General procedure for the synthesis of 4
A flame–dried 15 mL cylindrical pressure vessel was charged with3 (0.3 mmol, 1.0 equiv.). The cylindrical pressure vessel was
directly transferred into a nitrogen-filled glovebox without caps. Then,
RuCl2(cod) (4.2 mg, 0.015 mmol, 5 mol%), L3(7.8 mg, 0.018 mmol, 6 mol%), K2HPO4(104.5 mg, 0.6 mmol, 2.0 equiv.) and 4.0 mL dry benzene were added. Then
the cylindrical pressure vessel was tightly sealed, transferred out of
the glovebox and stirred at 130 °C for 20 h. After the completion of the
reaction, the solvent was removed in vacuo and the residue was purified
by flash column chromatography on silica gel to give the desired
4-methyldihydrocoumarins.
Supporting Information
The supporting information for this article is available on the WWW
under https://doi.org/10.1002/cjoc.2024xxxxx.
Acknowledgement (optional)
This project was supported by National Natural Science Foundation of
China (21801206), Shaanxi Fundamental Science Research Project for
Chemistry & Biology (22JHQ002), the Program for Young Talents of
Shaanxi Province (5113190023), and the Innovation Foundation for Doctor
Dissertation of Northwestern Polytechnical University (CX2023104).
References
- For selected examples, see: (a) Trost, B. M.; Toste, F. D.;
Pinkerton,A. B. Non-Metathesis Ruthenium-Catalyzed C−C Bond Formation.Chem. Rev . 2001 , 101 , 2067−2096. (b)
van der Drift,R. C.; Bouwman, E.; Drent, E. Homogeneously Catalysed
Isomerisation of Allylic Alcohols to Carbonyl Compounds. J.
Organomet. Chem . 2002 , 650 , 1−24. (c) Uma,R.;
Crévisy, C.; Grée,R. Transposition of Allylic Alcohols into Carbonyl
Compounds Mediated by Transition Metal Complexes. Chem. Rev .2003 , 103 , 27−52. (d) Kuznik, N.; Krompiec, S. ̵́
Transition Metal Complexes as Catalysts of Double-Bond Migration in
O-allyl Systems. Coord. Chem. Rev . 2007 , 251 ,
222−233. (e) Krompiec, S.; Krompiec, M.; Penczek R.; Ignasiak, H.
Double Bond Migration in N-Allylic Systems Catalyzed by Transition
Metal Complexes, Coord. Chem. Rev. 2008 , 252 ,
1819−1841. (f) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.;
Simonneau, A. Transition Metal Catalyzed Cycloisomerizations of
1,n-Allenynes and -Allenenes. Chem. Rev. 2011 ,111 , 1954−1993. (g) Mantilli, L.; Mazet, C. Platinum Metals in
the Catalytic Asymmetric Isomerization of Allylic Alcohols.Chem. Lett. 2011 , 40 , 341−344. (h)
Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M. Catalytic
Isomerization of Allylic Alcohols in Water. ACS Catal.2012 , 2 , 1079−1086. (i) Ahlsten, N.; Bartoszewicz, A.;
Martín-Matute, B. Allylic Alcohols as Synthetic Enolate Equivalents:
Isomerisation and Tandem Reactions Catalysed by Transition Metal
Complexes. Dalton Trans. 2012 , 41 , 1660−1670.
(j) Cahard, D.; Gaillard, S.; Renaud, J.-L. Asymmetric Isomerization
of Allylic Alcohols. Tetrahedron Lett. 2015 ,56 , 6159−6169. (k) Li, H.; Mazet, C. Iridium-Catalyzed
Selective Isomerization of Primary Allylic Alcohols. Acc. Chem.
Res. 2016 , 49 , 1232−1241.
