Fig. 8. (a) and (b) are trends of eddy
geopotential height (color
shading) and trends of stream function (black contour lines, the values
have been multiplied 10-6 units: m
s-2 10yr-1) at 100 hPa. (c) and (d)
are trends of temperature at 85 hPa and green dash lines indicate the
location of the CPR. The area average trends in the CPR are shown in the
top right-hand corners. (e) and (f)
are
trends of SWV entry at 85 hPa and
the area average trends in the tropics (30°S-30°N) are shown in the top
right-hand corners. The left column is from WACCM4 and the right column
is from CAM5. Dotted regions indicate significance at the 90%
confidence level.
Conclusions
In previous work, we have
demonstrated that SST in IPWP has significant impact on stratosphere and
tropical lower SWV in interannual scale (Xie et al. 2014; Xie et al.
2018; Zhou et al. 2018). And in this study, we reveal linkage between
the decades-long drying trend in the tropical SWV entry and the
substantial warming of the IPWP based on observations and transient
experiments. Using merged satellite measurements SWOOSH and the newest
reanalysis data set ERA5 we show a significant decreasing trend in the
lower SWV entry since the satellite era (1984-2020), with a rate at
0.106 ± 0.021 ppmv per decade according to SWOOSH. The two data sets
have relatively good agreement in the lower stratosphere, although they
have large discrepancies in global. The trend in tropical SWV entry is
captured by the tropical tropopause temperature well, which is
concurrently experiencing significant cooling at a rate of
~0.32 K per decade. We found that cooling tropical
tropopause, as a primary role, determines the decrease in the water
vapour entry. Correlation analysis shows a good relationship between the
warming tropical SST and the drying trend in the lower stratosphere.
Importantly, the strong negative correlation is in the IPWP region. The
SST over IPWP is substantially warming, at a higher rate than that over
the eastern Pacific. Meanwhile, the drying trend in the tropical lower
stratosphere is significantly reduced by 43% in SWOOSH and 61% in ERA5
after regressing out IPWP warming. And for global SWV, this contribution
is very similar. It implies that the tropical SWV entry is very
important for the global SWV budget.
We further validate the relationship by carrying out two groups of
transient experiments with WACCM4 and CAM5, accompanied by a comparison
between the two models in representing the response of SWV entry. The
simulations by both models agree with the observations that IPWP warming
can significantly reduce the SWV entry through the tropical pathway in
the long-term. The simulated drying trend caused by IPWP warming is
about 0.025 ppmv per decade using WACCM4. This further confirms the
vital role of IPWP warming in dehydrating the lower stratosphere for the
period 1984-2020. We explain the physical process using the bottom-up
regime. It shows that IPWP warming can enhance the equatorial waves due
to intensified convection and thereby cool the tropical tropopause,
especially in the CPR. And IPWP warming finally reduces the transport of
water vapour through the tropical pathway.
Our results differ from previous work on global warming causing TTL
warming (Keeble et al. 2021). Here we focus more on the IPWP and find
that the IPWP warming can cause cooling of the tropical tropopause,
resulting in less water vapour entering the stratosphere. This suggests
that although global warming causes TLL warming, regional SST warming
may have different effects than global warming.
We have demonstrated a possible relationship between IPWP and tropical
SWV entry, which can partially interpret the decreasing trend of SWV in
the past decades. Nevertheless,
owing to the limited instrumental measurements since the satellite era
and the control role of multi-decadal variation in SWV short-term trend
(Konopka et al. 2022), the long-term trend in the tropical lower SWV
still exists large uncertainty and needs to be investigated in the
future. Moreover, it would be of interest to assess the long-term
changes of the tropical SWV entry in different models and analyze the
role of the IPWP in the future.
In addition, because there are
large uncertainties in the model simulations on the tropical SST impacts
on the tropical SWV entry (Garfinkel et al. 2021), a caveat that the
results might depend on the models.
CRediT authorship contribution
statement
Yangjie Jiang: Formal analysis, visualization, writing –
original draft; Xin Zhou: Conceptualization, funding
acquisition, investigation, methodology, supervision; Quanliang
Chen: Funding acquisition, writing – review&editing; Wuhu
Feng: Writing – review&editing; Xiaofeng Li: Methodology,
writing – review&editing; Yang Li: Funding acquisition,
methodology, writing – review&editing.
