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only models for simulating OAE. We also introduce a reduced complexity model, rapid-
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Abstract19

As a marine Carbon Dioxide Removal (mCDR) approach, Ocean Alkalinity Enhance-20

ment (OAE) is emerging as a viable method for removing anthropogenic CO2 emissions21

from the atmosphere to mitigate climate change. To achieve substantial carbon reduc-22

tion using this method, OAE would need to be widespread and scaled-up across the global23

ocean. However, the efficiency of OAE varies substantially across a range of space-time24

scales and as such field deployments must be carefully planned to maximize efficiency25

and minimize logistical costs and risks. Here we develop a mCDR efficiency framework26

based on the data-assimilative ECCO-Darwin ocean biogeochemistry model, which ex-27

amines two key factors over seasonal to multi-decadal timescales: 1) mCDR potential,28

which quantifies the CO2 solubility of the upper ocean; and 2) dynamical mCDR effi-29

ciency, representing the full-depth impact of ocean advection, mixing, and air-sea CO230

exchange. To isolate and quantify the factors that determine dynamical efficiency, we31

develop a reduced complexity 1-D model, rapid-mCDR, as a computationally-efficient32

tool for evaluation of mCDR efficiency. Combining the rapid-mCDR model with ECCO-33

Darwin allows for rapid characterization of OAE efficiency at any location globally. This34

research contributes to our understanding and optimization of OAE deployments (i.e.,35

deploying experiments in the real-world ocean) as an effective mCDR strategy and elu-36

cidates the regional differences and mechanistic processes that impact mCDR efficiency.37

The modeling tools developed in this study can be readily employed by research teams38

and industry to plan and complement future field deployments and provide essential Mon-39

itoring, Reporting, and Verification (MRV).40

Plain Language Summary41

In an effort to counteract ongoing climate warming, engineering methods have been42

proposed to add materials to the ocean that increase the buffering capacity of seawater43

to sequester atmospheric carbon dioxide into the ocean — this is called Ocean Alkalin-44

ity Enhancement or OAE. However, expanding these pilot efforts to the scale where they45

would have a substantial impact on anthropogenic carbon emissions is a costly and chal-46

lenging human endeavor. In order to simulate OAE deployments and guide future ex-47

periments and field trials, we used a state-of-the-art ocean model (ECCO-Darwin), which48

includes ocean carbon and biogeochemistry and is adjusted to be consistent with obser-49

vations. We use both ECCO-Darwin and a reduced complexity model, which we develop50

–2–



manuscript submitted to Global Biogeochemical Cycles

in this work, to show how and why the efficiency of OAE varies across ocean basins. Our51

modeling tools can be used by researchers and companies to better guide future OAE52

experiments in the real ocean.53

1 Introduction54

The major aim of the Paris Agreement is to reduce emissions and enhance carbon55

sinks that will keep the global temperature increase well below 2 degrees in this century56

(Rogelj et al., 2018; Schimel & Carroll, 2024). This limit requires a 50% reduction in an-57

thropogenic carbon dioxide (CO2) emissions by 2030, with emissions nearly eliminated58

by 2050 (i.e., net zero). This will require almost complete decarbonization of the world’s59

energy supply (Friedlingstein et al., 2022; Palter et al., 2023). Furthermore, the IPCC’s60

6th assessment report has emphasized that atmospheric CO2 removal on the gigaton scale61

will be necessary to reach net zero emissions (IPCC, 2022).62

Due to the vast carbon reservoir size of the global ocean and its well-understood63

sink of anthropogenic CO2 emissions (Gruber et al., 2019; Friedlingstein et al., 2022),64

various methods for marine carbon dioxide removal (mCDR) strategies have been pro-65

posed (National Academies of Sciences, Engineering, and Medicine, 2022). Ocean Al-66

kalinity Enhancement (OAE; Renforth & Henderson, 2017) is a method designed to bol-67

ster the natural CO2 absorption of the ocean. Examples of particular OAE approaches68

include: 1) removal of acidity through electrochemical processes (House et al., 2007), 2)69

deliberate deployment of alkaline substances on the surface ocean, and 3) enhanced weath-70

ering of alkaline minerals in the terrestrial environment or coastal zone (Taylor et al.,71

2016; Montserrat et al., 2017). Eisaman et al. (2023) provides a detailed technical re-72

view of various OAE approaches.73

The core principle of OAE leverages tight coupling between ocean alkalinity (Alk)74

and the nonlinear marine carbonate chemistry system (Middelburg et al., 2020). OAE75

is generally focused on the deployment of near-surface Alk, which transforms aqueous76

carbon dioxide (CO2) into bicarbonate (HCO2−
3 ) and carbonate ions (CO2−

3 ) ions through77

a series of rapid acid-base reactions (Zeebe & Wolf-Gladrow, 2001). This chemical ad-78

justment leads to a reduction in aqueous CO2 and thus lowers the partial pressure of car-79

bon dioxide (pCO2) in seawater. If the pCO2 reduction occurs in the near-surface ocean,80

it can induce disequilibrium with atmospheric pCO2 and drive ocean uptake of CO2 from81
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the atmosphere. This uptake acts to restore the ocean-atmosphere pCO2 gradient (i.e.,82

the disequilibrium which resulted from OAE deployment) back towards an equilibrium83

state.84

OAE is well established as a conceptual mechanism in marine geoengineering. Fur-85

thermore, National Academies of Sciences, Engineering, and Medicine (2022) ocean-based86

CDR research strategy plan states that OAE efficacy is rated as “high confidence”, with87

durability and scalability as “medium-high”, yet the knowledge base remains “low-to-88

medium”. To permit widespread gigaton-scale OAE, it is critical to conduct field trials89

as these include aspects of ocean-atmosphere exchange, ocean-sediment exchange, bio-90

geochemical side effects and feedbacks, and ecological dynamics that cannot be replicated91

with lab experiments (Iglesias-Rodŕıguez et al., 2023). With the rapid growth of start-92

up companies involved in mCDR, which are starting to market CO2 removal to buyers93

interested in offsetting carbon emissions, there is an urgent need to develop numerical94

tools to 1) simulate, optimize, and quantify efficiency of mCDR approaches at various95

ocean locations before expensive and labor-intensive field tests are conducted, 2) per-96

mit standardized third-party Monitoring, Reporting, and Verification (MRV) of the as-97

sociated carbon capture, and 3) assess potential harmful impacts to aquatic and ocean98

ecosystems.99

For typical ocean conditions, OAE has a potential to remove between 0.75 to 1 mole100

of CO2 from the atmosphere per mole of deployed Alk (Renforth & Henderson, 2017;101

Tyka et al., 2022). The actual amount, however, hinges on the complex interplay of ocean102

physics, thermodynamics, and biogeochemistry (Sarmiento & Gruber, 2006). While car-103

bonate chemistry reactions can be assumed to occur nearly instantaneously, reequilibra-104

tion of ocean pCO2 perturbations occur over annual-to-decadal timescales (Jones et al.,105

2014; He & Tyka, 2023). This reequilibration process takes place against the backdrop106

of multi-scale ocean dynamics, which influence the marine carbonate system state and107

can sequester disequilibrated waters away from the air-sea interface and deep into the108

ocean interior. Hence, as corroborated by prior numerical investigations (Ilyina et al.,109