- For selected reviews, see: (a) Zhang, X.; Zhang, Y.; Liao, L.; Gao,
Y.; Su, H. E. M.; Yu, J. Catalytic Asymmetric Isomerization of (Homo)
Allylic Alcohols: Recent Advances and Challenges. ChemCatChem .2022 , 14 , e202200126; (b) Cadierno, V.; Crochet, P.;
Gimeno, J. Ruthenium-Catalyzed Isomerizations of Allylic and
Propargylic Alcohols in Aqueous and Organic Media: Applications in
Synthesis. Synlett. 2008 , 2008 , 1105-1124. For
selected examples see: (c) Mantilli, L.; Gérard, D.; Torche, S.;
Besnard, C.; Mazet, C. Iridium-Catalyzed Asymmetric Isomerization of
Primary Allylic Alcohols. Angew. Chem. Int. Ed. 2009,48 , 5143-5147. (d) Mantilli, L.; Gérard, D.; Torche, S.;
Besnard, C.; Mazet, C. Highly enantioselective isomerization of
primary allylic alcohols catalyzed by (P,N)-iridium complexes.Pure Appl. Chem. 2010 , 82 , 1461-1469. (e)
Quintard, A.; Alexakis, A.; Mazet, C. Access to High Levels of
Molecular Complexity by One-Pot Iridium/Enamine Asymmetric Catalysis.Angew. Chem. Int. Ed. 2011 , 50 , 2354-2358. (f)
Mazet, C.; New Catalytic Asymmetric Strategies to Access Chiral
Aldehydes. CHIMIA . 2011 , 65 , 802-805. (g) Liu,
T.-L.; Ng, T. W.; Zhao, Y. Rhodium-Catalyzed Enantioselective
Isomerization of Secondary Allylic Alcohols. J. Am. Chem. Soc.2017 , 139 , 3643-3646. (h) Huang, R. Z.; Lau, K. K.;
Li, Z.; Liu, T. L.; Zhao, Y. Rhodium-Catalyzed Enantioconvergent
Isomerization of Homoallylic and Bishomoallylic Secondary Alcohols.J. Am. Chem. Soc. 2018 , 140 , 14647-14654. (i)
Cabré, A.; Garçon, M.; Gallen, A.; Grisoni, L.; Grabulosa, A.;
Verdaguer, X.; Riera, A. Iridium-Catalyzed Asymmetric Isomerization of
Primary Allylic Alcohols Using MaxPHOX Ligands: Experimental and
Theoretical Study. ChemCatChem . 2020 , 12 ,
4112-4120. (j) Liu, C.; Yuan, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W.
Asymmetric Hydroacylation Involving Alkene Isomerization for the
Construction of C3-Chirogenic Center. Angew.
Chem. Int. Ed. 2021 , 60 , 8997-9002. (k) Tani, K.
Asymmetric isomerization of allylic compoundsand the mechanism.Pure Appl. Chem . 1985 , 57 , 1845-1854. (l)
Tanaka, K.; Fu, G. C. A Versatile New Catalyst for the
Enantioselective Isomerization of Allylic Alcohols to Aldehydes:
Scope and Mechanistic Studies. J. Org. Chem. 2001 ,66 , 8177-8186. (m) Mantilli, L.; and Mazet, C. Expanded scope
for the iridium-catalyzed asymmetric isomerization of primary allylic
alcohols using readily accessible second-generation catalysts,Chem. Commun. 2010 , 46 ,445-447. (n) Li, H.;
Mazet, C. Steric Parameters in the Ir-Catalyzed Regio- and
Diastereoselective Isomerization of Primary Allylic Alcohols.Org. Lett . 2013 , 15 , 6170-6173. (o) Li, H.;
Mazet, C. Catalyst-Directed Diastereoselective Isomerization of
Allylic Alcohols for the Stereoselective Construction of C(20) in
Steroid Side Chains: Scope and Topological Diversification. J.
Am. Chem. Soc. 2015 , 137 , 10720-10727. (p) Li, J. Q.;
Peters, B.; Andersson, P. G. Highly Enantioselective Asymmetric
Isomerization of Primary Allylic Alcohols with an Iridium–N,P
Complex. Chem. Eur. J. 2011 , 17 , 11143–11145.
(q) Ren, K.; Zhang, L.; Hu, B.; Zhao, M.; Tu, Y.; Xie, X.; Zhang, T.
Y.; Zhang, Z. Cationic-Rhodium-Catalyzed Kinetic Resolution of Allylic
Alcohols through a Redox Isomerization Reaction in a Noncoordinating
Solvent. ChemCatChem . 2013 , 5 , 1317–1320. (r)
Margalef, J.; Watile, R. A.; Rukkijakan, T.; Samec, J. S. M. High-Atom
Economic Approach To Prepare Chiral α-Sulfenylated Ketones. J.
Org. Chem. 2019 , 84 , 11219-11227. (s) Martinez-Erro,
S.; Sanz-Marco, A.; Gómez, A. B.; Vázquez-Romero, A. M.; Ahlquist, S.
G.; Martín-Matute, B. Base-Catalyzed Stereospecific Isomerization of
Electron-Deficient Allylic Alcohols and Ethers through Ion-Pairing.J. Am. Chem. Soc. 2016 , 138 , 13408-13414. (t)
Liu, Y.; Mazet, C.; A Catalytic Dual Isomerization/Allylboration
Sequence for the Stereoselective Construction of Congested Secondary
Homoallylic Alcohols. J. Org. Chem. 2020 , 85 ,
5638-5750.
