ds, CAV, IA, PGA, PGV, SA) (Fayaz & Galasso, 2022b) 

Prediction IMs (Ds, IA, PGA, PGV, SA) (Fayaz et al., 2023) 

SAM 
Magnitude estimation and Earthquake location (Münchmeyer et al., 2021) 

Earthquake detection and phase picking (Mousavi et al., 2020) 

2 Methods and data 115 

2.1 Basic information about CRAQuake 116 

As previously mentioned, the CRAQuake model was developed using a combination of 117 

CNN, RNN, and SAM techniques, each with unique advantages. CNN extracts response features 118 

from input species, with increasing network depth allowing for more specific and advanced 119 

feature learning. RNN is better suited for time series data and has a memory function, enabling 120 

the model to consider previous information when processing current input. SAM captures 121 

dependencies between different locations in the time domain sequence, improving correlation 122 

understanding between other places in the input sequence and prediction accuracy. The 123 

CRAQuake model leverages these strengths to enhance the timeliness and accuracy of IM 124 

predictions. For brevity, we will focus on our model without delving into the basics of CNN, 125 

RNN, and SAM, which can be found in published literature (Hochreiter & Schmidhuber, 1997; 126 

Lecun et al., 1998; Chung et al., 2014; Vaswani et al., 2017). 127 

https://www.researchgate.net/publication/343503437_Earthquake_transformer-an_attentive_deep-learning_model_for_simultaneous_earthquake_detection_and_phase_picking?_sg%5B0%5D=csQF2zua3Hj77U1ihdGoZaLo3z1QRPlzmgxRjp0VBeRPKebL6APcYvXtRfP4xWDiHvcVrNymorSqTw7WbuYyws07R3f6wi5ZTxDeY0Az.-niCow2BnhMLx3QIiW6FeoDQ5luosTdtv1MzBCOOXjv29kQ_YJQzOVMQKCFSlHXa54AhYYGGFJyRFQP0chXejg&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6ImhvbWUiLCJwYWdlIjoicHJvZmlsZSIsInByZXZpb3VzUGFnZSI6InByb2ZpbGUiLCJwb3NpdGlvbiI6InBhZ2VDb250ZW50In19
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The multitask IMs prediction network called CRAQuake is illustrated in Figure 1. The 128 

input to the network is a tridirectionally acceleration record (H × W × 1), where H is the number 129 

of channels, which is 3, and W is the length of the input seismic wave. For instance, if the input 130 

is an initial arrival seismic wave of 1 second (with a sampling frequency of 100 Hz), W is 100. 131 

The input acceleration is initially processed through a sequence folding layer to enable 132 

independent convolution operation. The convolution module then performs feature extraction on 133 

the input acceleration. The convolution module consists of a convolution layer, a ReLU 134 

activation layer, and a maximum pooling layer, as shown in the first figure at the bottom of 135 

Figure 1. The sequence unfolding layer restores the features extracted by the convolution module 136 

to a sequence structure so that the recurrent neural network module can process the extracted 137 

features. The RNN block, shown in the second diagram at the bottom of Figure 1, contains an 138 

LSTM and GRU layers. The processed features are then entered into the self-attention module, 139 

the SAM block, as shown in the third diagram at the bottom of Figure 1. The SAM block 140 

consists of a self-attention layer, a layer norm layer, and a dropout layer. The module adaptively 141 

assigns weights to the features and prevents overfitting. Finally, the FC block performs 142 

regression calculations on the features to output the results. The FC block has three fully 143 

connected layers and outputs 6 IMs: PGA, PGV, PGD, and SA, at 0.3, 1, and 3 s periods. The 144 

base-10 logarithm has been applied to all the IMs (i.e., log10IMs). The detailed architecture and 145 

hyperparameter settings of CRAQuake are listed in Table S2 of the Supplementary Information. 146 

 147 

Figure 1. Architecture of the CRAQuake. 148 

It is worth noting that selecting the architecture and hyperparameters is a tedious process. 149 

The architecture and hyperparameters were tried and determined during the selection process 150 

through iterations. As an example of choosing the dropout rate, the CRAQuake architecture and 151 

hyperparameters were set regularly, and the validation loss was tested using 13 different dropout 152 

rates (Supplementary Information Figure S1). The results showed that the validation loss was 153 

lowest when the dropout rate was 0.2. Therefore, the dropout rate of CRAQuake was set to 0.2, 154 

and the remaining architectures and hyperparameters were also developed similarly. Thus, the 155 

architecture and hyperparameters of CRAQuake are only the best ones tested. 156 

2.2 Ground-motion data (Input features) 157 

To create a reliable model for predicting ground motion intensity in the north-south 158 

seismic belt of China, we collected data from 781 seismic events in the area (Figure 2a). The 159 

data was recorded by 822 stations (Figure 2b), resulting in 4281 sets of acceleration records, all 160 

with magnitudes (surface wave magnitude, Ms) equal to or greater than 3. You can find more 161 
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detailed information in the Supplementary Information, Table S3. We processed the data by 162 

performing routine tasks such as baseline correction, unification of the sampling frequency to 163 

