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Abstract 19 

To address the increasing demand for diurnal information on trace gases and aerosols, a series of 20 

geostationary (GEO) satellite programs called GEO-constellation have been initiated, with the 21 

launch of the Geostationary Environment Monitoring Spectrometer (GEMS) onboard 22 

Geostationary Korea Multi-Purpose Satellite 2B (GK2B). To assess the sensor performance of 23 

GEMS in orbit, the current work suggests employing an inter-calibration methodology involving 24 

the Advanced Meteorological Imager (AMI) aboard its twin satellite, GK2A. Twin satellites 25 

have a significant advantage in obtaining collocation datasets across diverse spatiotemporal 26 

conditions, enabling rigorous collocation criteria effectively reducing mismatch uncertainty. The 27 

collocation results present robust correlation coefficients over 0.98, revealing the current 28 

calibration characteristics of the sensors. This research emphasizes the advantages of the GEO-29 

GEO inter-calibration, particularly the capability of analyzing spatial and temporal dependencies. 30 

These findings confirm the mutual benefit of utilizing the sensors in similar configurations, 31 

highlighting their importance for future satellite monitoring endeavors. 32 

Plain Language Summary 33 

Understanding the daily changes in air pollutants is crucial for grasping how these substances 34 

move and disperse in the air, aiding efforts to reduce pollution. In this regard, satellites have a 35 

distinct advantage in observation owing to their wide spatial coverage at regular intervals. GEMS 36 

is one of the geostationary sensors providing such information for the Asia-Pacific region nearly 37 

7-8 times a day. To evaluate the reliability of GEMS, this study proposes an inter-calibration 38 

method by comparing GEMS observations with those of AMI aboard GK2A. These satellites 39 

have a unique advantage as they fly close to each other, observing the Earth with matched optical 40 

viewing paths. Scenes simultaneously observed by AMI and GEMS exhibit strong agreement, 41 

thus revealing the inherent observation characteristics of each sensor. These findings confirm the 42 

mutual benefit of utilizing the sensors in similar configurations for satellite monitoring during 43 

the operation. 44 

1 Introduction 45 

A global network of geostationary (GEO) satellites for air quality monitoring is to be 46 

established soon, including the Geostationary Environment Monitoring Spectrometer (GEMS), 47 

Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Sentinel-4 over East Asia, 48 

Northern America, and Europe, respectively. These GEO satellite sensors measure specific areas 49 

multiple times a day, which gives a significant advantage in providing diurnal information on 50 

trace gases and aerosol properties (J. Kim et al., 2020; Zoogman et al., 2017). The observations 51 

obtained from the GEO constellation will be crucial for monitoring the long-range transport of 52 

air pollutants and changes in pollutant levels throughout the day. However, the effective 53 

utilization of the measurements relies on the capability to ensure consistency in measurements 54 

across sensors having varying designs, specifications, and calibration processes. This 55 

underscores the need for implementing measures to monitor measurement quality throughout 56 

their operational period.  57 

In this regard, inter-calibration has been an effective measure for post launch calibration 58 

(Chander et al., 2013). Especially for GEO sensors, ray-matching with low Earth orbit (LEO) 59 

satellite sensors has been widely applied, considering that LEO sensors cover different field of 60 

regards (FOR) of various GEO imagers (Doelling et al., 2016; Jiang et al., 2009; Minnis et al., 61 
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2002a, 2002b). Ray-matching between GEO-GEO sensors, however, has not been fully 62 

investigated as the FORs of GEO sensors cover distinct regions, like in the case of GEMS and 63 

TEMPO. The characteristic has led to the development of inter-calibration for the GEO sensors 64 

through intermediary means (Chander et al., 2013), such as radiative transfer models (Alsweiss 65 

et al., 2015), transfer measurements (L. Wang et al., 2009), or numerical weather prediction 66 

models (S. J. Lee & Ahn, 2021; Saunders et al., 2013).  67 

However, there is a unique circumstance where direct GEO-GEO comparison becomes 68 

feasible especially when the sub-nadir satellite longitudes of the spacecrafts are exceptionally 69 

close. The onboard sensors in this condition observe Earth scenes with coincident optical 70 

viewing paths, which greatly reduces collocation mismatch. Luckily, GEMS onboard the 71 

Geostationary Korea Multi-Purpose Satellite-2B (GK2B) has a corresponding pair satisfying the 72 

condition, the Advance Meteorological Imager (AMI) onboard its twin satellite, GK2A. It is 73 

facilitated because the two satellites are positioned within a 0.05° control box centered around 74 

128.2°E longitude.  75 

Collocation between the sensors is straightforward and has several advantages such as: 76 