2013; González et al., 2018; Burt et al., 2021; He & Tyka, 2023), the effectiveness of OAE110

is subject to considerable regional and temporal variability across the global ocean. How-111

ever, the details of how the three-dimensional ocean circulation, sea-ice, carbonate, and112

ecological state impact regional OAE experiments through space and time have yet to113

be quantified using data-constrained ocean simulations.114
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In this study, we assess the effectiveness of OAE as a mCDR approach across var-115

ious ocean regions representative of distinct dynamical and biogeochemical regimes. To116

achieve this, we utilize a new version of the ECCO-Darwin biogeochemistry model over117

the period from January 1995 to December 2017. The ECCO-Darwin model is partic-118

ularly well-suited for simulating OAE as it assimilates a suite of in-situ and remotely-119

sensed physical and biogeochemical observations (Carroll et al., 2020, 2022) and thus pro-120

vides the realistic background ocean state required for quantifying mCDR efficiency in121

the context of MRV (Köhler et al., 2013). As such, the ECCO-Darwin model accurately122

depicts the spatiotemporal evolution of historical ocean conditions, which typical climate123

models do not as they are not constrained by observations. Furthermore, unlike conven-124

tional assimilation techniques, the ECCO-Darwin data assimilation method avoids in-125

troducing non-physical source and sink terms (Carroll et al., 2022), making it an ideal126

tool for attributing OAE impacts on the time-dependent, three-dimensional ocean car-127

bon, biogeochemical, and ecological state.128

To achieve a computationally-efficient assessment of mCDR CO2 uptake efficiency,129

we develop a reduced-complexity, vertically-resolved 1-D model termed rapid-mCDR. Rapid-130

mCDR simulates the vertical transport of dissolved inorganic carbon (DIC) and Alk per-131

turbations and OAE additionality (i.e. net CO2 uptake due to OAE). We demonstrate132

that rapid-mCDR can emulate key processes that affect mCDR additionality found in133

the higher-complexity 3-D ECCO-Darwin model. We use rapid-mCDR to expand our134

regional ECCO-Darwin analysis to basin-wide scales. Unlike ECCO-Darwin, which at135

present time needs to be run on a high-performance computing platform, rapid-mCDR136

can be easily run on a personal computer. We therefore propose that rapid-mCDR can137

serve as an alternative method for efficiently planning, characterizing, and optimizing138

field deployments, and thus can be used as the numerical foundation for MRV of mCDR139

deployments.140

2 Methods141

2.1 Quantification of OAE-driven Atmospheric CO2 Removal142

In this section, we summarize our approach for separating the impacts of dynam-143

ical and biogeochemical processes on OAE additionality (defined as the net CO2 removed144
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Term/Symbol Brief Explanation/Reference

Deployment site Location of surface-ocean Alk injection.

OAE additionality Net CO2 removed from the atmosphere due to OAE

(Section 2.1).

mCDRpot mCDR potential, i.e. maximum OAE additionality

per unit of deployed Alk (Section 2.1).

mCDReff Dynamical mCDR efficiency (Section 2.1).

mCDRconteff Dynamical mCDR efficiency for continuous OAE

experiments (Equation 3).

mCDRexch Normalized net CO2 flux (Supporting Information

Text S2, Section 1).

mCDRsoleff Solubility component of mCDReff (Supporting Infor-

mation Text S2, Section 3).

mCDRequil CO2 Equilibration coefficient (Supporting Information

Text S2, Section 4)

rapid-mCDR (Deploy) Reduced-complexity rapid-mCDR model with in-

put ocean conditions horizontally averaged over the

deployment site (Section 4).

rapid-mCDR (HorAdv) Rapid-mCDR model with input ocean conditions ac-

counting for horizontal advection at the ocean surface

(Section 4).

Table 1. List of key quantities used in this work.

from the atmosphere). Supporting Information Text S2–S4 describes these methods in145

further detail and Table 1 provide a list of key terms and symbols used in this work.146

When Alk is deployed into the surface ocean at location a0 with a time-dependent147

prescribed rate (i.e., flux integrated over a0) of fAlk(t), the OAE-attributed CO2 uptake148

can be written as the integral function:149

∆FCO2
(τ) =

∫ τ

ts

fAlk(t)×mCDRpot(t, a0)×mCDReff (τ − t, t, a0) dt, (1)

where ∆FCO2 represents the total OAE additionality by time τ (in units of mol C), and150

mCDRpot and mCDReff are mCDR potential and dynamic efficiency averaged over de-151
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ployment site area a0. Times ts and τ denote, respectively, the start time of OAE de-152

ployment and time when the OAE additionality is evaluated. The integration period spans153

time t = ts to t = τ .154

The mCDR potential, mCDRpot(t, a0), represents the maximum possible ocean CO2155

uptake per unit of Alk addition at time t and averaged over surface area a0. It is com-156

puted assuming complete reequilibration of ocean pCO2 and neglects any other feedbacks157

except disassociation of aqueous CO2 bicarbonate and carbonate ions. The dynamical158

efficiency, mCDReff (τ−t, t, a0), characterizes the fraction of mCDR potential that has159

been realized by time τ − t (for Alk deployed at time t over area a0) and is primarily160

controlled by 3-D ocean dynamics and air-sea gas exchange.161

Separation of OAE additionality into potential- and dynamical-efficiency compo-162

nents provides a meaningful separation into drivers relating to CO2 solubility and ocean163

dynamics, respectively. This separation is accurate only when OAE additionality is lin-164

ear with regards to the deployed Alk flux (i.e., the total amount of added Alk is small165

enough that it does not substantially impact mCDRpot and mCDReff ) and the deploy-166

ment site area a0 is small enough that both mCDRpot and mCDReff do not significantly167

vary across it.168

As shown in previous work, mCDRpot values typically range between 0.75–1 mol169

C per mol Alk. mCDReff is approximately an exponential function of elapsed time af-170

ter OAE deployment with a characteristic multi-annual relaxation time, where over the171

multi-decadal time scales mCDReff can reach values of up to one (e.g., He & Tyka, 2023).172

For simplicity, in Equation 1 mCDRpot is defined as the average value over deploy-173

ment site a0 at deployment time t, whereas its value over the area and time where ac-174

tual net OAE CO2 exchange occurs is the relevant mCDR potential. In our framework,175

the difference between the two mCDRpot values is reflected in a modification of mCDReff .176

In Section 3.1, we show that mCDRpot values vary gradually with time and distance from177

the deployment site. Therefore, the impact of varying mCDRpot on mCDReff are small.178

Sections 2.1.1 and 2.1.2 describe methods for estimating mCDRpot and mCDReff179

respectively, as they are the key factors that impact OAE additionality. If their global180

values are known, Equation 1 provides a framework for characterizing the OAE addi-181

tionality of any deployment in the global ocean with a known Alk rate fAlk.182
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2.1.1 Estimation of mCDR Potential, mCDRpot183

mCDRpot can be estimated diagnostically from surface-ocean thermodynamic and184

carbonate conditions using a marine carbonate chemistry solver (Follows et al., 2006).185

