General procedure for the synthesis of 4
A flame–dried 15 mL cylindrical pressure vessel was charged with3 (0.3 mmol, 1.0 equiv.). The cylindrical pressure vessel was directly transferred into a nitrogen-filled glovebox without caps. Then, RuCl2(cod) (4.2 mg, 0.015 mmol, 5 mol%), L3(7.8 mg, 0.018 mmol, 6 mol%), K2HPO4(104.5 mg, 0.6 mmol, 2.0 equiv.) and 4.0 mL dry benzene were added. Then the cylindrical pressure vessel was tightly sealed, transferred out of the glovebox and stirred at 130 °C for 20 h. After the completion of the reaction, the solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel to give the desired 4-methyldihydrocoumarins.
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2024xxxxx.
Acknowledgement (optional)
This project was supported by National Natural Science Foundation of China (21801206), Shaanxi Fundamental Science Research Project for Chemistry & Biology (22JHQ002), the Program for Young Talents of Shaanxi Province (5113190023), and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2023104).
References
  1. For selected examples, see: (a) Trost, B. M.; Toste, F. D.; Pinkerton,A. B. Non-Metathesis Ruthenium-Catalyzed C−C Bond Formation.Chem. Rev . 2001 , 101 , 2067−2096. (b) van der Drift,R. C.; Bouwman, E.; Drent, E. Homogeneously Catalysed Isomerisation of Allylic Alcohols to Carbonyl Compounds. J. Organomet. Chem . 2002 , 650 , 1−24. (c) Uma,R.; Crévisy, C.; Grée,R. Transposition of Allylic Alcohols into Carbonyl Compounds Mediated by Transition Metal Complexes. Chem. Rev .2003 , 103 , 27−52. (d) Kuznik, N.; Krompiec, S. ̵́ Transition Metal Complexes as Catalysts of Double-Bond Migration in O-allyl Systems. Coord. Chem. Rev . 2007 , 251 , 222−233. (e) Krompiec, S.; Krompiec, M.; Penczek R.; Ignasiak, H. Double Bond Migration in N-Allylic Systems Catalyzed by Transition Metal Complexes, Coord. Chem. Rev. 2008 , 252 , 1819−1841. (f) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Transition Metal Catalyzed Cycloisomerizations of 1,n-Allenynes and -Allenenes. Chem. Rev. 2011 ,111 , 1954−1993. (g) Mantilli, L.; Mazet, C. Platinum Metals in the Catalytic Asymmetric Isomerization of Allylic Alcohols.Chem. Lett. 2011 , 40 , 341−344. (h) Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M. Catalytic Isomerization of Allylic Alcohols in Water. ACS Catal.2012 , 2 , 1079−1086. (i) Ahlsten, N.; Bartoszewicz, A.; Martín-Matute, B. Allylic Alcohols as Synthetic Enolate Equivalents: Isomerisation and Tandem Reactions Catalysed by Transition Metal Complexes. Dalton Trans. 2012 , 41 , 1660−1670. (j) Cahard, D.; Gaillard, S.; Renaud, J.-L. Asymmetric Isomerization of Allylic Alcohols. Tetrahedron Lett. 2015 ,56 , 6159−6169. (k) Li, H.; Mazet, C. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols. Acc. Chem. Res. 2016 , 49 , 1232−1241.
