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Abstract23

Roughly one-third of sudden stratospheric warming (SSW) events lack a strong canon-24

ical surface impact, and this can lead to a forecast bust if a strong impact had been pre-25

dicted. Hence, it is important to predict before the SSW onset if an event will propa-26

gate downward. The predictability of the downward impact of SSWs is considered in 727

subseasonal-to-seasonal forecast models for 16 major SSWs between 1998 and 2022, a28

larger sample size than considered by previous works. The models successfully predict29

which SSWs have a stronger downward impact to 100hPa, however they struggle to pre-30

dict which have a stronger tropospheric impact. The downward impact is stronger if the31

deceleration of the 10hPa winds is better predicted. Downward impact is stronger for32

split and for absorbing SSWs, and is better predicted in high-top models. In contrast,33

there is little relationship between SSWs with above-average predictability and the sub-34

sequent downward impact.35

Plain Language Summary36

The wintertime stratosphere typically features circumpolar strong westerly winds,37

but on occasion these strong winds can reverse and temperatures over the pole can rise38

by tens of degrees in an event known as a sudden stratospheric warming (SSW). Such39

an event is typically followed by extreme cold over Northern Eurasia and wet conditions40

in Southern Europe, however roughly a third of events do not feature such downward41

propagation. Sixteen SSW events have occurred in the Northern Hemisphere over the42

period 1998 to 2022, and this study considers whether the models that have contributed43

re-forecasts and real-time forecasts to the subseasonal to seasonal (S2S) database archive44

are able to distinguish which are downward propagating and which are not. We also ex-45

plore the factors that govern downward propagation of the SSW signal in these models.46
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1 Introduction47

Sudden stratospheric warmings (SSW) are among the most extreme phenomena48

in the climate system. During a major SSW event, temperatures in the polar mid-stratosphere49

increase by tens of kelvins and the circumpolar westerly winds reverse to easterly winds,50

associated with decelerations of several tens of meters per second (Schoeberl, 1978; Charl-51

ton & Polvani, 2007; Butler et al., 2015; Baldwin et al., 2021). During the occurrence52

of Northern Hemisphere (NH) SSW events, the Northern Annular Mode (NAM) in the53

stratosphere shifts toward its negative phase on average, and the negative NAM signal54

propagates downward in the following weeks and can then persist for up to a few months55

in the troposphere (Baldwin et al., 2003; Sigmond et al., 2013; Tripathi et al., 2015). Typ-56

ical surface impacts include anomalous cold air outbreaks in the North Atlantic and north-57

ern Eurasia, anomalous warmth over Greenland and Eastern Canada, and an enhanced58

storm track and precipitation over Southern Europe and parts of East Asia (Thompson59

et al., 2002; Kolstad et al., 2010; Lehtonen & Karpechko, 2016; Garfinkel et al., 2017;60

Kretschmer et al., 2018; Karpechko et al., 2018; Afargan-Gerstman et al., 2020, 2024).61

Not all SSWs are followed by the canonical persistent negative NAM in the tro-62

posphere, however. This divergence in the downward propagation leads to SSWs being63

classified as either downward propagating or non-downward propagating events (Black64

& McDaniel, 2004; Jucker, 2016; Runde et al., 2016; Kodera et al., 2016; Karpechko et65

al., 2017; I. White et al., 2019). Several potential factors have been proposed to help de-66

termine the (non)downward propagation of SSW events: the vortex geometry (i.e., dis-67

placement/split morphology), especially for the first few weeks after SSW onset (Mitchell68

et al., 2013; Maycock & Hitchcock, 2015; I. P. White et al., 2021); the strength of the69

upward wave forcing that precedes the SSW (I. White et al., 2019); the propagation of70

the initial circulation anomalies from the upper to the lower stratosphere and the sub-71

sequent strength and duration of lower stratospheric anomalies (Black & McDaniel, 2004;72