100 Hz, and automatic selection of P-wave arrivals followed by manual calibration. The dataset 164 

was then divided according to the earthquake occurrence time into training, validation, and 165 

testing datasets to ensure that the records from the same earthquake were included in the same 166 

dataset. The details of the dataset division are available in the Supplementary Information, Table 167 

S4. The training dataset is used to train CRAQuake. The validating dataset is used to optimize 168 

the architecture and hyperparameters of CRAQuake. The testing dataset is used to test 169 

CRAQuake in predicting IMs. Supplementary Information Figure S2 illustrates the magnitude 170 

distribution of the acceleration records in different datasets. 171 

 172 

Figure 2. Distribution of earthquake events used (a) and stations (b). 173 

2.3 Intensity measurements (Target) 174 

CRAQuake produces a set of IMs for each group acceleration record, including PGA, 175 

PGV, PGD, and SA at 0.3, 1, and 3s periods. PGA and PGV are the targets due to their high 176 

correlation with earthquake intensity and damage. For instance, current EEWs rely mainly on 177 

PGA and PGV predictions to identify earthquake damage (Wald et al., 1999; Cremen & Galasso, 178 

2020). After PGA or PGV predictions have been made, intensity or comparison thresholds can 179 

be calculated from these parameters to predict the potential damage caused by earthquakes 180 

accurately (Festa et al., 2017; Hsu et al., 2018; Satriano et al., 2011). Furthermore, in China, the 181 

China Earthquake Administration calculates instrumental intensity using PGA and PGV(China 182 

Earthquake Administration, 2020). PGD was chosen as the target due to its ability to represent 183 

low-frequency ground motion, significantly impacting long-period structures. Accurately 184 

predicting PGD is crucial for analyzing seismic hazards in medium and long-period structures 185 

with varying site conditions and designing earthquake-resistant engineering structures (Zhang et 186 

al., 2021). Similarly, SA was selected as it can effectively characterize ground-motion features as 187 

a single-degree-of-freedom (SDoF) system, considering factors such as acceleration, structural 188 
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self-resonance frequency, and damping ratio (Bazzurro et al., 1998). Real-time prediction of SA 189 

is of utmost importance for earthquake engineering applications, and we have chosen to predict 190 

SA values for three periods: 0.3 s, 1 s, and 3 s. Figure 3 and Figure 4 illustrate the distribution of 191 

IMs in terms of magnitude and epicenter distance. 192 

 193 

Figure 3. Distribution of ground motion parameters with magnitude. 194 

 195 
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Figure 4. Distribution of ground motion parameters with epicentral distance. 196 

2.4 Model development 197 

The CRAQuake model was trained using data from the north-south seismic belt of China. 198 

The model utilized the root mean square error (RMSE) as the loss function, comparing target and 199 

predicted values. The training was performed using the adaptive moment estimation (Adam) 200 

optimizer (Kingma & Ba, 2017) with a learning rate of 10
-3

 and a batch size of 80. The training 201 

process was stopped after 200 epochs or if the validation loss did not decrease for 20 consecutive 202 

rounds. As the number of training rounds increased, the training and validation loss curves 203 

converged, and the final model was selected based on the lowest validation error. Please refer to 204 

Figure S3 for more details. 205 

3 Model performance 206 

3.1 Evaluation indicators 207 

To assess the performance of CRAQuake, we utilized the Pearson correlation coefficient 208 

(PCCs) and standard deviation of residuals (STD) to evaluate CRAQuake prediction results, as 209 

illustrated in the following equation. In Equation (1), PCCs refer to the Pearson correlation 210 

coefficient, where YTra represents the target value, YPre represents the predicted value, and n is the 211 

number of samples. The value of PCCs ranges from -1 to 1, with a closer value to 1 indicating a 212 

better degree of linearity. A PCCs in the range of 0.3 to 0.5 shows a low correlation, while a 213 