Declaration of Competing
Interest
All authors declare no conflicts of interest.
Acknowledgements
This work was jointly supported by the National Natural Science
Foundation of China (41905037; 42275059; 42175042), the China
Scholarship Council (201908510031 and 201908510032), and Natural Science
Foundation of Sichuan (2022NSFSC1056). We acknowledge the helpful
suggestions from anonymous reviewers.
Data vailability
ERA5 reanalysis data can be obtained online fromhttps://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form. JRA55 can be downloaded online fromNCAR RDA
Dataset ds628.1 Data Access (ucar.edu) . HadISST can been accessed
fromhttps://www.metoffice.gov.uk/hadobs/hadisst/data/download.html.
References
Avery, M. A., S. M. Davis, K. H.
Rosenlof, H. Ye, and A. E. Dessler, 2017: Large anomalies in lower
stratospheric water vapour and ice during the 2015–2016 El Niño.Nat. Geosci. , 10, 405-409,https://doi.org/10.1038/ngeo2961.
Banerjee, A., G. Chiodo, M. Previdi,
M. Ponater, A. J. Conley, and L. M. Polvani, 2019: Stratospheric water
vapor: an important climate feedback. Clim. Dyn. , 53,1697-1710, https://doi.org/10.1007/s00382-019-04721-4.
Bretherton, C. S., M. Widmann, V. P.
Dymnikov, J. M. Wallace, and I. Bladé, 1999: The Effective Number of
Spatial Degrees of Freedom of a Time-Varying Field. J. Clim. ,12, 1990-2009,https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.
Brewer, A. W., 1949: Evidence for a
world circulation provided by the measurements of helium and water
vapour distribution in the stratosphere. Q. J. R. Meteorolog.
Soc. , 75, 351-363,https://doi.org/10.1002/qj.49707532603.
Brinkop, S., M. Dameris, P. Jöckel, H.
Garny, S. Lossow, and G. Stiller, 2016: The millennium water vapour drop
in chemistry–climate model simulations. Atmos. Chem. Phys. ,16, 8125-8140,https://doi.org/10.5194/acp-16-8125-2016.
Cane, M. A., and Coauthors, 1997:
Twentieth-Century Sea Surface Temperature Trends. Science ,275, 957-960,https://doi.org/10.1126/science.275.5302.957.
Compo, G. P., and P. D. Sardeshmukh,
2010: Removing ENSO-Related Variations from the Climate Record. J.
Clim. , 23, 1957-1978,https://doi.org/10.1175/2009JCLI2735.1.
Davis, S. M., and Coauthors, 2016: The
Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a
long-term database for climate studies. Earth Syst. Sci. Data ,8, 461-490, https://doi.org/10.5194/essd-8-461-2016.
de F. Forster, P. M., and K. P. Shine,
1999: Stratospheric water vapour changes as a possible contributor to
observed stratospheric cooling. Geophys. Res. Lett. , 26,3309-3312, https://doi.org/10.1029/1999GL010487.
Deser, C., A. S. Phillips, and M. A.
Alexander, 2010: Twentieth century tropical sea surface temperature
trends revisited. Geophys. Res. Lett. , 37,https://doi.org/10.1029/2010GL043321.
Dessler, A. E., M. R. Schoeberl, T.
Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor
feedback. Proceedings of the National Academy of Sciences ,110, 18087-18091,https://doi.org/10.1073/pnas.1310344110.
Dessler, A. E., M. R. Schoeberl, T.
Wang, S. M. Davis, K. H. Rosenlof, and J.-P. Vernier, 2014: Variations
of stratospheric water vapor over the past three decades. J.
Geophys. Res.: Atmos. , 119, 12,588-512,598,https://doi.org/10.1002/2014JD021712.
Dhomse, S., M. Weber, and J. Burrows,
2008: The relationship between tropospheric wave forcing and tropical
lower stratospheric water vapor. Atmos. Chem. Phys. , 8,471-480, https://doi.org/10.5194/acp-8-471-2008.