Hitchcock et al., 2013; Karpechko et al., 2017); absorption/reflection of planetary waves73

in the stratosphere following SSWs (Kodera et al., 2016), and preexisting tropospheric74

circulation conditions (Hitchcock & Simpson, 2014; Afargan-Gerstman & Domeisen, 2020;75

D. I. V. Domeisen, Grams, & Papritz, 2020). The lower stratosphere accounts for roughly76

40% of the variance in surface impact, while tropospheric preconditioning also plays an77

important role (Afargan-Gerstman et al., 2022).78

Subseasonal to seasonal (S2S) prediction models are generally able to capture the79

average downward response and surface impact arising from the stratospheric forcing (D. I. V. Domeisen,80

Butler, et al., 2020). Though since only roughly two-thirds of SSW events have a dis-81

cernible surface impact, quite uniformly across definitions of such an impact (Karpechko82

et al., 2017; D. I. Domeisen, 2019), it is important for the models to capture which events83

specifically have a downward impact. When it comes to predicting the specific impact84

of particular events the models exhibit much lower skill, especially over Europe, where85

both sub-seasonal (D. I. V. Domeisen, Butler, et al., 2020) and seasonal (Kolstad et al.,86

2020) prediction models tend to be over-confident and often predict a surface response87

when there is none, or vice versa. As an example, the strong canonical surface impact88

of the 2018 SSW event was primarily captured by the sub-seasonal prediction model once89

the SSW event had occurred and propagated into the lower stratosphere (Rao et al., 2020;90

D. I. Domeisen et al., 2022). In general, the expected canonical surface response to SSWs91

that occurs in two-thirds of cases is significantly better predicted by the models than the92

unexpected non-canonical response (Afargan-Gerstman et al., 2024).93

A prediction of a downward impact that subsequently does not verify can strongly94

impact extended forecast skill at the surface, leading to unwanted forecast busts. Hence,95

it is crucial to understand to what extent models are able to represent and predict the96

downward impact of specific events, and to identify possible reasons for the model be-97

havior or biases, which will ultimately benefit the understanding of downward coupling98

from the stratosphere. We begin by considering whether S2S models are capable of dis-99
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tinguishing which SSWs will propagate downward. While previous work has considered100

the ability of models to capture downward propagation for particular events using real-101

time forecasts (Karpechko et al., 2018; Rao et al., 2020), downward impacts from SSWs102

in the hindcasts of S2S models have not been explored. Further, the difference in observed103

and simulated downward propagation among these events (as shown below) motivates104

the question: why is there spread across events in the magnitude of the downward im-105

pact of SSWs? We will also answer this question in this study.106

2 Methods and Data107

The Subseasonal-to-Seasonal (S2S) Prediction project (Vitart et al., 2017) has made108

available a large number of hindcasts covering the past several decades. Of the eleven109

modeling centers for which data was available when this study was initiated, we focus110

on seven models that include output to at least week six and which also output data at111

the 10hPa level. These modeling centers are: the Australian Bureau of Meteorology (BoM),112

the China Meteorological Administration (CMA), Météo-France (CNRM), the European113

Centre for Medium-Range Weather Forecasts (ECMWF), the National Center for En-114

vironmental Prediction (NCEP), the Korean Meteorological Agency (KMA), and the United115

Kingdom Met Office (UKMO). We downloaded hindcasts for the operational model in116

use during the winter of 2019/2020 for all models (for ECMWF, this is cycle CY46R1),117

except for (1) CNRM, which was upgraded later in 2020 and for which we use the model118

version from winter 2020/2021, and for (2) CMA, which upgraded in the middle of win-119

ter 2019/2020. (Further, the hindcasts of the newer CMA version begin only in 2004 and120

hence miss all SSWs from 1998 to 2003). For the ECMWF model, we downloaded only121

one hindcast each week, and for the NCEP model, we only downloaded 9 hindcasts each122

month, for consistency with the data availability from the rest of the models. ERA5 re-123

analysis is used as the atmospheric reference to which forecast systems are compared (Hersbach124