PCCs in the range of 0.5 to 0.7 suggests a medium correlation. PCCs in the range of 0.7 to 0.9 214 

indicate a high correlation. Equation (2) defines Res as the residuals of the predicted IMs for 215 

each acceleration record group. In contrast, Equation (3) defines STD as the standard deviation 216 

of the residuals, where u is the mean of the predicted IMs residuals and n is the number of 217 

samples. STD reflects the degree of dispersion of the predicted residuals, with a minor STD 218 

indicating higher prediction accuracy. 219 
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3.2 Input time window length 223 

When deciding on the appropriate input time window (TW) length, it is essential to 224 

balance timely warnings with accuracy in practical applications. Typically, warning information 225 

is calculated and released once the station monitors a P wave of 3 seconds (Kanamori, 2005; Wu 226 

& Zhao, 2006; Hsiao et al., 2009; Peng et al., 2017; Y. Wang et al., 2021). However, increasing 227 
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the TW length can provide more ground motion information. To analyze the effectiveness of 228 

CRAQuake in predicting IMs, we started with a TW length of 3 seconds and carefully examined 229 

the results. We then gradually increased the TW length and tested the model's ability to predict 230 

IMs continuously. 231 

3.3 Predictive performance of the model at 3s Tw on the test dataset 232 

The performance of CRAQuake in predicting IMs at 3 s TW in the test dataset was 233 

evaluated. Figure 5 displays the linear distribution of the predicted values of IMs versus the 234 

target values of IMs. Each solid circle in the figure represents an expected value, while the black 235 

solid line is the 1:1 line, and the two black dashed lines are the ± STD. Different colors represent 236 

other magnitudes, with darker colors indicating smaller magnitudes and lighter colors 237 

representing larger magnitudes. The predicted values of IMs are uniformly distributed on both 238 

sides of the 1:1 line without any significant underestimation or overestimation. However, the 239 

predicted values of PGD are slightly underestimated when the magnitude is considerable (Figure 240 

5c). All six IMs have high PCCs, with values greater than 0.7, indicating a strong correlation. 241 

PGD has the highest PCCs of 0.83, while the lowest PCCs of 0.78 is for SA (0.3). 242 

 243 

Figure 5. The linear relationship between IMs Target values and predicted values when TW is 244 

3s. 245 

Figure 6 displays the distribution of residuals of IMs based on epicenter distance 246 

predicted by CRAQuake on the test dataset when the TW is 3s. Each gray dot in the figure 247 

represents a residual, and the two black solid lines indicate ± STD. From the distribution of the 248 

residuals, it can be observed that the IMs residuals can be uniformly distributed as the epicenter 249 

distance increases, and most of them are distributed within ± STD. The best distribution is for 250 
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PGA, as it has no more discrete residual values, which can also be seen from the histogram 251 

results. The histograms of PGD, SA (1.0), and SA (3.0) show more discrete values, although 252 

their residuals are also the closest to zero. All IMs have relatively low STDs, consistent with the 253 

expected results. 254 

 255 

Figure 6. Predicting the distribution of IMs residuals with epicenter distance. 256 

3.4 Predictive performance of the model at longer time windows on the test dataset 257 

We assessed the ability of CRAQuake to predict IMs using seismic waves with longer 258 

TW (3 s to 17 s). The Res values for 5s, 10s, 15s, and 17s IMs are presented here. It is evident 259 

that they range between -1 and 1, with Res gradually decreasing as TW increases (Figure 7). 260 

Additionally, the heat maps in Figure 8 depict the results of PCCs and STD, which show an 261 

increase in PCCs (darker and darker colors) and a decrease in STD (lighter and lighter colors) as 262 

TW increases. Linear correlations between predicted and target values are also plotted 263 

(Supplementary Information, Figure S4, and S5), and as TW increases, predicted IMs are 264 

uniformly distributed on both sides of the 1:1 line. This indicates that the ability of CRAQuake 265 

to predict IMs improves with increasing TW. 266 
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 267 

Figure 7. In the performance of CRAQuake on estimating residuals with time window growth, 268 

the box plot indicates the median, the 25th, and 75th percentiles, with the whisker extending to 269 

the minimum and maximum values that are not outliers. 270 

 271 
Figure 8. Results of CRAQuake in predicting PCCs and STD of IMs on the test dataset when 272 

TW is increased. 273 

3.5 Results of CRAQuake vs. GMPE for Earthquake Events 274 

To evaluate the effectiveness of the CRAQuake model, three earthquake events (Ms ≥ 275 