Diallo, M., and Coauthors, 2018:
Response of stratospheric water vapor and ozone to the unusual timing of
El Niño and the QBO disruption in 2015–2016. Atmos. Chem. Phys. ,18, 13055-13073,https://doi.org/10.5194/acp-18-13055-2018.
Diallo, M. A., F. Ploeger, M. I.
Hegglin, M. Ern, J.-U. Grooß, S. Khaykin, and M. Riese, 2022:
Stratospheric water vapour and ozone response to the quasi-biennial
oscillation disruptions in 2016 and 2020. Atmos. Chem. Phys. ,22, 14303-14321,https://doi.org/10.5194/acp-22-14303-2022.
Ding, Q., and Q. Fu, 2018: A warming
tropical central Pacific dries the lower stratosphere. Clim.
Dyn. , 50, 2813-2827,https://doi.org/10.1007/s00382-017-3774-y.
Evans, S. J., R. Toumi, J. E.
Harries, M. R. Chipperfield, and J. M. Russell III, 1998: Trends in
stratospheric humidity and the sensitivity of ozone to these trends.J. Geophys. Res.: Atmos. , 103, 8715-8725,https://doi.org/10.1029/98JD00265.
Fu, Q., 2013: Bottom up in the
tropics. Nat. Clim. Change , 3, 957-958,https://doi.org/10.1038/nclimate2039.
Fu, Q., S. Solomon, and P. Lin, 2010:
On the seasonal dependence of tropical lower-stratospheric temperature
trends. Atmos. Chem. Phys. , 10, 2643-2653,https://doi.org/10.5194/acp-10-2643-2010.
Fu, Q., P. Lin, S. Solomon, and D. L.
Hartmann, 2015: Observational evidence of strengthening of the
Brewer‐Dobson circulation since 1980. J. Geophys. Res.: Atmos. ,120, https://doi.org/10.1002/2015jd023657.
Fueglistaler, S., and P. H. Haynes,
2005: Control of interannual and longer-term variability of
stratospheric water vapor. J. Geophys. Res.: Atmos. ,110, https://doi.org/10.1029/2005JD006019.
Fueglistaler, S., M. Bonazzola, P. H.
Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the
Lagrangian temperature history of air entering the stratosphere in the
tropics. J. Geophys. Res.: Atmos. , 110,https://doi.org/10.1029/2004JD005516.
Fueglistaler, S., A. E. Dessler, T.
J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical
tropopause layer. Rev. Geophys. , 47,https://doi.org/10.1029/2008RG000267.
Fueglistaler, S., and Coauthors,
2013: The relation between atmospheric humidity and temperature trends
for stratospheric water. J. Geophys. Res.: Atmos. , 118,1052-1074, https://doi.org/10.1002/jgrd.50157.
Fujiwara, M., and Coauthors, 2010:
Seasonal to decadal variations of water vapor in the tropical lower
stratosphere observed with balloon-borne cryogenic frost point
hygrometers. J. Geophys. Res.: Atmos. , 115,https://doi.org/10.1029/2010JD014179.
Garfinkel, C. I., M. M. Hurwitz, L.
D. Oman, and D. W. Waugh, 2013a: Contrasting Effects of Central Pacific
and Eastern Pacific El Niño on stratospheric water vapor. Geophys.
Res. Lett. , 40, 4115-4120,https://doi.org/10.1002/grl.50677.
Garfinkel, C. I., D. W. Waugh, L. D.
Oman, L. Wang, and M. M. Hurwitz, 2013b: Temperature trends in the
tropical upper troposphere and lower stratosphere: Connections with sea
surface temperatures and implications for water vapor and ozone.J. Geophys. Res.: Atmos. , 118, 9658-9672,https://doi.org/10.1002/jgrd.50772.
Garfinkel, C. I., and Coauthors,
2021: Influence of the El Niño–Southern Oscillation on entry
stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6
models. Atmos. Chem. Phys. , 21, 3725-3740,https://doi.org/10.5194/acp-21-3725-2021.
Gettelman, A., and P. M. d. F.