et al., 2020). These various models differ in the quality of their representation of the strato-125

sphere: the stratosphere is less well resolved in BoM and the CMA version used here as126

compared to the other models.127

Each modeling center has made available hindcasts from different years, and fur-128

ther, the initialization dates differ among the models even for a given year. It is there-129

fore necessary to separately composite reanalysis data according to the actual initializa-130

tions used for each model in order to meaningfully compare the modeled and observed131

responses. Anomalies of zonal wind at 10hPa, 60N (U1060) and polar cap height area-132

weighted from 70N to the pole at 500hPa and 100hPa (Zcap500 and Zcap100) for each133

model forecast are computed by comparing to a lead-time and initialization-date depen-134

dent climatology from the S2S hindcasts.135

We focus on sixteen SSWs that have occurred since 1998, eleven of which occurred136

in the period common to all models (1999-2010). The onset dates we adopt for these SSWs137

are: 12-15-1998, 02-26-1999, 03-20-2000, 02-11-2001, 12-30-2001, 01-18-2003, 01-05-2004,138

01-21-2006, 02-24-2007, 02-22-2008, 01-24-2009, 02-09-2010, 01-06-2013, 02-12-2018, 01-139

01-2019, and 01-05-2021. Note that the first day of easterly winds can differ among re-140

analysis products, however for these events modern reanalyses agree to within one day141

of each other (e.g. Butler et al., 2017), and hence these differences do not impact our142

results. We focus on the hindcast data for the thirteen SSW events that occurred be-143

tween 1998 and 2013, and real-time forecasts for three SSWs in 2018, 2019, and 2021.144

At least four of the S2S systems are included for each event.145

For each event, we also consider the possible contribution of the El Niño-Southern146

Oscillation (ENSO), Madden Julian Oscillation (MJO), and Quasi-Biennial Oscillation147

(QBO) to downward propagation. The ENSO state is characterized using the observed148

Niño3.4 index extracted from monthly mean ERSSTv5 data (Huang et al., 2017) for the149

calendar month which contains the onset date of the SSW. The QBO state is character-150
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ized using the observed zonal mean zonal wind at 50hPa in monthly mean NCEP CDAS151

reanalysis data for the calendar month which contains the day of the SSW. The MJO152

state is defined following Wheeler and Hendon (2004), and specifically we compute the153

average amplitude and phase using the two Real-time Multivariate MJO Indices from154

5 to 15 days before the SSW in order to characterize the MJO state preceding a SSW155

(motivated by Garfinkel et al., 2012). If the amplitude is below 1.0, then the MJO is con-156

sidered to be inactive. The characterization of a SSW as either split or displacement, and157

also the onset date of the event, follows Table 1 of Cohen and Jones (2011) for earlier158

events, Tripathi et al. (2016) for the 2013 event, and Rao et al. (2020) and Rao et al. (2021)159

for the three most recent events.160

The categorization of SSW events into the “absorbing type” and the “reflecting type”161

is performed for each of two distinct methodologies. First, we use the criteria set forth162

by Messori et al. (2022). The reflection index (RI), as defined by Messori et al. (2022),163

is equal to the difference in anomalous poleward eddy heat fluxes at 100 hPa between164

Siberia (Sib) and Canada (Can): RI = v′T ′

Sib−v′T ′

Can
. Here, v represents the merid-165

ional wind speed and T signifies the temperature. The prime symbols represent devi-166

ations from the zonal mean. Weighted averages are determined over Siberia (Sib; between167

45-75°N and 140-200°E) and Canada (Can; between 45-75°N and 230-280°E). The regional168

time series data has been standardized by subtracting the daily mean and then divid-169

ing by the daily standard deviation. Reflection events are then defined as days when the170