The results of the baseline/unperturbed ECCO-Darwin simulation, which are described186

in Section 2.2.1, provide all of the necessary inputs and we use the PyCO2SYS (Humphreys187

et al., 2022) Python toolbox for solving the marine carbonate chemistry system, as de-188

tailed in Supporting Information Text S3.189

To estimate the reliability of mCDRpot from ECCO-Darwin, we also compute its190

values using the OceanSODA-ETHZ product (Gregor & Gruber, 2021). While we do not191

argue that mCDRpot from any of the two datasets is superior, our comparison shows broad-192

scale consistency, therefore lending support for the use of ECCO-Darwin to estimate mCDRpot.193

2.1.2 Estimation of mCDR Dynamical Efficiency (mCDReff): Pulse and194

Continuous OAE Experiments195

At present time, the most obvious way of quantifying mCDReff is by running nu-196

merical OAE experiments for locations and times of interest using global-ocean biogeo-197

chemistry models, such as ECCO-Darwin. An approach discussed in He and Tyka (2023)198

considers pulse experiments, where Alk is deployed over a short period (i.e., one month,199

which is short compared to CO2 reequilibration timescales). For a pulse experiment, in200

which OAE is applied at time t and location a0, the cumulative CO2 flux at time τ can201

be expressed as:202

∆FCO2
(τ) = ∆Alk ×mCDRpot(t, a0)×mCDReff (τ − t, t, a0) (2)

Equation 2 can be derived from Equation 1, assuming that the Alk flux fAlk fol-203

lows a Dirac delta function with a spike at time t and a total Alk addition ∆Alk.204

For the pulse experiments, mCDReff is evaluated using Equation 2, where the cu-205

mulative OAE additionality is estimated from the difference in simulated CO2 flux be-206

tween OAE and baseline/unperturbed simulations. This approach can be computation-207

ally expensive if substantial regions of the global ocean over multiple deployment times208

(e.g., different seasons) are considered, as for each location (a0) and deployment time209

(t) a new numerical experiment needs to be run. In fact, a single OAE simulation itself210

is computationally expensive because it needs to represent the large ocean volume (e.g.,211
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global ocean) that is potentially affected by OAE over the duration of a decade or longer212

— this is required to fully characterize the spread of OAE perturbations and long timescales213

associated with mCDReff .214

While we find pulse experiments useful, here we propose a modified approach us-215

ing a continuous OAE deployment as our primary method for characterization of OAE216

additionality. For a continuous OAE experiment starting at time ts and with a constant217

OAE flux fAlk, the instantaneous flux of CO2, ∆fCO2
at time τ (τ > ts), can be ex-218

pressed as (see Supporting Information Text S4 for details):219

∆fCO2
(τ) = fAlk ×mCDRpot(a0, t)|τts ×mCDR

cont
eff (τ − ts, ts, a0), (3)

where mCDRpot(a0, t)|τts represents the time-mean value of mCDRpot(a0, t) from ts to220

τ .221

Equation 3 provides a definition for mCDRconteff , which is closely related to mCDReff222

as discussed below. Numerically, mCDRconteff is estimated by differencing CO2 flux be-223

tween the continuous OAE and baseline/unperturbed simulations, similar to how it is224

done for pulse experiments except that we compare the instantaneous instead of cumu-225

lative CO2 flux.226

The dynamical efficiencies for pulse and continuous OAE experiments are closely227

related (Supporting Information Text S4). mCDRconteff , filtered with a high-frequency fil-228

ter (for example, with an annual running-mean filter), represents time-mean values of229

mCDReff . Therefore, a single continuous OAE experiment can be used to characterize230

the time-mean mCDR efficiency for a certain location. The continuous OAE experiments231

also better characterizes overall OAE additionality of deployment sites. mCDRconteff also232

indicates variability of CO2 uptake on a shorter timescales (e.g., seasonal). Note that233

the OAE-attributed CO2 flux is proportional to mCDRconteff . If such variability is iden-234

tified to be considerable, it is likely that mCDReff will be highly dependent on the time/season235

of OAE deployment, which can be further investigated using targeted pulse experiments.236

In summary, our numerical studies rely primarily on continuous OAE experiments,237

which help us assess overall dynamical mCDR efficiency and pinpoint geographical ar-238

eas with considerable short-term variability (e.g., seasonal). We find that mCDR effi-239

ciency for regions with significant seasonal variability depends on the deployment time240
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and therefore requires supplementary pulse experiments to identify the dependence of241

mCDReff on the deployment time/season.242

2.2 ECCO-Darwin Experiments for Quantification of mCDR Potential243

and Dynamical Efficiency244

2.2.1 ECCO-Darwin Description245

The ECCO-Darwin model and data assimilation methods have been extensively246

described in the literature (e.g., Brix et al., 2015; Manizza et al., 2019, 2023; Carroll et247

al., 2020, 2022; Bertin et al., 2023). In particular, a technical description of the ECCO-248

Darwin model set-up, observational constraints, and optimization methodology is pre-249

sented in Carroll et al. (2020). In this study, we use a coarser-resolution (1◦ vs 1/3◦ hor-250

izontal grid spacing) version of the Carroll et al. (2020) solution. Below, we provide a251

brief introduction to ECCO-Darwin and highlight the unique features of this model that252

are essential for our OAE studies.253

The Lat-Lon-Cap-90 (LLC90) version of ECCO-Darwin used in this paper has 1◦254

nominal horizontal grid spacing, spans 1992–2017, and is based on ocean circulation and255

physical tracers (i.e., temperature, salinity, and sea ice) from the Estimating the Circu-256

lation and Climate of the Ocean (ECCO) Version 4 release 4 solution (V4r4; ECCO Con-257

sortium, 2021; Forget et al., 2015). Horizontal grid spacing varies from 110 km at mid-258

latitudes to roughly 42 km at high latitudes. The vertical grid spacing increases from259

10 m near the surface to 457 m near the seafloor. Since the horizontal discretization is260

insufficient to resolve mesoscale eddies, their impact on large-scale ocean circulation is261

parameterized using the Redi (1982) and Gent and McWilliams (1990) schemes; verti-262

cal mixing is parameterized with the Gaspar et al. (1990) scheme.263

The ECCO V4r4 circulation estimate is used at each time step to drive an online264

biogeochemistry and ecosystem model developed by the Massachusetts Institute of Tech-265

nology Darwin Project (Follows et al., 2007; Dutkiewicz et al., 2015, 2020). The Dar-266

win model includes the cycling of organic and inorganic carbon, phosphorus, iron, sil-267

ica, oxygen, and Alk. Carbonate chemistry is based on the efficient solver of Follows et268

al. (2006). Air-sea CO2 flux is computed using the parameterization of Wanninkhof (1992)269

and forced with atmospheric partial pressure of CO2 from the zonally-averaged National270