Forster, 2002: A Climatology of the Tropical Tropopause Layer.Journal of the Meteorological Society of Japan. Ser. II ,80, 911-924, https://doi.org/10.2151/jmsj.80.911.
Gettelman, A., and Coauthors, 2010:
Multimodel assessment of the upper troposphere and lower stratosphere:
Tropics and global trends. J. Geophys. Res.: Atmos. ,115, https://doi.org/10.1029/2009JD013638.
Gilford, D. M., S. Solomon, and R. W.
Portmann, 2016: Radiative Impacts of the 2011 Abrupt Drops in Water
Vapor and Ozone in the Tropical Tropopause Layer. J. Clim. ,29, 595-612, https://doi.org/10.1175/JCLI-D-15-0167.1.
Grise, K., and D. Thompson, 2012:
Equatorial Planetary Waves and Their Signature in Atmospheric
Variability. Journal of Atmospheric Sciences , 69,857-874, https://doi.org/10.1175/JAS-D-11-0123.1.
——, 2013: On the Signatures of
Equatorial and Extratropical Wave Forcing in Tropical Tropopause Layer
Temperatures. Journal of Atmospheric Sciences , 70,1084-1102, https://doi.org/10.1175/JAS-D-12-0163.1.
Hardiman, S. C., and Coauthors, 2015:
Processes Controlling Tropical Tropopause Temperature and Stratospheric
Water Vapor in Climate Models. J. Clim. , 28,6516-6535, https://doi.org/10.1175/JCLI-D-15-0075.1.
Hegglin, M. I., and Coauthors, 2014:
Vertical structure of stratospheric water vapour trends derived from
merged satellite data. Nat. Geosci. , 7,768-776, https://doi.org/10.1038/ngeo2236.
Hersbach, H., and Coauthors, 2020:
The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc. ,146, 1999-2049, https://doi.org/10.1002/qj.3803.
Highwood, E. J., and B. J. Hoskins,
1998: The tropical tropopause. Q. J. R. Meteorolog. Soc. ,124, 1579-1604,https://doi.org/10.1002/qj.49712454911.
Holton, J. R., P. H. Haynes, M. E.
McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995:
Stratosphere-troposphere exchange. Rev. Geophys. , 33,403-439, https://doi.org/10.1029/95RG02097.
Hu, D., and Z. Guan, 2018: Decadal
Relationship between the Stratospheric Arctic Vortex and Pacific Decadal
Oscillation. J. Clim. , 31, 3371-3386,https://doi.org/10.1175/JCLI-D-17-0266.1.
Hu, D., W. Tian, F. Xie, J. Shu, and
S. Dhomse, 2014: Effects of meridional sea surface temperature changes
on stratospheric temperature and circulation. Adv. Atmos. Sci. ,31, 888-900,https://doi.org/10.1007/s00376-013-3152-6.
Hurrell, J. W., and Coauthors, 2013:
The Community Earth System Model: A Framework for Collaborative
Research. Bull. Am. Meteorol. Soc. , 94,1339-1360, https://doi.org/10.1175/BAMS-D-12-00121.1.
Hurst, D. F., and Coauthors, 2011:
Stratospheric water vapor trends over Boulder, Colorado: Analysis of the
30 year Boulder record. J. Geophys. Res.: Atmos. , 116,https://doi.org/10.1029/2010JD015065.
Intergovernmental Panel on Climate,
C., 2014: Climate Change 2013 – The Physical Science Basis:
Working Group I Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University
Press, https://doi.org/10.1017/CBO9781107415324.
Kanamitsu, M., W. Ebisuzaki, J.
Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002:
NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. ,83, 1631-1644,https://doi.org/10.1175/bams-83-11-1631.
Keeble, J., and Coauthors, 2021:
Evaluating stratospheric ozone and water vapour changes in CMIP6 models
from 1850 to 2100. Atmos. Chem. Phys. , 21,5015-5061, https://doi.org/10.5194/acp-21-5015-2021.
Konopka, P., M. Tao, F. Ploeger, D.
F. Hurst, M. L. Santee, J. S. Wright, and M. Riese, 2022: Stratospheric
Moistening After 2000. Geophys. Res. Lett. , 49,e2021GL097609, https://doi.org/10.1029/2021GL097609.