RI value surpasses 1 for a minimum of 10 consecutive days. Lastly, the 15-day period171

following each SSW was examined to determine whether a reflection event had occurred172

during that time. If a SSW was followed by a reflection event within this 15-day win-173

dow, it was categorized accordingly. If not, it was labeled under the category of “absorb-174

ing”. Classifying the SSWs in this way results in the following SSWs being character-175

ized as absorbing: 1998-12-15, 1999-02-25, 2000-03-20, 2009-01-24, 2018-02-12, and 2021-176

01-05. (Note that the 2021-01-05 event was absorbing in most of January, though it tran-177

sitioned to reflecting later, Cohen et al., 2021). The other ten are “reflecting”. The sec-178

ond methodology follows the definition of reflecting and absorbing from Kodera et al.179

(2016) and Karpechko et al. (2017), who instead focus on negative planetary wave heat180

flux at 100hPa. We have reproduced the list of events from Karpechko et al. (2017) (see181

their Table 1) but using heat flux from ERA5 reanalysis, and our categorization agrees182

with Karpechko et al. (2017) except for the 01-05-2004 event: the 100hPa planetary wave183

heat flux does not reverse in ERA5 data, and hence we categorize this event as absorb-184

ing. The three most recent SSWs are all absorbing type in the first 11 days after SSW185

onset using the definition from Kodera et al. (2016) and Karpechko et al. (2017). Note186

that the Messori et al. (2022) and Kodera et al. (2016) definitions lead to large differ-187

ences in which events are categorized as reflecting, and hence we separately analyze the188

possibility that absorptive events are more likely to be downward propagation for each189

definition.190

We compare the downward propagation to the predictability of each SSW. We use191

two metrics of predictability: a hit rate metric and an absolute error metric. For the hit-192

rate metric, the following procedure is followed. An ensemble member is deemed “suc-193

cessful” if it simulates a SSW within ±3 days of its actual onset date. We then compute194

the earliest forecast lead day on which at least 50% of the ensemble members still suc-195

cessfully forecast the SSW for each model, and then compute the median predictabil-196

ity across models. This definition of a “success” follows Taguchi (2016), Taguchi (2020),197

D. I. Domeisen et al. (2020), Rao et al. (2019), Rao et al. (2020), and Chwat et al. (2022).198

In addition to this hit rate metric, we consider the absolute error, i.e. the absolute value199

of the difference between the ensemble mean predicted zonal wind at 60N, 10hPa and200

the actual zonal wind, averaged within ±1 day of the observed onset date. We then com-201

pute the earliest forecast lead day for each model in which the absolute error is less than202

10m/s, and then compute the median predictability across models (Chwat et al., 2022).203
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3 Results204

We begin by considering whether the models are able to predict the downward prop-205

agation of the SSW on December 15, 1998, the first event in the hindcast ensemble. Fig-206

ure 1 (top left) contrasts the forecasted (grey, red, blue for different leads) U1060, Zcap500,207

and Zcap100 to that observed (black). Due to the relatively short forecast duration from208

these S2S models, and to match the methodology of Rao et al. (2020), U1060 is aver-209

aged from the SSW onset date to four days after, Zcap100 is averaged from the onset210

date to 14 days after onset, and Zcap500 is averaged from 5 days after onset to 19 days211

after onset. This event was classified as non-downward propagating by Karpechko et al.212

(2017), and consistent with this the polar cap averaged height at both 500hPa and 100hPa213

in ERA5 are only weakly above zero (black ×-es). Many of the initializations in days214

2 to 9 before the SSW onset correctly predict both the severity of the deceleration of U1060215

and the polar cap height anomaly; this is evident by how the gray circles envelop the re-216

analysis response in black. Initializations 10 to 17 and 18 to 25 days before the SSW are217

able to predict the sign of the U1060 and Zcap responses, however, they underestimate218

the amplitude. Hence, the forecasts for the SSW on December 15, 1998 converge on the219

“correct” solution as the lead time shortens, with the short lead forecasts successful.220