Oceanic and Atmospheric Administration Marine Boundary Layer Reference (NOAA MBL)271
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product (Andrews et al., 2014). The Darwin ecology includes five large-to-small phyto-272

plankton functional types (diatoms, other large eukaryotes, Synechococcus, and low- and273

high-light adapted Prochlorococcus), along with two zooplankton types that graze pref-274

erentially on either large eukaryotes or small picoplankton.275

Physical observations are assimilated using the adjoint method (i.e., 4-D-Var; Wun-276

sch et al., 2009; Wunsch & Heimbach, 2013), which minimizes a weighted least squares277

sum of model-data misfit (i.e., a cost function) to optimize initial conditions, time-varying278

surface-ocean boundary conditions, and time-invariant, three-dimensional mixing coef-279

ficients for along-isopycnal, cross-isopycnal, and isopycnal thickness diffusivity. Because280

the initial conditions, surface boundary conditions, and mixing coefficients are estimated281

as part of the adjoint-method optimization, the ECCO ocean circulation estimate has282

negligible drift and therefore does not require spin-up. The biogeochemical model is op-283

timized in an additional step from the circulation using a low-dimensional Green’s Func-284

tions approach (Menemenlis et al., 2005) to assimilate a variety of biogeochemical ob-285

servations and adjust Darwin initial conditions and ecological parameters. We neglect286

the first 3 years of model simulation due to biogeochemical spin-up. The LLC90 ECCO-287

Darwin version closely matches the previously-published solution (Supporting Informa-288

tion Figure S2).289

2.2.2 ECCO-Darwin OAE Experiments290

We first ran an unperturbed baseline simulation that represents the natural state291

of the ocean in the absence of any OAE perturbations. The time period used in this anal-292

ysis spans from January 1, 1995 to December 31, 2017. In Supporting Information Text293

S1, we show that the results of the baseline ECCO-Darwin simulation agree well with294

observations over the global surface ocean and in the various OAE deployment sites.295

A suite of perturbed continuous and pulse OAE simulations were simulated, with296

Alk deployed at one of five deployment locations that are representative of diverse dy-297

namical and biogeochemical open-ocean regions. The deployment locations are discussed298

in Section 2.2.5 and summarized in Table 2. The perturbed simulations were compared299

against the baseline simulation to evaluate the impact of OAE on the biogeochemical ocean300

state and OAE additionality. For the perturbed simulations, we do not consider a par-301
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ticular OAE approach in terms of materials used and its dissolution rate, etc., but sim-302

ply assume deployment of Alk at a prescribed rate.303

2.2.3 Continuous OAE Experiments304

For continuous OAE experiments, a constant Alk flux is applied to the ECCO-Darwin305

surface-ocean layer (which is 10-m thick) over a regionally-defined deployment site from306

January 1995 to December 2017. Continuous experiments are performed for all five de-307

ployment locations described in Section 2.2.5. This allow us to estimate time-mean mCDR308

efficiency and its variability, which might be the most relevant factors characterizing field309

deployment locations.310

For each of these experiments, an Alk rate (i.e., surface-integrated flux) of 3.33×311

107 mol eq. s−1 is applied over a horizontal area of roughly 270×103 km2. The amount312

of deployed Alk is such that each experiment has a potential to remove 10−2 Pg C yr−1
313

from the atmosphere, assuming 0.8 mol of CO2 is removed for each mole of deployed Alk.314

The molar ratio between removed CO2 and added Alk is approximately valid for the global315

ocean and assumes complete reequilibration of ocean pCO2316

citeHe2023. Its exact value varies regionally as discussed in Section 3.1; we use the317

ratio of 0.8 only as a rough estimate to contextualize the potential CO2 uptake due to318

OAE. We expect that the results will be fairly insensitive to the horizontal deployment319

area, as long as it is large enough to avoid inorganic mineral precipitation.320

We note that the magnitude of ocean CO2 uptake, pH perturbations, and other321

possible environmental impacts, which will be specific to the particular OAE approach322

used (and might include inorganic mineral precipitation and impact on marine food web323

via the introduction of micro-nutrients and trace metals), are expected to be strongly324

correlated with the magnitude of the OAE Alk flux. In this work, we do not explore these325

environmental impacts in depth as they are specific to the particular OAE approach. As326

described in Section 2.1, our characterized OAE efficiency is normalized by Alk flux and327

is not sensitive to its exact value.328

2.2.4 Pulse OAE Experiments329

For two deployment sites associated with strong seasonality in mCDRconteff (North330

Atlantic Subduction (NAS) and Antarctic Circumpolar Current (ACC), see Section 2.2.5331
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and Table 2 for more details), we performed three additional types of pulse experiments332

with shorter Alk deployments. These experiments are used to further elucidate depen-333

dence of mCDR efficiency to deployment season.334

For two monthly-pulse experiments, OAE is applied for a duration of 31 days, start-335

ing on January 1, 1995 and July 1, 1995; these monthly-pulse experiments are termed336

Jan1995 and Jul1995 experiments, respectively. The monthly-pulse experiments start337

during the months associated with nearly minimum and maximum mCDRconteff . For these338

experiments, the magnitude of the Alk flux is such that each pulse experiments has a339

potential to remove 10−2 Pg C from the atmosphere (with the same assumption of mo-340

lar ratio between added Alk and removed CO2 as before).341

For the yearly-pulse OAE experiments, Alk is deployed during a single year (from342

January 1st 1995 to December 31st 1995), where the magnitude of the Alk flux is equal343

to that of the monthly pulse experiments and therefore the potential removed CO2 from344

the atmosphere is roughly 12 times larger compared to the monthly-pulse experiments.345

We refer to these experiments as Yr1995 experiments. While the duration of the Alk pulse346

in the three pulse OAE experiments may appear long, we stress that its timescale is short347

compared to typical multi-year to decadal CO2 reequilibration timescales (He & Tyka,348

2023).349

2.2.5 OAE Experiment Locations350

Figure 1 and Table 2 describe the chosen OAE experiment locations and associ-351

ated surface-ocean conditions that are expected to impact mCDR efficiency in these re-352

gions. The five experiments are representative of diverse dynamical and biogeochemi-353

cal open-ocean conditions and include the following locations:354

• The North Atlantic Subduction (NAS) experiment represents unique conditions355

found in subpolar regions associated with subduction driven by sea-ice formation356

and brine rejection, strong seasonally-driven vertical mixing, and seasonal biolog-357

ical CO2 uptake.358

• The Western Boundary Current (WBC) experiment is representative of mid-latitude359

conditions with strong horizontal currents and shear, along with intense vertical360

mixing.361
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Figure 1. OAE experiments and time-mean values from January 1995 to December 2017 of

ocean circulation fields from the baseline simulation. (a) Location of OAE experiments (black

boxes show deployment sites), (b) magnitude of surface-ocean horizontal velocity, (c) mean verti-

cal velocity over the upper-100 m, and (d) mean vertical diffusivity over the upper-100 m.