  2. For selected reviews, see: (a) Zhang, X.; Zhang, Y.; Liao, L.; Gao, Y.; Su, H. E. M.; Yu, J. Catalytic Asymmetric Isomerization of (Homo) Allylic Alcohols: Recent Advances and Challenges. ChemCatChem .2022 , 14 , e202200126; (b) Cadierno, V.; Crochet, P.; Gimeno, J. Ruthenium-Catalyzed Isomerizations of Allylic and Propargylic Alcohols in Aqueous and Organic Media: Applications in Synthesis. Synlett. 2008 , 2008 , 1105-1124. For selected examples see: (c) Mantilli, L.; Gérard, D.; Torche, S.; Besnard, C.; Mazet, C. Iridium-Catalyzed Asymmetric Isomerization of Primary Allylic Alcohols. Angew. Chem. Int. Ed. 2009,48 , 5143-5147. (d) Mantilli, L.; Gérard, D.; Torche, S.; Besnard, C.; Mazet, C. Highly enantioselective isomerization of primary allylic alcohols catalyzed by (P,N)-iridium complexes.Pure Appl. Chem. 2010 , 82 , 1461-1469. (e) Quintard, A.; Alexakis, A.; Mazet, C. Access to High Levels of Molecular Complexity by One-Pot Iridium/Enamine Asymmetric Catalysis.Angew. Chem. Int. Ed. 2011 , 50 , 2354-2358. (f) Mazet, C.; New Catalytic Asymmetric Strategies to Access Chiral Aldehydes. CHIMIA . 2011 , 65 , 802-805. (g) Liu, T.-L.; Ng, T. W.; Zhao, Y. Rhodium-Catalyzed Enantioselective Isomerization of Secondary Allylic Alcohols. J. Am. Chem. Soc.2017 , 139 , 3643-3646. (h) Huang, R. Z.; Lau, K. K.; Li, Z.; Liu, T. L.; Zhao, Y. Rhodium-Catalyzed Enantioconvergent Isomerization of Homoallylic and Bishomoallylic Secondary Alcohols.J. Am. Chem. Soc. 2018 , 140 , 14647-14654. (i) Cabré, A.; Garçon, M.; Gallen, A.; Grisoni, L.; Grabulosa, A.; Verdaguer, X.; Riera, A. Iridium-Catalyzed Asymmetric Isomerization of Primary Allylic Alcohols Using MaxPHOX Ligands: Experimental and Theoretical Study. ChemCatChem . 2020 , 12 , 4112-4120. (j) Liu, C.; Yuan, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Asymmetric Hydroacylation Involving Alkene Isomerization for the Construction of C3-Chirogenic Center. Angew. Chem. Int. Ed. 2021 , 60 , 8997-9002. (k) Tani, K. Asymmetric isomerization of allylic compoundsand the mechanism.Pure Appl. Chem . 1985 , 57 , 1845-1854. (l) Tanaka, K.; Fu, G. C. A Versatile New Catalyst for the Enantioselective Isomerization of Allylic Alcohols to Aldehydes: Scope and Mechanistic Studies. J. Org. Chem. 2001 ,66 , 8177-8186. (m) Mantilli, L.; and Mazet, C. Expanded scope for the iridium-catalyzed asymmetric isomerization of primary allylic alcohols using readily accessible second-generation catalysts,Chem. Commun. 2010 , 46 ,445-447. (n) Li, H.; Mazet, C. Steric Parameters in the Ir-Catalyzed Regio- and Diastereoselective Isomerization of Primary Allylic Alcohols.Org. Lett . 2013 , 15 , 6170-6173. (o) Li, H.; Mazet, C. Catalyst-Directed Diastereoselective Isomerization of Allylic Alcohols for the Stereoselective Construction of C(20) in Steroid Side Chains: Scope and Topological Diversification. J. Am. Chem. Soc. 2015 , 137 , 10720-10727. (p) Li, J. Q.; Peters, B.; Andersson, P. G. Highly Enantioselective Asymmetric Isomerization of Primary Allylic Alcohols with an Iridium–N,P Complex. Chem. Eur. J. 2011 , 17 , 11143–11145. (q) Ren, K.; Zhang, L.; Hu, B.; Zhao, M.; Tu, Y.; Xie, X.; Zhang, T. Y.; Zhang, Z. Cationic-Rhodium-Catalyzed Kinetic Resolution of Allylic Alcohols through a Redox Isomerization Reaction in a Noncoordinating Solvent. ChemCatChem . 2013 , 5 , 1317–1320. (r) Margalef, J.; Watile, R. A.; Rukkijakan, T.; Samec, J. S. M. High-Atom Economic Approach To Prepare Chiral α-Sulfenylated Ketones. J. Org. Chem. 2019 , 84 , 11219-11227. (s) Martinez-Erro, S.; Sanz-Marco, A.; Gómez, A. B.; Vázquez-Romero, A. M.; Ahlquist, S. G.; Martín-Matute, B. Base-Catalyzed Stereospecific Isomerization of Electron-Deficient Allylic Alcohols and Ethers through Ion-Pairing.J. Am. Chem. Soc. 2016 , 138 , 13408-13414. (t) Liu, Y.; Mazet, C.; A Catalytic Dual Isomerization/Allylboration Sequence for the Stereoselective Construction of Congested Secondary Homoallylic Alcohols. J. Org. Chem. 2020 , 85 , 5638-5750.