For other SSW events, including the event on February 26, 1999, the modeling sys-221

tems were less successful. This February 1999 event was strongly downward propagat-222

ing in reality, however the models predict little downward propagation for Zcap at 100hPa223

or 500hPa, and the gray circles do not envelop the reanalysis response in black. The Zcap224

response is no better predicted for initializations 2 to 9 days before onset than 10 to 17225

days before. While a few individual members initialized 10 to 17 and 18 to 25 before the226

SSW onset (red and blue circles) indicate quantitatively correct downward propagation,227

the models do not converge towards the “correct” solution for small forecast leads.228

The remaining 11 SSWs shown in Figure 1 can be characterized as belonging to229

one of these two archetypes: the models struggle to capture the downward propagation230

and do not converge to the observed solution for SSWs on 01-18-2003 and 02-22-2008,231

while they converge towards the observed solution and envelop observations with the en-232

semble spread for the SSWs on 02-11-2001, 12-30-2001, 01-05-2004, 01-21-2006, 02-24-233

2007, 01-24-2009, 02-09-2010, and 01-06-2013. (The models also envelop the observations234

for the 03-20-2000 event, however, this event was weak by all three metrics, i.e. U1060,235

Zcap500, and Zcap100). We therefore characterize forecasts for the events on 02-26-1999,236

01-18-2003, and 02-22-2008 as busts and the rest as relative successes. The latter two237

of these busts were non-downward propagating in reality, while the first was downward238

propagating. Hence, the downward impact for 75% of the SSWs (9 of 12 with strong anoma-239

lies) was predicted successfully in the S2S hindcasts. Note that Rao et al. (2020) find240

the real-time forecasts simulated reasonable downward impacts for the 2018 SSW and241

a relative lack of impacts for the 2019 SSW.242

We now make this statement regarding prediction skill of the S2S models quanti-243

tative, by calculating the correlation coefficient between the ensemble mean and observed244

Zcap500 and Zcap100 across all events. These correlations are listed in Figure 1. There245

is a monotonic improvement in the ability of models to predict Zcap100 towards smaller246

leads, peaking at 0.82 at 2 to 9-day leads; hence two-thirds of the diversity in the Zcap100247

response is well predicted before SSW onset. In contrast, the models struggle to predict248

which SSW event will have a strong impact on Zcap500, with a weaker improvement from249

10 to 17 leads to 2 to 9 leads as compared to Z100. Note that we predict the observed250

Zcap500 response not using the model predicted Zcap500, but rather the model predicted251

Zcap100; the skill if we used Zcap500 from the models is even lower than that listed in252

Figure 1 (less than 0.3 even for day -2 to day -9 leads).253

Part of this difficulty in capturing the tropospheric response could be that we have,254

thus far, considered the tropospheric impact only within the first nineteen days after SSW255
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Figure 1. Scatterplot of the zonal mean zonal wind anomaly at 60°N/10 hPa (ordinates)

versus the area-averaged polar (70 − 90◦N) geopotential height anomaly (abscissas) for all ensem-

ble members and all models. The wind is averaged from the SSW onset date to four days after,

the polar geopotential height at 100hPa is averaged from the onset date to 14 days after onset,

and the polar geopotential height at 500hPa is averaged from 5 days after onset to 19 days after

onset. These lags match those of Rao et al. (2020); note that Rao et al. (2020) include similar

figures but using the real-time forecasts preceding the 2018 and 2019 events, and similar figures

have been created using the real-time forecasts preceding the 2021 SSW (not shown). The red

dots are for initializations 25 to 18 days before SSW onset, and the blue and gray are for initial-

izations 17 to 10 days and 9 to 2 days before SSW onset, respectively. The crosses indicate the

ensemble mean for each of these lead times, and the black “×” is for the reanalysis. The correla-

tions (r) between the zonal wind at 60◦N and the polar cap geopotential height are included for

each SSW event. SSW events classified as downward propagating by Karpechko et al. (2017) are

indicated in bold.
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Figure 2. Scatterplots comparing the downward propagation as quantified by the multi-model

mean (MME) Zcap100 (y-axis) to each of the following factors (x-axis): predictability of the SSW

as given by the earliest forecast lead in which the median (a) absolute error of U1060 is less than