(1) the huge number of collocated samples; (2) full coverage of solar and viewing angles; and (3) 77 

wide spatiotemporal coverage. With the advantages, here we focus on optimizing the collocation 78 

conditions and further clarify the current calibration issues of the sensors through spatial and 79 

temporal analyses. If possible, GEMS and AMI could serve as useful sources for understanding 80 

the observation characteristics of the sensors during their operational periods, in terms of relative 81 

standards. Additionally, the GEO-GEO comparison can serve as a high-quality collocation 82 

reference for GEO-LEO collocation, given the strictest collocation criteria. 83 

2 Data and Methods 84 

2.1 Sensor specification 85 

2.1.1 GEMS  86 

GEMS scans the Asia-Pacific region (5°S-45°N, 75-145°E) in the east-west direction by 87 

moving a scan mirror, while maintaining a fixed north-south field of view of about 7.78° (Choi et 88 

al., 2019; J. Kim et al., 2020). GEMS is designed to measure spectral radiances ranging from 300 89 

to 500 nm (Level 1B) with a spectral resolution of better than 0.6 nm. To monitor and calibrate 90 

the Level 1B products, two transmissive solar diffusers and light emitting diode (LED) are 91 

deployed as the on-board calibration system. Alongside this system, monitoring and calibration 92 

methods have been devised and performed with various statistical approaches since the 93 

completion of the in-orbit test in October 2020 (Kang et al., 2020, 2022; Y. Lee et al., 2020). 94 

The assessment has revealed a significant calibration issue in GEMS solar observations, 95 

specifically associated with spatial dependence along the north-south direction. The dependence 96 

is attributed to the unresolved azimuth angle dependence in the bidirectional transmittance 97 

distribution function (BTDF) of the solar diffusers (Kang et al., 2023). Theoretically, the 98 

dependence should specifically impact solar irradiance but not Earth radiance. This distinction 99 

originates from the shared optical paths within the instrument for both solar and Earth 100 

observation modes, except for the solar diffusers. To confirm the cause of the dependence, it is 101 

necessary to ensure that the Earth's radiance is not affected by this. However, radiances 102 

observing various Earth scenes make it challenging to discern the dependence originating from 103 
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the BTDF. In this situation, inter-calibration with AMI emerges as a useful means to evaluate the 104 

issue, given that the collocation datasets can perfectly cancel out the scene variabilities. To 105 

validate this, we employ the upgraded version (provisional) of GEMS solar irradiance and 106 

evaluate the BTDF correction (refer to Section 3.1) along with addressing other calibration 107 

concerns. 108 

2.1.2 AMI  109 

AMI has six visible/near infrared and ten infrared channels for continuous atmospheric 110 

monitoring. The first visible channel at a central wavelength of 470 nm (Ch01) is employed for 111 

the comparison since the spectral response function (SRF) of the channel is fully encompassed 112 

by the GEMS observations. To obtain surface information, an infrared channel centered at 10.5 113 

𝜇m (window channel, Ch13) is collocated together with Ch01. This study employs full-disk 114 

observations taken at ten-minute intervals for Ch0l and Ch13, with spatial resolutions of 1 and 2 115 

km, respectively. For visible and near-infrared channels, the National Meteorological Satellite 116 

Center (NMSC) has applied multiple calibration techniques such as solar calibration with a solar 117 

diffuser, vicarious calibration using the radiative transfer model (RTM) over the Australian 118 

deserts, and ray-matching with the Moderate Resolution Imaging Spectroradiometer (MODIS) 119 

onboard Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard 120 

NOAA-20 and Suomi-National Polar-orbiting Partnership (Suomi-NPP). The calibration results 121 

(D. Kim et al., 2021) as well as the related information is well organized in the following website 122 

(URL: http://210.125.45.71/enhome/html/gsics/vicariousIntroGK2A.do).  123 

2.2 Ray-matching 124 

Ray-matching had been developed to relate measured information of GEO and LEO 125 

sensors in early days for the Clouds and the Earth’s Radiant Energy System (CERES) project 126 

(Minnis and Harrison, 1984; Minnis et al., 1991). Afterwards, the concept of relating the GEO-127 

LEO measurements has been employed to calibrate GEO imagers by setting a well-calibrated 128 

LEO sensor as a reference (Minnis et al., 2002a, 2008; Doelling et al., 2016; Xiong et al., 2020). 129 

Targeting specific scenes such as deep convective clouds (DCC) has been further developed as it 130 

can reduce the bidirectional reflectance distribution function (BRDF) effects of the clouds (Hu et 131 

al., 2004; Bhatt et al., 2017). Setting a particular target contributes to effectively detecting 132 

sensor-specific signals, while it reduces the number of datasets as a trade-off. To mitigate this, a 133 

statistical approach has been developed especially for the DCC calibration, and it has proven 134 

effective in detecting sensor degradation (Doelling et al., 2013).  135 

In this study, we take advantage of ray-matching between AMI and GEMS, observing 136 

spatiotemporally matched scenes, all with coinciding optical viewing paths without requiring 137 

additional treatment. When empirically checking the position vectors of GK2A and GK2B over 138 

the course of a year, the angles between the position vectors in the Earth-cantered, Earth-fixed 139 