Kumar, V., and Coauthors, 2014:
Impact of quasi-biennial oscillation on the inter-annual variability of
the tropopause height and temperature in the tropics: A study using
COSMIC/FORMOSAT-3 observations. Atmos. Res. , 139,62-70, https://doi.org/10.1016/j.atmosres.2013.12.014.
le Texier, H., S. Solomon, and R. R.
Garcia, 1988: The role of molecular hydrogen and methane oxidation in
the water vapour budget of the stratosphere. Q. J. R. Meteorolog.
Soc. , 114, 281-295,https://doi.org/10.1002/qj.49711448002.
Li, F., and P. Newman, 2020:
Stratospheric water vapor feedback and its climate impacts in the
coupled atmosphere–ocean Goddard Earth Observing System
Chemistry-Climate Model. Clim. Dyn. , 55,1585-1595, https://doi.org/10.1007/s00382-020-05348-6.
Li, Y., and Coauthors, 2017: Impacts
of the Tropical Pacific Cold Tongue Mode on ENSO Diversity Under Global
Warming. J. Geophys. Res.: Oceans , 122,8524-8542, https://doi.org/10.1002/2017JC013052.
Liang, C. K., A. Eldering, A.
Gettelman, B. Tian, S. Wong, E. J. Fetzer, and K. N. Liou, 2011: Record
of tropical interannual variability of temperature and water vapor from
a combined AIRS-MLS data set. J. Geophys. Res.: Atmos. ,116, https://doi.org/10.1029/2010JD014841.
Lin, P., D. Paynter, Y. Ming, and V.
Ramaswamy, 2017: Changes of the Tropical Tropopause Layer under Global
Warming. J. Clim. , 30, 1245-1258,https://doi.org/10.1175/JCLI-D-16-0457.1.
Oltmans, S. J., H. Vömel, D. J.
Hofmann, K. H. Rosenlof, and D. Kley, 2000: The increase in
stratospheric water vapor from balloonborne, frostpoint hygrometer
measurements at Washington, D.C., and Boulder, Colorado. Geophys.
Res. Lett. , 27, 3453-3456,https://doi.org/10.1029/2000GL012133.
Randel, W. J., 2010: Variability and
Trends in Stratospheric Temperature and Water Vapor. The
Stratosphere: Dynamics, Transport, and Chemistry , 123-135.
Randel, W. J., and E. J. Jensen,
2013: Physical processes in the tropical tropopause layer and their
roles in a changing climate. Nat. Geosci. , 6,169-176, https://doi.org/10.1038/ngeo1733.
Randel, W. J., F. Wu, and P. Forster,
2007: The Extratropical Tropopause Inversion Layer: Global Observations
with GPS Data, and a Radiative Forcing Mechanism. J. Atmos. Sci. ,64, 4489-4496, https://doi.org/10.1175/2007JAS2412.1.
Randel, W. J., F. Wu, J. M. Russell,
A. Roche, and J. W. Waters, 1998: Seasonal Cycles and QBO Variations in
Stratospheric CH4 and H2O Observed in UARS HALOE Data. J. Atmos.
Sci. , 55, 163-185,https://doi.org/10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2.
Randel, W. J., F. Wu, S. J. Oltmans,
K. Rosenlof, and G. E. Nedoluha, 2004: Interannual Changes of
Stratospheric Water Vapor and Correlations with Tropical Tropopause
Temperatures. J. Atmos. Sci. , 61, 2133-2148,https://doi.org/10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2.
Randel, W. J., F. Wu, H. Vömel, G. E.
Nedoluha, and P. Forster, 2006: Decreases in stratospheric water vapor
after 2001: Links to changes in the tropical tropopause and the
Brewer-Dobson circulation. J. Geophys. Res.: Atmos. ,111, https://doi.org/10.1029/2005JD006744.
Rayner, N. A., and Coauthors, 2003:
Global analyses of sea surface temperature, sea ice, and night marine
air temperature since the late nineteenth century. J. Geophys.
Res.: Atmos. , 108, https://doi.org/10.1029/2002JD002670.