• The Antarctic Circumpolar Current (ACC) experiment represents conditions found362

in the Southern Ocean, which are associated with strong zonal currents, seasonal363

sea-ice cover, large-scale upwelling fronts, and seasonal biological uptake.364

• The Equatorial Upwelling (EU) experiment is centered over the narrow upwelling365

zone of the Tropical Pacific Ocean and is characterized by strong CO2 outgassing366

and seasonal biological uptake; its interannual variability tends to be dominated367

by El Niño–Southern Oscillation events (ENSO).368

• The Eastern Boundary Current (EBC) experiment is centered over a region dom-369

inated by relatively-slow surface-ocean currents, coastal upwelling, and weaker pri-370

mary production.371
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2.3 Rapid-mCDR: One-Dimensional Model for mCDR Simulation372

At present time, the ECCO-Darwin simulations discussed in the previous section373

might be computationally too expensive for simulating and quantifying mCDReff and374

therefore OAE additionality especially if a large number of OAE deployment sites and375

seasons are considered. Operational needs for quantification of real-world OAE might376

also require a more rapidly-deployable modeling framework.377

For these reasons, and as an alternative numerically-efficient approach, we develop378

a one-dimensional model rapid-mCDR consisting of the following three equations:379

∂

∂t
∆Âlk = − ∂

∂z
w∗∆Âlk +

∂

∂z
(K

∗ ∂

∂z
∆Âlk) +

δzk,0
∆z1

fAlk, (4)

∂

∂t
∆D̂IC = − ∂

∂z

(
w∗∆D̂IC

)
+

∂

∂z
(K

∗ ∂

∂z
∆D̂IC)− δzk,0

∆z1
∆fCO2

, and (5)

∆fCO2
= κ∗(1− a∗ice)

(
∂pCO2

∂Alk

∗

∆Âlk +
∂pCO2

∂DIC

∗

∆D̂IC

)
, (6)

where variables w and K are 3-D vertical velocity and diffusivity, κ is the surface-ocean380

piston velocity, and aice is sea-ice cover. The ϕ̂ and ϕ∗ represent horizontally-integrated381

values of ϕ over the global ocean and horizontal-mean values of rapid-mCDR forcing ϕ382

over the OAE-impacted area, respectively. The value of δzk,0 is 1 for the uppermost rapid-383

mCDR vertical level and zero otherwise, and ∆z1 represents the ocean depth represented384

by that layer.385

Equations 4 and 5 relate the time derivative of ∆Âlk and ∆D̂IC (terms on the left386

hand side of these two equations) to its vertical advection and diffusion terms (first and387

second term on the right hand side of these equations) and prescribed Alk deployment388

rate or OAE-attributed CO2 uptake (the last terms in Equations 4 and 5, respectively).389

These two equations are derived by simplifying budget equations (Supporting Informa-390

tion Equations 14 and 15), guided by analysis of these budget terms for the five repre-391

sentative OAE experiments (Supporting Information Text S4). The following two ap-392

proximations are used: 1) the biological source term was neglected and 2) we linearized393

the products of vertical velocity and Alk perturbations as: ̂w∆Alk ≈ w∗∆Âlk — this394

approximation neglects correlation between the vertical velocity and ∆Alk over the OAE-395
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impacted regions. A similar approximation is made for DIC and diffusion terms in the396

conservation equation.397

Equation 6 represents the horizontally-integrated net CO2 flux due to OAE (i.e.398

OAE additionality) which is a function of ocean-surface perturbations ∆Âlk and ∆D̂IC.399

The rapid-mCDR equations are solved for 50 vertical levels (that coincide with the400

ECCO-Darwin vertical levels) using a 1-day time step. The numerical finite difference401

scheme uses an implicit Euler method for time derivatives, which ensures numerical sta-402

bility. A simple numerical stability analysis and sensitivity study indicates that the daily403

time step is sufficient (not shown). We assume that within the simulation time Alk and404

DIC perturbations will not reach the lowest model level and therefore bottom-level ∆D̂IC405

and ∆Âlk is set to zero throughout the simulation. We initialize rapid-mCDR at Jan-406

uary 1, 1995 (before the start of OAE deployments), at which time the Alk and DIC per-407

turbations are set to zero. The model is then integrated through the ECCO-Darwin pe-408

riod (January 1st, 1995 to December 31st, 2017).409

We note that there is some level of uncertainty in the method for horizontally av-410

eraging the required inputs to rapid-mCDR (i.e. for computation of w∗, K
∗
, and par-411

tial derivatives of pCO2 in Equation 6). To address this uncertainty, we use two differ-412

ent horizontal-averaging methods and quantify how they impact simulated mCDReff :413

• Deploy : is the simplest approach where ocean conditions are horizontal means over414

the deployment site. This approach neglects the horizontal advection of OAE-impacted415

waters as they are transported away from the deployment site and into remote lo-416

cations. Therefore, we expect the Deploy approach to be appropriate for OAE de-417

ployment sites that are associated with relatively weak horizontal advection or ho-418

mogeneous ocean regions. Rapid-mCDR results obtained with this averaging method419

are referred as rapid-mCDR (Deploy).420

• HorAdv : Improving on the Deploy approach, we also consider horizontal advec-421

tion of OAE-impacted waters in a simplified manner. Ocean conditions are com-422

puted as weighted means over the region where OAE modifies surface pCO2; here423

the weights are proportional to the pCO2 perturbation ∆pCO2
. We expect this ap-424

proach to capture the impact of horizontal transport on Alk and DIC cycling and425

CO2 uptake, which the Deploy approach neglects. However, the HorAdv approach426

assumes that surface-ocean perturbations are indicative of horizontal transport427
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through the entire water column. The results of rapid-mCDR using this method428

are termed rapid-mCDR (HorAdv).429

3 Results: ECCO-Darwin OAE Potential and Dynamical Efficiency430

3.1 OAE Potential431

As described in Section 2.1.1 and Supporting Information Text S3, surface-ocean432

mCDRpot is estimated diagnostically using PyCO2SYS from monthly-mean fields from433

1) the baseline ECCO-Darwin simulation and 2) OceanSODA-ETHZ dataset (Gregor434

& Gruber, 2021), both covering the same time period from January 1995 to December435

2017. The comparison of mCDRpot from the two datasets provides a qualitative mea-436

sure of its uncertainty. Figure 2 shows time-mean mCDRpot for the global ocean and its437

climatological seasonal cycle from both datasets; Table 2 lists the ECCO-Darwin values438

for the 5 OAE deployment sites.439

Time-mean mCDRpot reveals a pronounced meridional gradient, with the lowest440

values (approximately 0.75 mol C/mol Alk located in the tropics, progressively increas-441

ing poleward and eventually exceeding 0.9 mol C/mol Alk). For the same latitudinal range,442

values in regions dominated by western boundary currents tend to be lower than east-443

ern boundary currents, exhibiting an anti-correlation with SST (Supporting Information444

Figure S1). This structure is consistent with the expected increase in CO2 solubility at445

lower SST. Time-mean mCDRpot computed from both datasets exhibits similar features,446

with model-data differences generally not exceeding 0.025 mol C/mol Alk. One notable447

distinction is that OceanSODA-ETHZ values are marginally lower in eastern subtrop-448

ical basins.449

The climatological seasonal cycle of mCDRpot remains modest, not surpassing 0.05450

mol C/mol Alk in either ECCO-Darwin or OceanSODA-ETHZ (Figure 2b). The most451

pronounced seasonal cycle occurs in northern mid-latitudes and polar regions. Peak val-452

ues are found in western boundary currents regions and are likely associated with ele-453

vated seasonality in SST (Jo et al., 2022). Although both ECCO-Darwin and OceanSODA-454

ETHZ exhibit similar seasonal patterns of mCDRpot, the values from OceanSODA-ETHZ455

tend to have larger magnitudes. Across the five deployment sites, mean mCDRpot ranges456

from 0.799 mol C/mol Alk (EU) to 0.854 mol C/mol Alk (NAS), while climatological457

seasonal cycle values do not exceed 0.05 mol C/mol Alk (Table 2). In summary, these458
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Figure 2. mCDRpot from the baseline ECCO-Darwin simulation (left) and OceanSODA-