(ECEF) coordinates vary up to 0.06°. This variation introduces viewing angle differences 140 

approximately on the order of 0.01-0.1°, which is practically small compared to the current ray-141 

matching condition between GEO-LEO, mostly 1% for the viewing zenith angle (VZA) 142 

differences (D. Kim et al., 2021). The advantage guarantees huge collocation datasets, 143 

facilitating further data filtering and a more rigorous spatiotemporal match, as detailed in the 144 

following sections. 145 

http://210.125.45.71/enhome/html/gsics/vicariousIntroGK2A.do
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2.2.1 Spatial, temporal, and spectral matching  146 

Spatial averaging is applied to both sensor observations with a grid size of 0.1°. The 147 

spatial averaging can reduce random noise originated from natural variability and image 148 

navigation and registration (INR) uncertainty. In addition to the averaging, standard deviation is 149 

also derived for each grid to characterize scene inhomogeneity (Doelling et al., 2013). This 150 

inhomogeneity is closely related to collocation error and is further employed as weights in the 151 

weighted linear regression (refer to Section 2.3).  152 

Temporal matching is performed by calculating the observation time difference for each 153 

grid. GEMS provides approximately 700 scan images for 30-minutes observation. During the 154 

GEMS observation, several AMI full-disk images are taken and pieced together with the 155 

temporal match threshold (∆𝑡 < 5 minutes). The time matching inherently aligns solar zenith 156 

angle (SZA) and solar azimuth angle (SAA) between the sensors without additional treatment.  157 

Finally, the hyperspectral observations of GEMS are convolved with the AMI SRF for 158 

spectral matching. The convolved radiance and irradiance of GEMS are normalized by the sum 159 

of the SRF. The bidirectional reflectance is calculated after the convolution process as follows: 160 

(1) 𝑅 =
𝜋𝐼

𝜇0𝐹
 161 

where F, I, R and 𝜇0 denotes the measured solar irradiance, Earth radiance, reflectance, and the 162 

cosine of SZA for the optical path length correction.  163 

2.2.2 Filtering test  164 

After the collocation process, the grids consisting of land and sun-glint pixels are 165 

screened out. Land scenes have higher natural variability increasing variances in radiance biases 166 

between AMI and GEMS. Sun-glint scenes corresponding to specular reflection seem to be more 167 

vulnerable to temporal mismatches, which could add a systematic bias depending on the 168 

observation time difference. The SZA and VZA are also limited to 60°, because the grids with 169 

larger zenith angles may have high collocation error caused by longer optical path lengths 170 

(Sterckx et al., 2013). Similarly, the longitudes are also constrained to values over 100°E, 171 

because the number of GEMS pixels within a grid box is very small (<4-5 pixels) in the far-172 

western region in the GEMS FOR. The number of collocation datasets even after these filtering 173 

conditions is around 20,000-40,000 every hour, while the number varies with times and seasons. 174 

2.3 Weighted linear regression  175 

To obtain stable signals from the scenes ranging from dark ocean to very bright clouds, 176 

we employ weighted linear regression. The standard deviation mentioned in Section 2.2.1 serves 177 

as a weight for each collocated grid, increasing the contribution from highly homogeneous 178 

scenes in the statistics. The method has been widely applied to collect spatially homogeneous 179 

cloud tops (Doelling et al., 2013). However, the standard deviation tends to increase with 180 

brighter scenes, thereby reducing the contribution of the cloud scenes. To ensure equal 181 

contribution regardless of signal levels, the standard deviation of each grid is divided by the 182 

mean (Hewison, 2013), resulting in the relative uncertainty (𝑣𝑖 and 𝑤𝑖) as follows:  183 

(2) 𝑣𝑖 = 𝑢(𝑋𝑖)−1 = (
𝜎(𝑋𝑖)

𝑚(𝑋𝑖)
)

−1

 and  𝑤𝑖 = 𝑢(𝑌𝑖)−1 = (
𝜎(𝑌𝑖)

𝑚(𝑌𝑖)
)

−1

 184 
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where 𝜎 and 𝑚 indicates the standard deviation and the mean of reflectances for each 185 

grid, respectively. The subscript 𝑖 indicates the grid index in the collocation datasets and 𝑋𝑖 and 186 