Rind, D., and P. Lonergan, 1995:
Modeled impacts of stratospheric ozone and water vapor perturbations
with implications for high-speed civil transport aircraft. J.
Geophys. Res.: Atmos. , 100, 7381-7396,https://doi.org/10.1029/95JD00196.
Rosenlof, K. H., and G. C. Reid,
2008: Trends in the temperature and water vapor content of the tropical
lower stratosphere: Sea surface connection. J. Geophys. Res.:
Atmos. , 113, https://doi.org/10.1029/2007JD009109.
Roxy, M. K., K. Ritika, P. Terray, R.
Murtugudde, K. Ashok, and B. N. Goswami, 2015: Drying of Indian
subcontinent by rapid Indian Ocean warming and a weakening land-sea
thermal gradient. Nat. Commun. , 6, 7423,https://doi.org/10.1038/ncomms8423.
Salisbury, J. I., and M. Wimbush,
2002: Using modern time series analysis techniques to predict ENSO
events from the SOI time series. Nonlin. Processes Geophys. ,9, 341-345, https://doi.org/10.5194/npg-9-341-2002.
Scaife, A. A., N. Butchart, D. R.
Jackson, and R. Swinbank, 2003: Can changes in ENSO activity help to
explain increasing stratospheric water vapor? Geophys. Res.
Lett. , 30, https://doi.org/10.1029/2003GL017591.
Schoeberl, M. R., and A. E. Dessler,
2011: Dehydration of the stratosphere. Atmos. Chem. Phys. ,11, 8433-8446,https://doi.org/10.5194/acp-11-8433-2011.
Shindell, D. T., 2001: Climate and
ozone response to increased stratospheric water vapor. Geophys.
Res. Lett. , 28, 1551-1554,https://doi.org/10.1029/1999GL011197.
Soden, B. J., and I. M. Held, 2006:
An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models.J. Clim. , 19, 3354-3360,https://doi.org/10.1175/JCLI3799.1.
Solomon, S., K. H. Rosenlof, R. W.
Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner,
2010: Contributions of stratospheric water vapor to decadal changes in
the rate of global warming. Science , 327,1219-1223, https://doi.org/10.1126/science.1182488.
Stenke, A., and V. Grewe, 2005:
Simulation of stratospheric water vapor trends: impact on stratospheric
ozone chemistry. Atmos. Chem. Phys. , 5,1257-1272, https://doi.org/10.5194/acp-5-1257-2005.
Su, H., W. G. Read, J. H. Jiang, J.
W. Waters, D. L. Wu, and E. J. Fetzer, 2006: Enhanced positive water
vapor feedback associated with tropical deep convection: New evidence
from Aura MLS. Geophys. Res. Lett. , 33,https://doi.org/10.1029/2005GL025505.
Su, H., L. Wu, C. Zhai, J. H. Jiang,
J. D. Neelin, and Y. L. Yung, 2020: Observed Tightening of Tropical
Ascent in Recent Decades and Linkage to Regional Precipitation Changes.Geophys. Res. Lett. , 47, e2019GL085809,https://doi.org/10.1029/2019GL085809.
Tao, M., and Coauthors, 2023:
Multi-decadal variability controls short-term stratospheric water vapor
trends. Commun. Earth Environ. , 4, 441,https://doi.org/10.1038/s43247-023-01094-9.
Thompson, D. W. J., and S. Solomon,
2005: Recent Stratospheric Climate Trends as Evidenced in Radiosonde
Data: Global Structure and Tropospheric Linkages. J. Clim. ,18, 4785-4795, https://doi.org/10.1175/JCLI3585.1.
Tian, W., M. P. Chipperfield, and D.
Lü, 2009: Impact of increasing stratospheric water vapor on ozone
depletion and temperature change. Adv. Atmos. Sci. , 26,423-437, https://doi.org/10.1007/s00376-009-0423-3.
Urban, J., S. Lossow, G. Stiller, and
W. Read, 2014: Another Drop in Water Vapor. Eos, Transactions
American Geophysical Union , 95, 245-246,https://doi.org/10.1002/2014EO270001.