6.5) that occurred in the North-South Seismic Belt of China were selected for testing. The 276 

predicted outcomes were compared with those of the GMPE model, and the predicted PGA and 277 
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SA results were compared with those of Zhang et al. (Zhang et al., 2022). PGA and SA GMPE 278 

models for southwest China, while the predicted PGV and PGD outcomes were compared with 279 

those of Zhang et al. (Zhang et al., 2021). PGV and PGD GMPE models for southwest China. 280 

These GMPE models were established based on seismic records in southwest China and have 281 

better accuracy and regional adaptability. Therefore, the three selected seismic events were all 282 

located in the southwest region of China (which belongs to the North-South Seismic Belt) to 283 

match the study area of Zhang et al. These three earthquakes caused significant seismic damage, 284 

including casualties, damage to houses and foundations, and secondary geologic hazards. The 285 

three earthquakes selected for the study are the 2008 Wenchuan Ms 8.0 earthquake, the 2013 286 

Lushan Ms 7.0 earthquake, and the 2014 Ludian Ms 6.5 earthquake. The locations of the three 287 

earthquakes and the stations used are displayed in Figure 9, and additional information is 288 

available in Supplementary Information Table S5. 289 

 290 
Figure 9. Distribution of epicenters and stations for typical earthquake events. 291 

In the first testing phase, the TW it takes for a CRAQuake to reach GMPE predicted IMs 292 

STD was measured. As depicted in Figure 10, the solid black line represents the STD of the 293 

GMPE-predicted IMs, the black hollow circle represents the STD of the CRAQuake-predicted 294 

IMs, and the black pentagram indicates that the STD of the CRAQuake-predicted IMs is lower 295 

than that of the TW of the GMPE. The results show that the STD of the CRAQuake predicted 296 

IMs decreases with an increase in TW, and the STDs of the predicted IMs lower than that of 297 

GMPE are mainly concentrated within the 7s to 11s range. The shortest is 7s for PGA, the 298 

longest is 11s for SA (0.3) and SA (1.0), and the average TW is 9.5s. In the next phase, seismic 299 

waves with a TW of 10s were input into CRAQuake, and the residuals of the predicted IMs were 300 

found to be very close to those of the GMPE results and even better than those of the GMPE 301 

(Figure 11). According to the numerical results presented in Table 2, PGA, PGD, SA (0.3), and 302 

SA (3.0) are already better than GMPE. The results of PGV and SA (1.0) are also extremely 303 



manuscript submitted to Earth and Space Science 

 

close to GMPE, which confirms the robustness of CRAQuake performance in the earthquake 304 

case test. 305 

 306 

Figure 10. Evolution of STD in earthquake event testing for CRAQuake and GMPE, with the 307 

red pentagram representing the first time CRAQuake STD was lower than GMPE. 308 

 309 
Figure 11. CRAQuake and GMPE results for predicting residuals during earthquake events; the 310 

box plot indicates the median, the 25th, and 75th percentiles with the whisker extending to the 311 

minimum and maximum values that are not outliers; dots indicate outliers. 312 

Table 2. Comparison of CRAQuake and GMPE results for three earthquake events. 313 

IMs 
CRAQuake GMPE 

Median Mean STD Median Mean STD 

PGA -0.0393 -0.0654 0.1715 -0.0507 -0.0332 0.2350 

PGV -0.0231 -0.0511 0.1868 -0.1061 -0.0894 0.1853 

PGD 0.3484 0.1649 0.6462 0.0805 0.0546 0.6743 

SA (0.3) -0.0092 -0.0704 0.2477 -0.0535 -0.0511 0.2488 

SA (1.0) 0.0052 -0.0360 0.2936 0.1020 -0.0022 0.2926 

SA (3.0) -0.0461 -0.0745 0.2823 0.0611 0.0371 0.2837 
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4 Discussion 314 

4.1 Effect of sample size on model performance 315 

To assess how sample size impacts CRAQuake performance. The method of Zhu et al. 316 

(Zhu et al., 2023) was referenced for this analysis. Five combinations of sample sizes were set up 317 

(Supplementary Information Table S6), and CRAQuake was trained on datasets smaller than the 318 

complete training and testing sets. Taking PGA as an example, with the model architecture and 319 

hyperparameters remaining unchanged, the standard deviation (STD) of predicted PGA 320 

gradually decreased as the number of learning samples increased (Figure 12). The supporting 321 

materials showed the same trend for other IMs, as shown in Supplementary Information Figure 322 

S6. Moreover, the downward trend of STD in Figure 12 and Figure S6 appears almost linear. 323 

This suggests that the entire training and validation datasets failed to saturate performance. 324 