𝑌𝑖 are the AMI and GEMS observations within the 𝑖-th grid. The weighted linear regression 187 

shows more stable results when accounting for the uncertainties associated with 𝑋𝑖 and 𝑌𝑖 188 

together. Empirically, the weighted regression presents a stable trend compared to non-weighted 189 

regression especially when the interval becomes shorter such as on a daily or hourly basis. The 190 

applied regression method with the weights is the generalized distance regression (GDR) 191 

introduced by the following document (ISO/TS 28037, 2010).  192 

3 Results and Discussion 193 

AMI and GEMS observations are collected over two years from November 2020 to May 194 

2023 every hour during daytime. The datasets presented in Section 3.1 particularly undergo 195 

screening based on the spatial inhomogeneity condition (𝑢(𝑋𝑖) < 5% and 𝑢(𝑌𝑖) < 5%). Figure 1 196 

presents the collocation datasets measured in January and July 2021, showing the regression 197 

slopes larger than unity. The positive bias of GEMS will be discussed in detail in Section 3.2.1. 198 

The correlation presents a good agreement with the coefficients over 0.98 regardless of 199 

observation times and seasons. The GEMS radiances over 592.35 W cm
-3

 sr
-1

 are affected by 200 

saturation, resulting in the limiting feature for higher signals. Even after applying the scene 201 

homogeneity condition, the number of collocation datasets exceeds 1,500,000 every month. With 202 

the datasets, the following sections will present spatial and temporal analysis results between 203 

AMI and GEMS.  204 

 205 
Figure 1. Scatter density plots of AMI and GEMS radiances measured in (a) January and (b) July 2021 (01-06 206 

UTC) with statistics based on the weighted linear regression. The color bar indicates the number of collocation 207 

datasets after binning with the bin size of 1 W cm-3 sr-1. 208 
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3.1 Spatial analysis 209 

3.1.1 North-south spatial dependence 210 

As mentioned earlier, a primary issue regarding GEMS Level 1B products was the north-211 

south spatial dependence in solar irradiance, which is expected to show up in Earth reflectance. 212 

To verify this, mean biases of reflectance between AMI and GEMS are calculated with the 213 

collocation datasets measured in January and July 2021. Invalid grids including bad pixels 214 

around 10-15 °N latitudes are filtered out during the collocation process (Y. Lee et al., 2023). 215 

The north-south spatial dependence has seasonal variation, and it is clearly shown in Figure 2 216 

(the first column) with the reversed pattern for different seasons. The BTDF correction updated 217 

by Kang et al. (2023) has greatly improved GEMS solar irradiance and, consequently, Earth 218 

reflectance. The second column in Figure 2 demonstrates the improvement with consistent trends 219 

across all latitudes. The update has effectively removed the north-south dependence, reducing 220 

biases in solar irradiance from approximately 20% to within 4%. Regarding reflectance, the 221 

biases converge to 15% across all latitudes. 222 

 223 
Figure 2. The mean biases in percentage between AMI and GEMS reflectances before (the first column) and after 224 

(the second column) the GEMS BTDF update. The third column presents mean reflectances of GEMS for each grid. 225 

The collocation datasets are the observations in (a) January and (b) July 2021 (01-06 UTC). 226 
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3.1.2 Signal dependence 227 

Another finding in Figure 2 is the appearance of signal dependence after removing the 228 

north-south spatial dependence. Particularly for lower reflectances (below 0.4), the positive 229 

biases rapidly increase, as the signal levels increase. The dependence associated with lower 230 

reflectances is further investigated with the scattering angle as follows:  231 

(3) 𝑐𝑜𝑠Θ =  −𝑐𝑜𝑠𝜃0𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃0𝑠𝑖𝑛𝜃cos (𝜙0 − 𝜙) 232 

where Θ, 𝜃0, 𝜃, 𝜙0 and 𝜙 represent the scattering angle, SZA, VZA, SAA, and viewing azimuth 233 

angle (VAA), respectively. In the visible spectral domain, Rayleigh scattering predominantly 234 

accounts for about 80% of the top of the atmosphere (TOA) reflectances, particularly over dark 235 

ocean (Sterckx et al., 2013; M. Wang, 2016). The scattering angle computed in Equation (3) 236 

determines the intensity of Rayleigh scattering, as the input parameter for the Rayleigh scattering 237 

phase function. The intensity generally increases when the direction approaches forward or 238 

backward scattering, corresponding to the angles of 0° or 180°, respectively.  239 