Wang, Y., and Y. Huang, 2020: The
Surface Warming Attributable to Stratospheric Water Vapor in CO2-Caused
Global Warming. J. Geophys. Res.: Atmos. , 125,e2020JD032752, https://doi.org/10.1029/2020JD032752.
Wang, Y., and Coauthors, 2017: The
linkage between stratospheric water vapor and surface temperature in an
observation-constrained coupled general circulation model. Clim.
Dyn. , 48, 2671-2683,https://doi.org/10.1007/s00382-016-3231-3.
Wu, Y., and B.-W. Shen, 2016: An
Evaluation of the Parallel Ensemble Empirical Mode Decomposition Method
in Revealing the Role of Downscaling Processes Associated with African
Easterly Waves in Tropical Cyclone Genesis. J. Atmos. Oceanic
Technol. , 33, 1611-1628,https://doi.org/10.1175/jtech-d-15-0257.1.
Xia, Y., Y. Hu, J. Zhang, F. Xie, and
W. Tian, 2021a: Record Arctic Ozone Loss in Spring 2020 is Likely Caused
by North Pacific Warm Sea Surface Temperature Anomalies. Adv.
Atmos. Sci. , 38, 1723-1736,https://doi.org/10.1007/s00376-021-0359-9.
Xia, Y., Y. Wang, Y. Huang, Y. Hu, J.
Bian, C. Zhao, and C. Sun, 2021b: Significant Contribution of
Stratospheric Water Vapor to the Poleward Expansion of the Hadley
Circulation in Autumn Under Greenhouse Warming. Geophys. Res.
Lett. , 48, e2021GL094008,https://doi.org/10.1029/2021GL094008.
Xie, F., J. Li, W. Tian, J. Feng, and
Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer
and stratosphere. Atmos. Chem. Phys. , 12,5259-5273, https://doi.org/10.5194/acp-12-5259-2012.
Xie, F., J. Li, W. Tian, Y. Li, and
J. Feng, 2014: Indo-Pacific Warm Pool Area Expansion, Modoki Activity
and Tropical Cold-Point Tropopause Temperature Variations. Sci.
Rep. , 4, 4552, https://doi.org/10.1038/srep04552.
Xie, F., J. Zhang, Z. Huang, J. Lu,
R. Ding, and C. Sun, 2020a: An Estimate of the Relative Contributions of
Sea Surface Temperature Variations in Various Regions to Stratospheric
Change. J. Clim. , 33, 4993-5011,https://doi.org/10.1175/jcli-d-19-0743.1.
Xie, F., W. Tian, X. Zhou, J. Zhang,
Y. Xia, and J. Lu, 2020b: Increase in Lower Stratospheric Water Vapor in
the Past 100 Years Related to Tropical Atlantic Warming. Geophys.
Res. Lett. , 47, e2020GL090539,https://doi.org/10.1029/2020GL090539.
Xie, F., and Coauthors, 2018: Effect
of the Indo-Pacific Warm Pool on Lower-Stratospheric Water Vapor and
Comparison with the Effect of ENSO. J. Clim. , 31,929-943, https://doi.org/10.1175/jcli-d-17-0575.1.
Zhang, M., and Y. Huang, 2014:
Radiative Forcing of Quadrupling CO2. J. Clim. , 27,2496-2508, https://doi.org/10.1175/JCLI-D-13-00535.1.
Zhang, W., J. Li, and X. Zhao, 2010:
Sea surface temperature cooling mode in the Pacific cold tongue.J. Geophys. Res.: Oceans , 115,https://doi.org/10.1029/2010JC006501.
Zhou, X., Q. Chen, Y. Li, Y. Zhao, Y.
Lin, and Y. Jiang, 2021: Impacts of the Indo-Pacific Warm Pool on Lower
Stratospheric Water Vapor: Seasonality and Hemispheric Contrasts.J. Geophys. Res.: Atmos. , 126, e2020JD034363,https://doi.org/10.1029/2020JD034363.
Zhou, X., and Coauthors, 2018: The
effects of the Indo-Pacific warm pool on the stratosphere. Clim.
Dyn. , 51, 4043-4064,https://doi.org/10.1007/s00382-017-3584-2.