10m/s and (b) hit rate still exceeds 50%, across all models (Chwat et al., 2022); whether each

SSW was absorbing or reflecting using the (c) Messori et al. (2022) definition and (d) Kodera et

al. (2016) definition; (e) Niño3.4 index [Kelvin]; (f) Quasi-Biennial Oscillation [m/s]; (g) whether

the event was preceded by Madden Julian Oscillation Phase 5, 6, or 7 of amplitude exceeding 1

in the two weeks before the event; (h) split versus displacement; (i) correlation between U1060

and polar cap height at 100hPa for each event (taken from Figure 1). Each of the 16 SSWs is

indicated with an “x”, and the correlation for each panel is indicated. Correlations exceeding 0.5

(in absolute value) allow rejecting a null hypothesis of no relationship at the 5% confidence level

using a Student-t test and are indicated with a star next to the correlation.

onset due to the limited duration of the S2S hindcasts. The observed tropospheric im-256

pacts are sometimes strongest after 19 days. Indeed, if we predict the observed Zcap500257

response averaged over days 5 to 35 (instead of 5 to 19) after SSW onset using initial-258

izations two to nine days before the SSW, correlations increase from 0.45 to 0.52. (The259

maximum skill arises if we use the model predicted Zcap100 response also averaged over260

days 5 to 35.) While it is remarkable that models become more skillful as we include longer261

lead times, this increase is marginal at best. Overall, the models successfully predict which262

SSWs have a strong downward impact on lower stratospheric polar cap height, though263

only 25% of the inter-event spread in the tropospheric impact is predicted before the264

SSW onset.265

A reliable subseasonal forecast depends not only on identifying which SSW will have266

a strong downward impact but also on predicting the SSW as far in advance as is pos-267
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Figure 3. As in Figure 2 but replacing the y-axis with the MME Zcap500.

sible in the first place. Chwat et al. (2022) recently evaluated the predictability of these268

16 SSWs in the S2S hindcasts and reforecasts, and found that predictability ranged from269

less than five days to nearly twenty days depending on the SSW event. Figures 2ab-3ab270

contrast the median predictability of each SSW to the magnitude of the Zcap100 and271

Zcap500 response as predicted by the S2S models. We consider both metrics of SSW pre-272

dictability introduced in Section 2, and we also include the three SSWs since 2018 in this273

analysis to maximize the sample size. There is no relationship between predictability and274

observed downward propagation to 100hPa (Figures 2ab), and if anything predictabil-275

ity is negatively correlated with downward propagation to 500hPa (Figure 3ab). That276

is, SSWs that were harder to predict had a stronger downward impact at 500hPa, and277

this effect is statistically significant at the 95% level. Results are generally similar if we278

use the observed downward propagation rather than that simulated by the S2S models279

(supplemental Figures 1-2).280

Next, we revisit possible factors that have previously been proposed to encourage281

stronger propagation (see Section 1). We evaluate whether these factors help account282

for the relative strength of downward propagation in reanalysis data, and then consider283

whether these factors can encourage strong downward propagation in the S2S models.284

We include the three SSWs since 2018 in this analysis to maximize the sample size.285

Previous work has suggested that reflecting SSWs tend to have a weaker zonal mean286

surface impact than absorbing SSWs. Two alternate indices have been used in the lit-287

erature to quantify the absorption/reflectivity of SSWs (see Section 2), and we consider288

both in Figures 2cd-3cd for downward propagation in the models and supplemental Fig-289

ures 1cd/2cd for observed downward propagation. Observed downward propagation to290

500hPa is stronger for absorbing events as defined by either definition, though downward291
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propagation to 100hPa is stronger only for the Kodera definition. The S2S models also292

indicate stronger downward propagation for the Kodera absorbing events, while Messori293

absorbing vs. reflecting events show no significant difference in downward propagation.294