Figure 3 depicts the scattering angle dependence for the collocation datasets having AMI 240 

reflectance lower than 0.3 and the brightness temperatures (Ch13) greater than 280 K. The 241 

selected datasets are grouped by scattering angles with the angle interval of 5°. In Figure 3a, the 242 

dependence on scattering angle is evidently clear, with the reflectance distributions decreasing 243 

for higher scattering angles. This is because the light observed at the TOA has been more 244 

scattered within the atmosphere under backscattering conditions. It should be noted that the 245 

effects of reflected light from ocean surfaces may exist, albeit with a smaller impact. The 246 

distributions having lower scattering angles exhibit higher mean biases as shown in Figure 3b, 247 

presenting consistent results with the signal dependence. This indicates that the signal and 248 

scattering angle dependencies might be intertwined, particularly for lower radiances. The 249 

potential cause of these dependencies is still unclear, but it needs to be clarified in further 250 

research since the scattering angle dependence could be mis-interpreted as temporal dependence. 251 

In other words, variations in scattering angles, influenced by the solar position, could lead to 252 

seasonal or diurnal fluctuations.  253 

 254 

 255 
Figure 3. The box plots for dark ocean scenes of (a) GEMS reflectances and (b) the biases with AMI grouped by 256 

scattering angles with a class width of 5°. 257 
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3.2 Temporal analysis 258 

The previous section analyzes dependencies based on geolocation variables, as 259 

collocation datasets cover a wide range of spatiotemporal conditions. This section focuses on 260 

temporal aspects of the collocation datasets collected at various observation intervals. For 261 

temporal analysis, the weighted regression is used due to the stable trends exhibited by the 262 

indicator. 263 

3.2.1 Radiometric calibration  264 

Figure 4 presents the regression slopes of AMI and GEMS, compared with the slopes 265 

between AMI and VIIRS (GEO-LEO) onboard Suomi-NPP and NOAA20 provided by NMSC. 266 

The results show that the regression slopes between AMI and GEMS are more stable compared 267 

to the GEO-LEO ray-matching results. As VIIRS is a LEO sensor, the collocation thresholds 268 

need to be more relaxed, which leads to a wider range of regression slopes over time. 269 

Nevertheless, the GEO-LEO regression slopes are closer to unity, which confirms that GEMS 270 

has a positive bias of approximately 15% in its signals especially beyond 450 nm, necessitating a 271 

correction in its radiometric calibration coefficients. Most GEMS Level 2 products utilize 272 

reflective spectral features for retrieval, such as employing differential optical absorption 273 

spectroscopy (DOAS) (Platt & Stutz, 2008). While overall systematic bias across spectra may 274 

have minimal impact on retrieval under such approaches, it still has the potential to influence 275 

specific retrieval processes relying on theoretical irradiance for radiance scaling (Cho et al., 276 

2023).  277 

 278 

 279 
Figure 4. The regression slopes of reflectances derived from AMI with GEMS (black triangles) and VIIRS onboard 280 

Suomi-NPP and NOAA-20 (blue and magenta circles, respectively). The data is collected from March 2021 to 281 

February 2023 at daily intervals. 282 

3.2.2 Diurnal variation  283 

The GEO-GEO inter-calibration offers unique insights into diurnal variation of measured 284 

signals, which are not as readily available through the GEO-LEO comparison. Table 1 presents 285 

the statistics of AMI and GEMS radiances measured in 2021 at different observation times (01-286 

06 UTC) with correlation coefficient, regression slope, bias, and root mean square error (RMSE). 287 
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There is a decreasing trend in both regression slope and bias, which is similarly observed in 288 

reflectance (not shown) across different seasons and surface types (land or ocean). This indicates 289 

there is a consistent diurnal influence in the comparison results of AMI and GEMS. Although the 290 

cause of this temporal dependence remains unclear, it may stem from various factors, including 291 

angle dependence as discussed in Section 3.1.2. The results emphasize the potential of the GEO-292 

GEO inter-calibration in enhancing our understanding of temporal fluctuations, thereby possibly 293 

refining inter-calibration methodologies in future research.  294 

 295 

Table 1. Statistics of AMI and GEMS Radiances Measured in 2021 at Different observation Times Ranging from 1 296 

to 6 UTC 297 

UTC  
Correlation 

coefficient 
Slope 

Bias  

[W cm
-3

 sr
-1

] 

RMSE  

[W cm
-3

 sr
-1

] 

1 (10 KST) 0.987 1.107 13.3 25.8 

2 (11 KST) 0.984 1.104 13.6 27.4 

3 (12 KST) 0.981 1.101 13.6 28.6 

4 (13 KST) 0.982 1.099 13.3 27.1 

5 (14 KST) 0.985 1.099 12.4 25.8 

6 (15 KST) 0.984 1.099 10.8 22.9 

4 Conclusions 298 

This research introduces an inter-calibration method, specifically utilizing ray-matching, 299 

to compare and monitor Level 1B products between instruments onboard twin satellites, 300 