ETHZ dataset (right) showing (a) time-mean values over the ECCO-Darwin period (January

1995 to December 2017) and (b) magnitude of climatological seasonal cycle.
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findings suggest that, in the current climate, mCDRpot is adequately represented by time-459

mean values, except in localized regions that experience pronounced seasonality. Both460

ECCO-Darwin and OceanSODA-ETHZ demonstrate similar spatial structure; hence in461

the subsequent section we use only ECCO-Darwin .462

In summary, as depicted in Figure 2, the most effective OAE deployments, solely463

from a CO2 solubility perspective, would be over polar oceans — regions characterized464

by the highest potential for CO2 removal. However, in the next sections, when we con-465

sider ocean sea-ice and dynamical effects that are captured by the mCDR efficiency fac-466

tor, this narrative will substantially change.467

3.2 OAE Impact on Ocean State for Continuous OAE experiments468

Before quantifying OAE efficiency, we first investigate the impact of OAE on the469

ocean state for the five continuous experiments. Because of the larger Alk perturbation,470

our continuous experiments serve as a upper limit of ocean state perturbations. These471

results serve as an illustration of expected OAE impacts, because the environmental im-472

pacts are expected to scale with the magnitude of injected Alk. We examine the spatial473

patterns of atmospheric CO2 uptake and alteration of surface-ocean pH. We also char-474

acterize the vertical transport of OAE-impacted waters.475

For the five continuous OAE experiments, Figure 3 shows a map of time integrated476

net CO2 flux due to OAE from the atmosphere into the ocean by the end of the ECCO-477

Darwin simulation. The OAE additionality by the end of simulation can be obtained by478

integrating these values over the surface ocean. For all OAE deployments, integrated net479

CO2 flux is largest close to the deployment site and its footprint is indicative of near-480

surface horizontal advection, with the following key features:481

• For NAS, the North Atlantic and the Norwegian Currents transport OAE-modified482

waters towards high-latitude regions, with the flow bifurcating near Iceland. As483

a result, the largest values of net CO2 flux are found at, or north of the deploy-484

ment site.485

• For WBC and ACC, predominant zonal transport result in the largest net CO2486

flux values located primarily east of the deployment site. In particular, the strong487

Antarctic Circumpolar Current in ACC spreads net CO2 flux eastward over a large488

region of the Southern Ocean.489
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• For EU, equatorial upwelling and upper-ocean zonal flow both north and south490

of the equator spreads the net CO2 flux footprint over most of the tropical/subtropical491

Pacific Ocean. The signature of cumulative net CO2 flux for EU covers the largest492

horizontal area (see Table 2), while the maximum magnitude is the lowest of all493

5 experiments.494

• For EBC, the anticyclonic circulation associated with the subtropical gyre advects495

OAE-impacted waters towards the southwest, spreading the net CO2 flux foot-496

print west of Southern California and Baja Mexico.497

One important concern regarding OAE is modification of ocean pH, which might498

inadvertently harm marine ecosystem health (e.g., Bach et al., 2019). Figure 4 shows the499

maximum pH modification due to OAE for all five continuous experiments. These spa-500

tial patterns are approximately correlated with spatial patterns of high net CO2 flux.501

We note that none of the continuous experiments change OAE-attributed pH more than502

0.05 with respect to the background state, which is far less than what was considered503

a safe limit in He and Tyka (2023).504

To illustrate the depth and temporal change in the disequilibrium of OAE-impacted505

waters across the five continious OAE experiments, Figure 5a shows the temporal evo-506

lution of the depth above which 95% of the deployed Alk remains. We adopt this depth507

threshold as a metric to demarcate OAE-modified waters from those unaffected by OAE.508

Figure 5b shows time series of the horizontally-averaged equilibration coefficient mCDRequil509

for each of the experiments (mean over upper 100 m shown) and Figure 5c shows the510

spatial distribution of mCDRequil at the end of the simulation. mCDRequil(described in511

detail in Supporting Information Text S4, Section 3), is similar to mCDReff but is a lo-512

cal value computed for a particular volume of seawater in ECCO-Darwin.513

For all OAE experiments, the OAE perturbation spreads to deeper waters with elapsed514

time after deployment, with large differences occurring in the depth of the OAE impact515

across all experiments. By the end of the simulation, the Alk perturbation reaches the516

depth in excess of 2000 m for NAS and roughly 1000 m for ACC. For the other three ex-517

periments, Alk perturbations remains much closer to the ocean surface and the ocean518

waters below 500 m remain largely unaffected.519

The time evolution of mCDRequil for all experiments exhibits an approximately ex-520

ponential increase, overlaid by strong seasonality (Figure 5b). The exponential increase521
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Figure 3. Time-integrated net CO2 flux due to OAE from January 1995 to December 2017

for the 5 continuous OAE experiments. The color scale is logarithmic, highlighting variations in

CO2 uptake intensity and isolines represent DIC increases of 0.1, 1, 5, 10, and 50 mol C m−2.

Black boxes show OAE deployment sites. Upper panel shows all 5 OAE experiments across the

global ocean; lower panels show individual OAE experiments.
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Figure 4. Maximum pH perturbation across time and depth (maximum ∆pH) due to OAE

for the 5 continuous experiments. Only values above 0.0025 are shown. Isolines represent maxi-

mum ∆pH values of 0.01, 0.02, 0.03, and 0.04.

is associated with the long time scale of CO2 reequilibration and the overlaid seasonal-522

ity is associated with the strong seasonality of the mixed layer depth (MLD) and asso-523

ciated transport of Alk-modified water below the MLD as the MLD shoals (detrainment),524

and its re-entrainment as the MLD deepens.525

mCDRequil tends to be highest for ACC and is associated with the shortest reequi-526

libration time scale, despite the fact that the deployed Alk mixes relatively deep at this527

site (Figure 5b). The short reequilibration time scale is consistent with the high CO2528

piston velocity over this region, associated with strong zonal winds (e.g., Jones et al.,529

2014). The seasonality of mCDRequil is strongest at NAS and WBC; in particular, the530

former is consistent with strong seasonality in MLD and vertical transport of OAE-attributed531

Alk and DIC (Supporting Information Figures S3 and S4). Figure 5c shows that the low-532

est values of mCDRequil are found 1) close to the deployment sites where ocean-atmosphere533

CO2 reequilibration has not been fully realized and 2) increases as OAE-impacted wa-534

ters spread into remote locations.535

In Supporting Information Text S5, we discuss horizontally-integrated budgets for536

DIC and Alk perturbations for the continuous OAE experiments. These budgets sep-537

arate and quantify the contributions of key processes that modify DIC and Alk pertur-538
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Figure 5. Continuous OAE experiments: (a) time series of the depth that separates OAE-

impacted waters from unmodified waters, (b) time series of mCDRequil in the upper ocean (mean

value over the upper 100 m), and (c) spatial pattern of mCDRequil in the upper ocean (mean

value over the upper 100 m) at the end of the simulation.
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bations. With the exception of the air-sea interface, where the DIC and Alk perturba-539

tions increase due to additional CO2 flux from the atmosphere and the prescribed OAE540