Note that we used a polar cap averaged height index to track downward propagation,295

and it is conceivable that the impact of Messori absorbing vs. reflecting events is lim-296

ited to certain sectors (e.g. North America). Future work should consider this possibil-297

ity.298

I. White et al. (2019) found in a large ensemble of chemistry-climate model sim-299

ulations that a stronger pulse of upward wave forcing that precedes the SSW tends to300

encourage downward propagation, however, at least 30 events of each type are needed301

before the effect becomes statistically robust. We consider the relationship between down-302

ward propagation and three phenomena known to enhance upward wave flux into the303

vortex region in Figures 2efg-3efg and Supplemental Figures 1-2efg. While El Niño, east-304

erly QBO, and MJO phase 5/6/7 events all are associated with a slight increase in the305

downward propagation to 100hPa both in ERA5 and in the S2S models, the relation-306

ship is not statistically significant. Stronger downward propagation to 500hPa is both307

simulated and observed for SSWs preceded by MJO phase 5/6/7, however for ENSO and308

the QBO there is little consistency between the S2S models and ERA5. None of these309

connections are statistically significant however, consistent with I. White et al. (2019)310

who find that 16 SSWs (i.e., the sample size available) is a factor of 4 too small for such311

a signal to emerge from the noise.312

Split SSWs are known to have a stronger near-term surface impact than displace-313

ment SSWs (Mitchell et al., 2013; I. P. White et al., 2021), and this relationship is both314

simulated and observed. Namely, for both Zcap100 and Zcap500, the SSW downward315

propagation is significantly stronger for splits (Figures 2h-3h).316

Rao et al. (2020) found that downward propagation for the 2018 and 2019 SSWs317

was more strongly associated with the magnitude of the coupling between U1060 and318

Zcap than with the wave morphology. We consider this possibility in Figures 2h-3h, which319

contrasts the coupling strength between U1060 and Zcap (listed on each panel of Fig-320

ure 1) with the Zcap response. As expected, the Zcap response at both 100hPa and 500hPa321

is significantly stronger for SSWs in which U1060 and Zcap are more tightly coupled.322

This relationship is somewhat stronger than the relationship with vortex morphology and323

hence is also consistent with Rao et al. (2020).324

Overall, we find support for previously proposed factors that have been linked to325

the strength of downward propagation. Previous work has found evidence for these fac-326

tors in free-running climate simulations or for a limited selection of observed SSWs. Here,327

we expand on this previous work and find that these factors are relevant for predicting328

downward propagation in the S2S model hindcasts as well.329

While the goal of this work is not to assess the skill of individual S2S models, there330

are some interesting differences across models. Table 1 summarizes each model’s abil-331

ity to capture SSW downward propagation for the 11 SSWs common to all models for332

lead times of 2 to 9 days before SSW onset. The two low-top models (BoM and CMA)333

struggle to capture the full magnitude of the observed signal even in the stratosphere.334

In contrast, the high-top models all simulate a reasonable downward signal at least to335

100hPa. It is notable that the magnitude of the Zcap100 and U1060 responses are cor-336

related across models, such that the low-top models simulate a too-weak response for both.337

An alternate method to quantify the magnitude of downward coupling is to compute the338

correlation between U1060 and Zcap100 and Zcap500, and also between Zcap100 and339

Zcap500, for each model. Table 1 demonstrates a wide spread in the connection between340

Zcap100 and Zcap500, and also between Zcap100 and U1060: in KMA and NCEP there341

is essentially no relationship between the U1060 and Zcap500 responses, while in oth-342

ers there is strong coupling. Future work should focus on why coupling strength between343
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the stratosphere and the troposphere differs across models, which will lead to further in-344

sights on the dynamics of stratosphere - troposphere coupling.345

4 Discussion and Conclusion346

The occurrence of a sudden stratospheric warming (SSW) opens a window of op-347

portunity for subseasonal predictability in much of the extratropics (Sigmond et al., 2013;348