GEMS/GK2B and AMI/GK2A. The close alignment of their sub-nadir positions offers a 301 

practical advantage, enabling matched optical viewing paths and generating extensive 302 

collocation datasets that cover a broad range of observation conditions.  303 

With the datasets over two years, we conducted comprehensive spatial and temporal 304 

analyses between AMI and GEMS. The spatial analysis successfully addressed the calibration 305 

update of GEMS for solar irradiance and reflectance, though signal and scattering angle 306 

dependencies underscore the necessity for further analysis. Temporal analysis highlighted sensor 307 

drifts in regression slopes and radiometric calibration uncertainties in GEMS while emphasizing 308 

the significance of diurnal variation studies. 309 

Our findings emphasize the critical role of GEO-GEO inter-calibration in enhancing our 310 

understanding of the measurement characteristics. Future investigations should focus on 311 

identifying the root causes of observed dependencies and biases, thereby advancing the 312 

effectiveness of inter-calibration techniques. This study aims to inform and facilitate future 313 

research endeavors, potentially aiding in the monitoring of sensors in similar configurations, 314 

such as the Flexible Combined Imager (FCI) and Sentinel-4. 315 
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The AMI Level 1B products are available at 322 

https://datasvc.nmsc.kma.go.kr/datasvc/html/main/main.do?lang=en. The AMI SRFs for all 323 

channels and land sea mask are also available at 324 

https://datasvc.nmsc.kma.go.kr/datasvc/html/base/cmm/selectPage.do?page=static.software. The 325 

GSICS inter-calibration coefficients between AMI and VIIRS were provided by NMSC, and the 326 

coefficients can be reproduced by applying the methodology described in D. Kim et al. (2021). 327 

The GEMS Level 1C products can be accessed through the SFTP service provided by the 328 

Environmental Satellite Center (ESC) of the National Institute of Environmental Research 329 

(NIER) (https://nesc.nier.go.kr/en/html/cntnts/91/static/page.do), following approval from the 330 

institute. The datasets are not publicly available so far due to the regulation of the institution for 331 

the Level 1C products, and the datasets are accessible to researchers only volunteering on the 332 

GEMS calibration and validation project. The MATLAB code for the weighted regression 333 

algorithm is freely available at https://www.npl.co.uk/resources/software/iso-ts-28037-2010e.  334 

 335 

References 336 

Alsweiss, S. O., Jelenak, Z., Chang, P. S., Park, J. D., & Meyers, P. (2015). Inter-calibration Results of the Advanced 337 

Microwave Scanning Radiometer-2 Over Ocean. IEEE Journal of Selected Topics in Applied Earth 338 

Observations and Remote Sensing, 8(9), 4230–4238. https://doi.org/10.1109/JSTARS.2014.2330980 339 

Chander, G., Hewison, T. J., Fox, N., Wu, X., Xiong, X., & Blackwell, W. J. (2013). Overview of intercalibration of 340 

satellite instruments. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1056–1080. 341 

https://doi.org/10.1109/TGRS.2012.2228654 342 

Cho, Y., Kim, J., Go, S., Kim, M., Lee, S., Kim, M., et al. (2023). First Atmospheric Aerosol Monitoring Results 343 

from Geostationary Environment Monitoring Spectrometer (GEMS) over Asia. Atmospheric Measurement 344 

Techniques Discussions, 2023, 1–29. https://doi.org/10.5194/amt-2023-221 345 

Choi, W. J., Moon, K.-J., Yoon, J., Cho, A., Kim, S., Lee, S., et al. (2019). Introducing the geostationary environment 346 

monitoring spectrometer. Journal of Applied Remote Sensing, 13(01), 1. 347 

https://doi.org/10.1117/1.jrs.13.019901 348 

Doelling, D. R., Morstad, D., Scarino, B. R., Bhatt, R., & Gopalan, A. (2013). The Characterization of Deep 349 

Convective Clouds as an Invariant Calibration Target and as a Visible Calibration Technique. IEEE 350 

Transactions on Geoscience and Remote Sensing, 51(3), 1147–1159. 351 

https://doi.org/10.1109/TGRS.2012.2225066 352 

Doelling, D. R., Haney, C. O., Scarino, B. R., Gopalan, A., & Bhatt, R. (2016). Improvements to the Geostationary 353 

Visible Imager Ray-Matching Calibration Algorithm for CERES Edition 4. Journal of Atmospheric and 354 

Oceanic Technology, 33(12), 2679–2698. https://doi.org/10.1175/JTECH-D-16-0113.1 355 

Hewison, T. J. (2013). An Evaluation of the Uncertainty of the GSICS SEVIRI-IASI Intercalibration Products. IEEE 356 

TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 51(3). 357 

https://doi.org/10.1109/TGRS.2012.2236330 358 

Hu, Y., Wielicki, B. A., Yang, P., Stackhouse, P. W., Lin, B., & Young, D. F. (2004). Application of Deep 359 

Convective Cloud Albedo Observation to Satellite-Based Study of the Terrestrial Atmosphere: Monitoring the 360 

Stability of Spaceborne Measurements and Assessing Absorption Anomaly. IEEE TRANSACTIONS ON 361 

GEOSCIENCE AND REMOTE SENSING, 42(11). https://doi.org/10.1109/TGRS.2004.834765 362 

International Organization for Standardization Technical Specification (ISO/TS). (2010). ISO 28037:2010 363 

Determination and Use of Straight-line Calibration Functions. Geneva, Switzerland: International Organization 364 

for Standardization (ISO). Retrieved from https://www.iso.org/standard/44473.html 365 

Jiang, G.-M., Yan, H., & Ma, L.-L. (2009). Intercalibration of SVISSR/FY-2C Infrared Channels Against 366 

MODIS/Terra and AIRS/Aqua Channels; Intercalibration of SVISSR/FY-2C Infrared Channels Against 367 

MODIS/Terra and AIRS/Aqua Channels. IEEE Transactions on Geoscience and Remote Sensing, 47(5). 368 

https://doi.org/10.1109/TGRS.2008.2005200 369 

https://datasvc.nmsc.kma.go.kr/datasvc/html/main/main.do?lang=en
https://datasvc.nmsc.kma.go.kr/datasvc/html/base/cmm/selectPage.do?page=static.software
https://nesc.nier.go.kr/en/html/cntnts/91/static/page.do
https://www.npl.co.uk/resources/software/iso-ts-28037-2010e


manuscript submitted to Geophysical Research Letters 

 

Kang, M., Ahn, M. H., Liu, X., Jeong, U., & Kim, J. (2020). Spectral calibration algorithm for the geostationary 370 

environment monitoring spectrometer (Gems). Remote Sensing, 12(17), 1–17. 371 

https://doi.org/10.3390/rs12172846 372 

Kang, M., Ahn, M. H., Ko, D. H., Kim, J., Nicks, D., Eo, M., et al. (2022). Characteristics of the Spectral Response 373 

Function of Geostationary Environment Monitoring Spectrometer Analyzed by Ground and In-Orbit 374 

Measurements. IEEE Transactions on Geoscience and Remote Sensing, 60. 375 

https://doi.org/10.1109/TGRS.2021.3091677 376 

Kang, M., Ahn, M.-H., Lee, Y., Eo, M., & Kim, J. (2023, October 25). GEMS Performance and Lessons Learned 377 

[PowerPoint slides]. Committee on Earth Observation Satellites (CEOS) AC-VC-19/ACSG Joint Meeting. 378 

Retrieved from https://ceos.org/document_management/Virtual_Constellations/AC-VC/Meetings/AC-VC-379 

19/presentations/Presentations%20PDF/2.%20Wed%2025%20Oct%202023%20-380 

%20TRACE%20GASES%20AND%20AEROSOLS%20AIR%20QUALITY/We-14_Kang_GEMS_v1.pdf 381 

March 21, 2024 382 

Kim, D., Gu, M., Oh, T.-H., Kim, E.-K., & Yang, H.-J. (2021). Introduction of the Advanced Meteorological Imager 383 

of Geo-Kompsat-2a: In-Orbit Tests and Performance Validation. Remote Sensing, 13(7), 1303. 384 

https://doi.org/10.3390/rs13071303 385 

Kim, J., Jeong, U., Ahn, M. H., Kim, J. H., Park, R. J., Lee, H., et al. (2020). New era of air quality monitoring from 386 

space: Geostationary environment monitoring spectrometer (GEMS). Bulletin of the American Meteorological 387 

Society, 101(1), E1–E22. https://doi.org/10.1175/BAMS-D-18-0013.1 388 

Lee, S. J., & Ahn, M.-H. (2021). Synergistic Benefits of Intercomparison Between Simulated and Measured 389 

Radiances of Imagers Onboard Geostationary Satellites. IEEE Transactions on Geoscience and Remote 390 

Sensing, 59(12), 10725–10737. https://doi.org/10.1109/TGRS.2021.3054030 391 

Lee, Y., Ahn, M. H., & Kang, M. (2020). The new potential of deep convective clouds as a calibration target for a 392 

geostationary UV/VIS hyperspectral spectrometer. Remote Sensing, 12(3). https://doi.org/10.3390/rs12030446 393 

Lee, Y., Ahn, M.-H., Kang, M., & Eo, M. (2023). Spectral replacement using machine learning methods for 394 

continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS). Atmospheric 395 

Measurement Techniques, 16(1), 153–168. https://doi.org/10.5194/AMT-16-153-2023 396 