Alk flux, respectively, changes to DIC and Alk perturbations are predominantly dom-541

inated by vertical ocean dynamics.542

Across all deployment sites, excluding EU, a pronounced seasonality characterizes543

the strength of vertical mixing and advection, coinciding with variations in MLD. As the544

MLD deepens, DIC and Alk perturbations are transported into deeper waters, poten-545

tially sequestering them from the atmosphere (which inhibits or delays OAE addition-546

ality) until the MLD shoals again. Notably, the relative influence of vertical advection547

and mixing varies significantly by deployment site. The depth of the MLD and its sea-548

sonal variability differs substantially among sites, with NAS having the deepest seasonal549

MLD.550

3.3 Efficiency of Alk Enhancement551

3.3.1 Continuous OAE Experiments552

For the five continuous OAE experiments, Figure 6 shows three key aspects of mCDR553

efficiency mCDRconteff . In panel (a), we show time-mean mCDRconteff from the start of the554

OAE deployment (i.e., January 1, 1995) to the time shown on the x-axis. These curves555

represent the fraction of OAE potential realized by the time indicated on the x-axis; we556

refer to this quantity as realized mCDR potential. The realized mCDR potential is thus557

an important metric for quantifying the OAE additionality of continuous deployments.558

Figure 6b shows mCDRconteff filtered with a centered 1-year running mean. These559

curves relate instantaneous Alk deployment to instantaneous CO2 uptake, expressed us-560

ing efficiency terms and with seasonal cycle removed. This is because mCDRconteff and CO2561

uptake are basically proportional to each other (Equation 3). For deployments associ-562

ated with weak interannual variability in mCDRconteff , we expect that these curves also563

closely represent the mean efficiency of pulse deployments over a seasonal cycle. Figure564

6c shows the seasonal cycle of mCDRconteff over the last ten years of simulation. The de-565

ployment locations associated with significant seasonal cycle indicate significant season-566

ality of CO2 uptake. For instantaneous OAE deployments, this is likely related to mCDR567

efficiency being dependent on deployment season, which we further investigate in Sec-568

tion 3.3.2.569
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Figure 6. Three different key aspects of mCDRcont
eff efficiency: (a) time-mean values from the

start of the OAE deployment to time indicated on the x-axis; (b) centered 1-year running-mean

values; and (c) seasonal cycle over the last simulation decade calculated as monthly-mean values

over the last 10 years of simulation. The colors represent the five different OAE deployments, as

indicated by the legend.
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For all continuous experiments, the realized mCDR potential curves increase in an570

approximately exponential manner with time after start of deployment (Fig. 6a), with571

the following key characteristics:572

• ACC is associated with the most rapid increase of realized mCDR potential, where573

values exceed 0.75 within 5 years after the start of OAE and also reach one of the574

highest values by the end of the simulation (0.91). This is consistent with the most575

rapid increase of mCDRequil in the upper ocean as shown in Figure 5.576

• For all deployments, EU is associated with the slowest initial increase of realized577

potential, consistent with the slowest increase of mCDRequil. However, after roughly578

13 years after deployment its values reach that of the ACC and by the end of the579

simulation, EU reaches the highest value of all simulations, 0.95. The realized mCDR580

potential for this location diverges from the exponential shape due to strong in-581

terannual variability of mCDRconteff , which we discuss below.582

• For the other three experiments (EBC, WBC, and NAS), the realized mCDR po-583

tential behaves remarkably similar over the first decade after the start of deploy-584

ments and by the end of 2017 their values differ by only a few percent each (0.84,585

0.81, and 0.77 for EBC, WBC, and NAS, respectively).586

Figure 6b shows similar exponential behavior of mCDRconteff as discussed for the re-587

alized mCDR potential above, but it also reveals interannual variability in mCDRconteff .588

Note that for most of the experiments, mCDRconteff is also associated with a strong sea-589

sonal cycle which is filtered from the plots shown on Figure 6b. EU is associated with590

the largest interannual variability of mCDRconteff , superimposed on its exponential and sub-591

sequent tapered increase. This interannual variability is positively correlated with the592

multivariate El-Niño/Southern Oscillation (ENSO) index (Wolter & Timlin, 2011) (not593

shown), demonstrating that ENSO has a substantial impact on mCDR efficiency in the594

Tropical Pacific Ocean. We note that other locations also exhibit interannual variabil-595

ity in mCDRconteff , although it is lower than EU. The values of running mean mCDRconteff596

can exceed one for a limited time period, which is most evident for the EU experiment.597

This does not mean that OAE efficiency exceeds 100%, as the overall efficiency is related598

to the time-mean mCDRconteff values in Figure 6a and which do not exceed the value of599

one.600
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Figure 7. Impact of CO2 solubility and sea-ice cover on mCDRcont
eff . The five colors represent

the different OAE experiments, as shown in the legend.

Figure 6c shows that mCDRconteff for NAS and WBC are associated with strong sea-601

sonality, yielding maximum values (and thus strongest ocean CO2 uptake) in winter and602

minimum values in summer. Peak monthly values are up to 40% lower/higher compared603

to annual-mean values. In ACC, the magnitude of the seasonal cycle of mCDRconteff is roughly604

half that of NAS and is shifted in phase roughly 6 months due to its location in the south-605

ern hemisphere. We emphasize that the seasonal cycle of mCDRconteff is not directly re-606

lated to the seasonal cycle of mCDR efficiency for the pulsed experiments. We discuss607

the relations between the two seasonal cycles in the next section.608

Next we discuss the impact of one of the key simplifications when estimating mCDRconteff .609

As described in Section 2.1.2, we defined mCDRconteff with respect to mCDRpot at the de-610

ployment site and time (Equation 3); however, its values at all locations and times of611

OAE-driven air-sea CO2 exchange should be used. Figure 7a shows mCDRsoleff , which rep-612

resents the multiplicative factor with which the mCDRconteff should be corrected to account613

for this simplification (Supporting Information Text S4). mCDRsoleff values greater/smaller614

than one represent fractional increase/decrease of mCDRconteff due to a change in mCDRpot615
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as the perturbation spreads from the deployment site to remote locations. This primar-616

ily results from changes in CO2 solubility due to cooling or warming of OAE-impacted617

waters.618

Figure 7a shows that the impact of the above-discussed simplification is small and619

does not modify mCDRconteff by more than 2% and rarely more than 1% for any of the620

experiments. In NAS and WBC, northward and eastward flows, respectively, transport621

Alk-enhanced waters to regions with lower SSTs and higher mCDRpot, therefore the mCDRsoleff622

exceeds values of one. For the other three locations, horizontal transport results in a de-623

crease of mCDRconteff . In summary, we show that using the deployment site value of mCDRpot624

is appropriate for the experiments described here. Figure 7b shows the impact of sea-625

ice on mCDRconteff , as sea-ice cover inhibits air-sea CO2 exchange and limits mCDR ef-626

ficiency. The impact of sea-ice cover is substantial only in NAS during winter, as Alk-627

impacted waters are transported polarwards into seasonally ice-covered regions.628

3.3.2 Pulse OAE Experiments629

As described in Section 2.2.4, we use three targeted pulse OAE experiments for the630