- (a) Quintard, A.; Alexakis, A.; Mazet, C.; Access to High Levels of
Molecular Complexity by One-Pot Iridium/Enamine Asymmetric Catalysis.Angew. Chem. Int. Ed., 2011 , 50 , 2354-2358. (b)
Liu, Y.; Mazet, C. A Catalytic Dual Isomerization/Allylboration
Sequence for the Stereoselective Construction of Congested Secondary
Homoallylic Alcohols. J. Org. Chem. 2020 , 85 ,
5638-5650. (c) Arai, N.; Okabe, Y.; Ohkuma, T.;
Isomerization-Asymmetric Hydrogenation Sequence Converting Racemic
β-Ylidenecycloalkanols into Stereocontrolled β-Substituted
Cycloalkanols Using a Ru Catalytic System with Dual Roles. Adv.
Synth. Catal. 2019 , 361 , 5540-5547.
- For selected reviews, see: (a) Yu, D.; Suzuki, M.; Xie, L.;
Morris-Natschke, S.; Lee, K. Recent Progress in the Developmentof
Coumarin Derivatives as Potent Anti-HIVAgents. Med. Res. Rev .2003 , 23 , 322-345. (b) Gliszczyńska, A.; Brodelius, P.
E. Sesquiterpene coumarins. Phytochem. Rev. 2012 ,11 , 77-96; (c) Borges, F.; Roleira, F.; Milhazes, N.; Santana,
L.; Uriarte, E. Simple Coumarins and Analogues in Medicinal Chemistry:
Occurrence, Synthesis and Biological Activity. Curr. Med. Chem.2005 , 12 , 887-916. (d) Semeniuchenko, V.; Groth, U.;
Khilya, V. Synthesis of Chroman-2-ones by Reduction of Coumarins.Synthesis 2009 , 2009 , 3533-3556.
- For selected reviews, see: (a) Kontogiorgis, C.; Hadjipav, D.
Synthesis and Antiinflammatory Activity of Coumarin Derivatives.J. Med. Chem. 2005 , 48 , 6400-6408. (b) Kamat,
D.; Tilve, S.; Kamat, V.; Kirtany, J.; Syntheses and Biological
Activitiesof Chroman-2-ones. A Review. Org. Prep. Proced. Int.2015 , 47 , 1-79. (c) Leitis, Z. Synthesis of
enantiomerically enriched 4-aryl-3,4-dihydrocoumarins (microreview).Chem. Heterocycl. Compd. 2016 , 52 , 527-529.
- (a) Wang, X.; Liu, F.; Yan, Z.; Qiang, Q.; Huang, W.; Rong, Z.-Q.
Redox-Neutral Nickel-Catalyzed Cross-Coupling Reactions of
(Homo)allylic Alcohols and Aryltriflates. ACS Catal.2021 , 11 , 7319-7326. (b) Yan, Z.; Liu, F.; Wang, X.;
Qiang, Q.; Li, Y.; Zhang, Y.; Rong, Z.-Q. Redox-neutral
dehydrogenative cross-coupling of alcohols and amines enabled by
nickel catalysis. Org. Chem. Front. 2022 , 9 ,
1703-1710. (c) Shui, L.; Liu, F.; Wang, X.; Ma, C.; Qiang, Q.; Shen,
M.; Fang, Y.; Ni S.-F.; Rong, Z.-Q. Ligand-Induced chemodivergent
nickel-catalyzed annulations via tandem isomerization/esterification
and direct O-allylic substitution: Divergent access to
3,4-dihydrocoumarins and 2H-chromenes. J. Catal. 2023 ,421 , 264-270.
- (a) Wu, R.; Beauchamps, M. G.; Laquidara, J. M.; Sowa Jr, J. R.
Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Allylic
Alcohols by an Enantioselective Isomerization/Transfer Hydrogenation
Mechanism. Angew. Chem. Int. Ed. 2012 , 51 ,
2106-2110; (b) Arai, N.; Sato, K.; Azuma, K.; Ohkuma, T.;
Enantioselective Isomerization of Primary Allylic Alcohols into Chiral
Aldehydes with the tol-binap/dbapen/Ruthenium(II) Catalyst.Angew. Chem. Int. Ed. 2013 , 52 , 7500–7504. (c)
Ríos-Lombardía, N.; Vidal, C.; Liardo, E.; Morís, F.; García-Álvarez,
J. González-Sabín, J. From a Sequential to a Concurrent Reaction in
Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and
Asymmetric Bioreduction. Angew. Chem. Int. Ed. 2016 ,55 , 8691-8695.
- Martín-Matute, B.; Bogár, K.; Edin, M.; Kaynak F. B.; Bäckvall, J.-E.
Highly Efficient Redox Isomerization of Allylic Alcohols at Ambient
Temperature Catalyzed by Novel Ruthenium–Cyclopentadienyl
Complexes-New Insight into the Mechanism. Chem. Eur. J.2005 , 11 , 5832-5842.