D. I. Domeisen et al., 2020; D. I. V. Domeisen, Butler, et al., 2020). Not all SSWs are349

followed by the canonical impact of a negative NAM, however, and forecast skill and re-350

liability would be enhanced if it could be predicted in advance which SSWs propagate351

downward versus which ones do not. We revisit this question using hindcasts and real-352

time forecasts provided by operational subseasonal forecasting models.353

The S2S models successfully predict two to nine days before SSW onset whether354

a SSW will propagate downward to the lower stratosphere for 75% of the SSWs consid-355

ered in this paper. Further, these models can predict ∼ 2/3 of the inter-event spread356

in the polar cap height response at 100hPa. Hence the models are largely able to pre-357

dict downward propagation to the lower stratosphere, especially for forecast leads within358

10 days of the SSW onset. On the other hand, the models are less successful at predict-359

ing the tropospheric impacts, though they still account for ∼ 1/4 of the inter-event spread360

in the polar cap height response at 500hPa.361

While it would be convenient for planning purposes if the most predictable SSWs362

were also the ones with the strongest downward impacts, this is not the case. There is363

no relationship between the downward propagation of a SSW to 100hPa to whether the364

SSW event itself is predictable. Further, the SSW events with a strong tropospheric im-365

print tend to be less predictable than average. This (unfortunate) confluence is some-366

what to be expected from previous work: displacement events are generally more pre-367

dictable (Taguchi, 2018; D. I. Domeisen et al., 2020; Chwat et al., 2022), but splits have368

a stronger near-term downward impact (Mitchell et al., 2013; I. P. White et al., 2021).369

Downward propagation in the S2S models is stronger for absorbing and split SSWs,370

consistent with previous work that has analyzed observational downward propagation.371

Downward propagation is also significantly enhanced for members which better capture372

the U1060 response (consistent with Rao et al., 2020). SSWs and models with a tighter373

relationship between U1060 and polar cap height also simulate stronger downward prop-374

agation. Ongoing work is aimed at a process-based diagnosis of stratosphere-troposphere375

coupling processes in these models, with the hope of pinpointing areas for improvement.376
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(A) summary of Zcap for each model
event Zcap500 Zcap100 U1060
ERA5 0.014 0.13 -21.99
NCEP 0.007 0.11 -20.62
KMA -0.017 0.08 -18.86
CMA -0.004 0.08 -16.78
CNRM 0.017 0.15 -22.89
ECMWF2019 0.013 0.13 -19.55
UKMO2020 0.000 0.11 -20.76
BOM 0.002 0.06 -10.23

(B) summary of correlation for each model
event Zcap500 Zcap100 Zcap100500
NCEP 0.01 -0.60 0.46
KMA -0.01 -0.56 0.57
CMA -0.21 -0.68 0.63
CNRM -0.26 -0.71 0.60
ECMWF2019 -0.16 -0.70 0.57
UKMO2020 -0.08 -0.63 0.55
BOM -0.20 -0.66 0.70

Table 1. (A) Mean response for the 11 SSWs in the common period (1999-2010) for each

model for (left) Zcap at 500hPa; (middle) Zcap at 100hPa; (right) U1060. (B) Mean correlation

for the 11 SSWs in the common period (1999-2010) for each model for the (left) correlation be-

tween U1060 and Zcap 500hPa; (middle) correlation between U1060 and Zcap 100hPa; (right)

correlation between Zcap 500hPa and Zcap 100hPa.
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5 Open Research377

The original S2S database is hosted at ECMWF as an extension of the TIGGE database,378

and can be downloaded from the ECMWF server http://apps.ecmwf.int/datasets/379

data/s2s/levtype=sfc/type=cf/. The QBO data was downloaded from the NCEP web-380

site https://www.cpc.ncep.noaa.gov/data/indices/qbo.u50.index. The real time381

multivariate index of Wheeler and Hendon (2004) was downloaded from the BoM web-382

site (http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt).383
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