Therefore, using more data would likely result in a better model. Future studies should collect 325 

more high-quality earthquake data for model training to enhance the performance of the model 326 

further. 327 

 328 
Figure 12. Impact of training and validation sample size. 329 

4.2 Advantages over the GMPE approach and other data-driven models for prediction 330 

IMs 331 

CRAQuake is a method that has an advantage over the GMPE approach, as it does not 332 

require complex pre-configuration of the earthquake source, path, and site terms. Instead, it only 333 

needs seismic waves recorded by a single station in the first few seconds to predict six IMs. This 334 

makes CRAQuake ideal for meeting the EEWs timeliness requirement, allowing users in the 335 

target area to respond to emergencies promptly. On the other hand, the GMPE method is highly 336 

accurate in predicting earthquakes because it uses data from multiple stations near the epicenter 337 

and considers the impact of site conditions to produce precise results. However, a challenge with 338 

this method is the unavailability of some required site parameters, which also vary across 339 

different regions and countries. For example, in Japan, the site parameter Vs30 (average shear 340 

wave velocity at 30 m depth) is more commonly used as their seismic network stations are 341 

usually drilled for wave velocity. In contrast, only a few stations in China have been surveyed for 342 

wave velocity, and the wave velocity information is only available for a depth of 20 m below the 343 

surface. As a result, CRAQuake expression without site parameters is more straightforward and 344 

can still produce reliable results similar to those of the GMPE model. 345 
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CRAQuake stands out from other IMs data-driven models(Hsu et al., 2013; Fayaz et al., 346 

2021; Fayaz & Galasso, 2022b; Hu et al., 2022; A. Wang et al., 2023; Fayaz et al., 2023; Dai et 347 

al., 2024) in several ways. Firstly, CRAQuake does not require inputs of earthquake sources, 348 

paths, and site parameters, which allows for highly time-sensitive predictions. Secondly, its end-349 

to-end nature eliminates the need to extract characteristic parameters from the initial arrival of 350 

the seismic wave, reducing the influence of human experience and subjectivity and resulting in 351 

more objective prediction results with less error. Additionally, the multitasking capabilities of 352 

CRAQuake enable it to predict six IMs simultaneously, making it useful for projects requiring 353 

different IMs, such as using PGA for high-speed train braking and SA for the seismic hazard 354 

analysis of building structures. 355 

4.3 Deficiencies and Prospects 356 

Although CRAQuake shows promising results in predicting IMs, some areas still require 357 

further investigation to enhance algorithm accuracy. For example, there is a degree of "large-358 

value underestimation" in the PGD that CRAQuake predicts (Figure 5c). While increasing the 359 

length of the TW may improve this issue (Supplementary Information Figure S4 i - l), it may 360 

cause a delay in the warnings. To address this, subsequent research should focus on increasing 361 

the "large-value" sample size for training. Moreover, the current architecture and 362 

hyperparameters of the CRAQuake model are empirical and lack a basis in principles or rules. 363 

Therefore, further optimization of the model design is necessary to improve the prediction 364 

accuracy of the IMs. The features automatically extracted by CRAQuake from initial arrival 365 

seismic waves are unknown, and future research is needed to understand whether these features 366 

can be visualized, as in the field of image recognition (Zeiler et al., 2011), to interpret the 367 

physical meanings they represent. 368 

5 Conclusions 369 

In this study, we propose a multi-task integrated data-driven model called CRAQuake to 370 

improve the timeliness and accuracy of predicting IMs in the north-south seismic Belt of China. 371 

The model predicts IMs, including PGA, PGV, PGD, and SA at 0.3, 1, and 3 s periods. 372 

CRAQuake has a significant advantage in that it avoids subjectivity and bias caused by the 373 

artificial extraction of feature parameters and can fully utilize the information related to IMs in 374 

the initial arrival of seismic waves for prediction. Based on the test results, we can conclude the 375 

following: 376 

1 CRAQuake can predict IMs rapidly and accurately without any pre-established 377 

parameters such as earthquake source, path, and site, and the effectiveness of indicating IMs 378 

improves with the increase of TW. This critical feature is indispensable for earthquake early 379 

warning and emergency response in the north-south seismic belt of China, empowering decision-380 

makers to assess the potential impact of earthquakes and apply effective measures to minimize 381 

damage. 382 

2 CRAQuake can predict six different IMs simultaneously, which multi-task allows the 383 

model to take full advantage of input data and improve prediction efficiency. 384 

3 This study introduces novel approaches and concepts for predicting earthquake IMs. As 385 

data-driven methods continue to improve and advance, we anticipate that similar innovative 386 

techniques will be implemented in earthquake engineering and mitigation. 387 
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