Minnis, P., & Harrison, E. F. (1984). Diurnal Variability of Regional Cloud and Clear-Sky Radiative Parameters 397 

Derived from GOES Data. Part III: November 1978 Radiative Parameters. Journal of Applied Meteorology and 398 

Climatology, 23(7), 1032–1051. https://doi.org/10.1175/1520-0450(1984)023 399 

Minnis, P., Young, D. F., & Harrison, E. F. (1991). Examination of the Relationship between Outgoing Infrared 400 

Window and Total Longwave Fluxes Using Satellite Data. Journal of Climate, 4(11), 1114–1133. 401 

https://doi.org/10.1175/1520-0442(1991)004<1114:EOTRBO>2.0.CO;2 402 

Minnis, P., Nguyen, L., Doelling, D. R., Young, D. F., Miller, W. F., & Kratz, D. P. (2002a). Rapid Calibration of 403 

Operational and Research Meteorological Satellite Imagers. Part I: Evaluation of Research Satellite Visible 404 

Channels as References. Journal of Atmospheric and Oceanic Technology, 19(9), 1233–1249. 405 

https://doi.org/10.1175/1520-0426(2002)019<1233:RCOOAR>2.0.CO;2 406 

Minnis, P., Nguyen, L., Doelling, D. R., Young, D. F., Miller, W. F., & Kratz, D. P. (2002b). Rapid Calibration of 407 

Operational and Research Meteorological Satellite Imagers. Part II: Comparison of Infrared Channels. Journal 408 

of Atmospheric and Oceanic Technology, 19(9), 1250–1266. https://doi.org/10.1175/1520-409 

0426(2002)019<1250:RCOOAR>2.0.CO;2 410 

Minnis, P., Doelling, D. R., Nguyen, L., Miller, W. F., & Chakrapani, V. (2008). Assessment of the Visible Channel 411 

Calibrations of the VIRS on TRMM and MODIS on Aqua and Terra. Journal of Atmospheric and Oceanic 412 

Technology, 25(3), 385–400. https://doi.org/10.1175/2007JTECHA1021.1 413 

National Physical Laboratory. (2014, November 17). Determination and use of straight-line calibration functions 414 

[Software]. NPL Resources. Retrieved from https://www.npl.co.uk/resources/software/iso-ts-28037-2010e.    415 

Platt, U., & Stutz, J. (2008). Differential Absorption Spectroscopy. In Differential Optical Absorption Spectroscopy: 416 

Principles and Applications (pp. 135–174). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-417 

75776-4_6 418 

Saunders, R. W., Blackmore, T. A., Candy, B., Francis, P. N., & Hewison, T. J. (2013). Monitoring Satellite 419 

Radiance Biases Using NWP Models. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1124–420 

1138. https://doi.org/10.1109/TGRS.2012.2229283 421 

Sohn, B.-J., Ham, S.-H., & Yang, P. (2009). Possibility of the Visible-Channel Calibration Using Deep Convective 422 

Clouds Overshooting the TTL. Journal of Applied Meteorology and Climatology, 48(11), 2271–2283. 423 

https://doi.org/10.1175/2009JAMC2197.1 424 



manuscript submitted to Geophysical Research Letters 

 

Sterckx, S., Livens, S., & Adriaensen, S. (2013). Rayleigh, Deep Convective Clouds, and Cross-Sensor Desert 425 

Vicarious Calibration Validation for the PROBA-V Mission. IEEE Transactions on Geoscience and Remote 426 

Sensing, 51(3), 1437–1452. https://doi.org/10.1109/TGRS.2012.2236682 427 

Wang, L., Cao, C., & Goldberg, M. (2009). Intercalibration of GOES-11 and GOES-12 Water Vapor Channels with 428 

MetOp IASI Hyperspectral Measurements. Journal of Atmospheric and Oceanic Technology, 26(9), 1843–429 

1855. https://doi.org/10.1175/2009JTECHA1233.1 430 

Wang, M. (2016). Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor 431 

spectral response function. Opt. Express, 24(11), 12414–12429. https://doi.org/10.1364/OE.24.012414 432 

Xiong, X., Angal, A., Chang, T., Chiang, K., Lei, N., Li, Y., et al. (2020). MODIS and VIIRS Calibration and 433 

Characterization in Support of Producing Long-Term High-Quality Data Products. Remote Sensing 2020, Vol. 434 

12, Page 3167, 12(19), 3167. https://doi.org/10.3390/RS12193167 435 

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., et al. (2017). Tropospheric 436 

emissions: Monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 437 

186, 17–39. https://doi.org/https://doi.org/10.1016/j.jqsrt.2016.05.008 438 


