References
1. DeNiro MJ, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta . 1978;42(5):495-506. doi:10.1016/0016-7037(78)90199-0
2. Bastos RF, Corrêa F, Winemiller KO, Garcia AM. Are you what you eat? Effects of trophic discrimination factors on estimates of food assimilation and trophic position with a new estimation method.Ecol Indic . 2017;75:234-241. doi:10.1016/j.ecolind.2016.12.007
3. Minagawa M, Wada E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta . 1984;48(5):1135-1140. doi:10.1016/0016-7037(84)90204-7
4. Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology . 2002;83(3):703-718. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
5. Fry B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr . 1988;33(5):1182-1190. doi:10.4319/lo.1988.33.5.1182
6. Bond AL, Diamond AW. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl . 2011;21(4):1017-1023. doi:10.1890/09-2409.1
7. Navarro J, Louzao M, Igual J, et al. Seasonal changes in the diet of a critically endangered seabird and the importance of trawling discards.Mar Biol . 2009;156:2571-2578. doi:10.1007/s00227-009-1281-3
8. Phillips DL. Converting isotope values to diet composition: the use of mixing models. J Mammal . 2012;93(2):342-352. doi:10.1644/11-MAMM-S-158.1
9. Eggebo J, Groß J, Nash SB. Interpretation of southern hemisphere humpback whale diet via stable isotopes; implications of tissue-specific analysis. PLoS ONE . Published online 2023. doi:10.1371/journal.pone.0283330
10. Mizutani H, Fukuda M, Kabaya Y. 13C and15N enrichment factors of feathers of 11 species of adult birds. Ecology . 1992;73(4):1391-1395. doi:10.2307/1940684
11. Oelbermann K, Scheu S. Stable isotope enrichment δ15N and δ13C in a generalist predator (Pardosa lugubris , Araneae: Lycosidae): effects of prey quality. Oecologia . 2002;130(3):337-344. doi:10.1007/s004420100813
12. Parng E, Crumpacker A, Kurle CM. Variation in the stable carbon and nitrogen isotope discrimination factors from diet to fur in four felid species held on different diets. J Mammal . 2014;95(1):151-159. doi:10.1644/13-MAMM-A-014.1
13. Therrien JF, Fitzgerald G, Gauthier G, Bêty J. Diet–tissue discrimination factors of carbon and nitrogen stable isotopes in blood of Snowy Owl (Bubo scandiacus ). Can J Zool . 2011;89(4):343-347. doi:10.1139/z11-008
14. Lesage V, Hammill M, Kovacs K. Diet-tissue fractionation of stable carbon and nitrogen isotopes in phocid seals. Mar Mammal Sci . 2002;18:182-193. doi:10.1111/j.1748-7692.2002.tb01027.x
15. Duke GE. Gastrointestinal physiology and nutrition in wild birds.Proc Nutr Soc . 1997;56(3):1049-1056. doi:10.1079/PNS19970109
16. Denys C, Reed D, Dauphin Y. Deciphering alterations of rodent bones through in vitro digestion: an avenue to understand pre-diagenetic agents? Minerals . 2023;13(1):124. doi:10.3390/min13010124
17. DeNiro MJ, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science . 1977;197(4300):261-263. doi:10.1126/science.327543
18. Poupin N, Bos C, Mariotti F, Huneau JF, Tome D, Fouillet H. The nature of the dietary protein impacts the tissue-to-diet 15N discrimination factors in laboratory rats. PLoS ONE . Published online 2011. doi:10.1371/journal.pone.0028046
19. Yoneyama T, Ohta Y, Ohtani T. Variations of natural13C and 15N abundances in the rat tissues and their correlation. Radioisotopes . 1983;32(7):330-332. doi:10.3769/radioisotopes.32.7_330
20. Hilderbrand GV, Farley SD, Robbins CT, Hanley TA, Titus K, Servheen C. Use of stable isotopes to determine diets of living and extinct bears. Can J Zool . 1996;74(11). doi:10.1139/z96-236
21. Newsome SD, Bentall GB, Tinker MT, et al. Variation in δ13C and δ15N diet–vibrissae trophic discrimination factors in a wild population of California sea otters. Ecol Appl . 2010;20(6):1744-1752. doi:10.1890/09-1502.1
22. Arostegui MC, Schindler DE, Holtgrieve GW. Does lipid-correction introduce biases into isotopic mixing models? Implications for diet reconstruction studies. Oecologia . 2019;191(4):745-755. doi:10.1007/s00442-019-04525-7
23. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw . 2015;67:1-48. doi:10.18637/jss.v067.i01
24. Martínez del Rio C, Wolf N, Carleton SA, Gannes LZ. Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev . 2009;84(1):91-111. doi:10.1111/j.1469-185X.2008.00064.x
25. Elder WH. The oil glands of birds. Wilson Bull . Published online 1954.
26. Mizutani H, Wada E. High-performance liquid chromatographic determination of uric acid in soil. J Chromatogr A . 1985;331:359-369. doi:10.1016/0021-9673(85)80042-X
27. Stephens RB, Shipley ON, Moll RJ. Meta-analysis and critical review of trophic discrimination factors (Δ13C and Δ15N): Importance of tissue, trophic level and diet source. Funct Ecol . 2023;37(9):2535-2548. doi:10.1111/1365-2435.14403
28. Codron D, Codron J, Lee-Thorp JA, Sponheimer M, de Ruiter D, Brink JS. Stable isotope characterization of mammalian predator–prey relationships in a South African savanna. Eur J Wildl Res . 2007;53(3):161-170. doi:10.1007/s10344-006-0075-x
29. Engelbrecht TM, Kock A, O’Riain J. Running scared: when predators become prey. Ecosphere . 2019;10(1). doi:10.1002/ecs2.2531
30. Bosch G, Hagen-Plantinga EA, Henriks WH. Dietary nutrient profiles of wild wolves: insights for optimal dog nutrition? | British Journal of Nutrition | Cambridge Core. Br J Nutr . 2015;113(S1):S40-S54. doi:10.1017/S0007114514002311
31. Stricker CA, Rode KD, Taras BD, Bromaghin JF, Horstmann L, Quakenbush L. Summer/fall diet and macronutrient assimilation in an Arctic predator. Oecologia . 2022;198(4):917-931. doi:10.1007/s00442-022-05155-2