  3. (a) Quintard, A.; Alexakis, A.; Mazet, C.; Access to High Levels of Molecular Complexity by One-Pot Iridium/Enamine Asymmetric Catalysis.Angew. Chem. Int. Ed., 2011 , 50 , 2354-2358. (b) Liu, Y.; Mazet, C. A Catalytic Dual Isomerization/Allylboration Sequence for the Stereoselective Construction of Congested Secondary Homoallylic Alcohols. J. Org. Chem. 2020 , 85 , 5638-5650. (c) Arai, N.; Okabe, Y.; Ohkuma, T.; Isomerization-Asymmetric Hydrogenation Sequence Converting Racemic β-Ylidenecycloalkanols into Stereocontrolled β-Substituted Cycloalkanols Using a Ru Catalytic System with Dual Roles. Adv. Synth. Catal. 2019 , 361 , 5540-5547.
  4. For selected reviews, see: (a) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S.; Lee, K. Recent Progress in the Developmentof Coumarin Derivatives as Potent Anti-HIVAgents. Med. Res. Rev .2003 , 23 , 322-345. (b) Gliszczyńska, A.; Brodelius, P. E. Sesquiterpene coumarins. Phytochem. Rev. 2012 ,11 , 77-96; (c) Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Curr. Med. Chem.2005 , 12 , 887-916. (d) Semeniuchenko, V.; Groth, U.; Khilya, V. Synthesis of Chroman-2-ones by Reduction of Coumarins.Synthesis 2009 , 2009 , 3533-3556.
  5. For selected reviews, see: (a) Kontogiorgis, C.; Hadjipav, D. Synthesis and Antiinflammatory Activity of Coumarin Derivatives.J. Med. Chem. 2005 , 48 , 6400-6408. (b) Kamat, D.; Tilve, S.; Kamat, V.; Kirtany, J.; Syntheses and Biological Activitiesof Chroman-2-ones. A Review. Org. Prep. Proced. Int.2015 , 47 , 1-79. (c) Leitis, Z. Synthesis of enantiomerically enriched 4-aryl-3,4-dihydrocoumarins (microreview).Chem. Heterocycl. Compd. 2016 , 52 , 527-529.
  6. (a) Wang, X.; Liu, F.; Yan, Z.; Qiang, Q.; Huang, W.; Rong, Z.-Q. Redox-Neutral Nickel-Catalyzed Cross-Coupling Reactions of (Homo)allylic Alcohols and Aryltriflates. ACS Catal.2021 , 11 , 7319-7326. (b) Yan, Z.; Liu, F.; Wang, X.; Qiang, Q.; Li, Y.; Zhang, Y.; Rong, Z.-Q. Redox-neutral dehydrogenative cross-coupling of alcohols and amines enabled by nickel catalysis. Org. Chem. Front. 2022 , 9 , 1703-1710. (c) Shui, L.; Liu, F.; Wang, X.; Ma, C.; Qiang, Q.; Shen, M.; Fang, Y.; Ni S.-F.; Rong, Z.-Q. Ligand-Induced chemodivergent nickel-catalyzed annulations via tandem isomerization/esterification and direct O-allylic substitution: Divergent access to 3,4-dihydrocoumarins and 2H-chromenes. J. Catal. 2023 ,421 , 264-270.
  7. (a) Wu, R.; Beauchamps, M. G.; Laquidara, J. M.; Sowa Jr, J. R. Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Allylic Alcohols by an Enantioselective Isomerization/Transfer Hydrogenation Mechanism. Angew. Chem. Int. Ed. 2012 , 51 , 2106-2110; (b) Arai, N.; Sato, K.; Azuma, K.; Ohkuma, T.; Enantioselective Isomerization of Primary Allylic Alcohols into Chiral Aldehydes with the tol-binap/dbapen/Ruthenium(II) Catalyst.Angew. Chem. Int. Ed. 2013 , 52 , 7500–7504. (c) Ríos-Lombardía, N.; Vidal, C.; Liardo, E.; Morís, F.; García-Álvarez, J. González-Sabín, J. From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and Asymmetric Bioreduction. Angew. Chem. Int. Ed. 2016 ,55 , 8691-8695.
  8. Martín-Matute, B.; Bogár, K.; Edin, M.; Kaynak F. B.; Bäckvall, J.-E. Highly Efficient Redox Isomerization of Allylic Alcohols at Ambient Temperature Catalyzed by Novel Ruthenium–Cyclopentadienyl Complexes-New Insight into the Mechanism. Chem. Eur. J.2005 , 11 , 5832-5842.