NAS and ACC deployments. Each uses a different OAE deployment strategy, Yr1995,631

Jan1995, and Jul1995, to further understand how mCDReffdepends on the season of de-632

ployment. Figure 8 shows time series of mCDReffand mCDRexch (which is essentially633

a normalized net CO2 flux and is defined in Supporting Information Text S2).634

For the three NAS experiments (Figure 8a), the time evolution of mCDReff is highly635

dependent on the month of Alk deployment. By the end of simulation, Alk deployed in636

summer (Jul1995) reaches an efficiency of roughly 0.9 while winter deployment (Jan1995)637

is only slightly above 0.6; the efficiency of the annual deployment (Yr1995) lies between638

these two extreme values. In addition to seasonally-dependent efficiency for NAS, all three639

experiments show strong seasonality in mCDRexch, with the highest values occurring dur-640

ing spring; this coincides with the deepest MLD in the region surrounding NAS (see Sup-641

porting Information Figure S3).642

For the NAS experiments, seasonality of mCDRconteff and mCDRexch (Figures 6c and643

8a, respectively) are generally in phase, and track the seasonality of CO2 flux. However,644

mCDReff is not the highest for the deployment months associated with the highest CO2645

flux. Instead OAE deployment a few months prior to the maximum value of mCDRexch646
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Figure 8. Monthly-pulse and yearly-pulse experiments for (a) NAS and (b) ACC. Dashed

lines show mCDRexch (y-axis shown on left-hand-side of figure); solid lines show mCDReff (y-axis

shown on right-hand-side of figure).

is associated with the highest overall efficiency. In ACC, Jul1995 is associated with lower647

mCDReff compared to Jan1995, which is consistent with results in NAS, considering that648

these two locations are located in different hemispheres. The difference between these649

two experiments is only a few percent at the beginning of 2017, which also indicates a650

weaker seasonal cycle of mCDRconteff and mCDRexch.651

4 Results: mCDReff from Rapid-mCDR652

In this section, we first compare rapid-mCDR against ECCO-Darwin and discuss653

the difference in results when using the two horizontal-averaging methods described in654

Section 2.3. Then as an example use case, we use rapid-mCDR to understand how and655

why mCDR efficiency varies latitudinally across a section in the central Pacific Ocean.656
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4.1 Evaluation of rapid-mCDR against ECCO-Darwin for the 5 OAE657

Deployments658

Figure 9 shows a comparison of continuous mCDR efficiency, mCDRconteff , from rapid-659

mCDR against ECCO-Darwin for all five continuous OAE experiments. While the main660

output from rapid-mCDR is the OAE additionality, we prefer to show mCDRconteff as it661

disentangles the effect of mCDRpot. For each OAE experiment, both rapid-mCDR (De-662

ploy) and rapid-mCDR (HorAdv) simulations are performed. The compared quantities663

on Figure 9 include:664

1. Scatter plots of monthly-mean mCDRconteff between ECCO-Darwin and two rapid-665

mCDR versions. This provides a measure of the overall skill of rapid-mCDR in666

emulating CO2 uptake efficiency (left panel).667

2. Time series of mCDRconteff using a centered-running mean, showing possible bias668

in rapid-mCDR simulations (middle panel).669

3. Seasonal cycle of mCDRconteff , further indicating the skill of rapid-mCDR and pos-670

sible seasonal bias (right panel).671

In addition, Supporting Information Figure S5 shows the agreement of mCDRequil be-672

tween the two rapid-mCDR versions and ECCO-Darwin. This comparison demonstrates673

in a compact form the agreement in vertical transport of both Alk and DIC between rapid-674

mCDR and ECCO-Darwin.675

For NAS, Figure 9a shows that mCDRconteff from rapid-mCDR (HorAdv) agrees ex-676

tremely well with ECCO-Darwin for the entire duration of the OAE deployment. The677

coefficient of determination for the monthly-mean values is R2 = 0.9. The rapid-mCDR678

(HorAdv) slightly underestimates annual-mean values of mCDRconteff during the first part679

of the period, but this underestimation is less than 0.05. The seasonal cycle of mCDRconteff680

is extremely well simulated by this version of rapid-mCDR. As expected, rapid-mCDR681

(Deploy) does not agree as well with ECCO-Darwin and generally overestimates mCDRconteff682

during most of the simulation period, except for the first five years after start of the OAE683

deployment. While this overestimation is primarily due to winter period, as revealed by684

the comparison of the seasonal cycle, the overestimation remains present to some degree685

throughout the year. The winter overestimation is likely dominated by the absence of686

sea-ice for the rapid-mCDR (Deploy), which the ECCO-Darwin and rapid-mCDR (Ho-687
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rAdv) are impacted by. As discussed above, Figure 7b indicates that the spatial mean688

of sea-ice area taken over the deployment region can reach up to 0.15 in the winter pe-689

riod, which is expected to arrest winter CO2 uptake (and therefore mCDRconteff ) by roughly690

that fraction.691

For WBC (Figure 9b), both version of rapid-mCDR somewhat overestimate annual-692

mean mCDRconteff , where as expected, rapid-mCDR (HorAdv) better represents ECCO-693

Darwin. This is the case for time series of annual-mean values, as well as the coefficients694

of determination which are 0.90 and 0.76 for rapid-mCDR (HorAdv) and rapid-mCDR695

(Deploy), respectively; the seasonal cycle from both versions of rapid-mCDR well repro-696

duces ECCO-Darwin. For ACC (Figure 9c), both version of rapid-mCDR well reproduce697

all aspects of mCDRconteff , with rapid-mCDR (HorAdv) preforming better than rapid-mCDR698

(Deploy). The difference from the two rapid-mCDR versions is small, despite the OAE699

perturbation extending over a large meridional distance (Figure 5).700

For EU, the agreement of mCDRconteff between the two rapid-mCDR simulations and701

ECCO-Darwin is the poorest of all five OAE experiments, with a R2 of 0.74 for rapid-702

mCDR (HorAdv) and only 0.03 for rapid-mCDR (Deploy). The annual-mean compar-703

ison shows that rapid-mCDR (Deploy) is unable to well represent multi-annual variabil-704

ity, which is strong in this deployment location. rapid-mCDR (HorAdv) represents this705

multi-annual variability better likely due to capturing horzontal advection.706

In EBC, rapid-mCDR (Deploy) significantly underestimates mCDRconteff , especially707

after approximately a decade after the start of Alk deployment, while rapid-mCDR (Ho-708

rAdv) agrees somewhat better with ECCO-Darwin. The cause of this underestimation709

is likely similar as for the EU deployment, where after a number of years the OAE-impacted710

waters enter the tropical Pacific, which is strongly impacted by the ENSO variability.711

In Figure 10 we show the ability of rapid-mCDR to represent mCDR efficiency for712

the three pulse experiments for NAS and ACC, which were shown to strongly vary with713

deployment season.714

For NAS, rapid-mCDR agrees very well with ECCO-Darwin over the first five years715

after deployment and shows skill in representing seasonally-varying mCDReff as discussed716

above. By the end of the simulation period, rapid-mCDR somewhat overestimates mCDReff ;717

this overestimation is consistent for all three experiments. For ACC, mCDReff is over-718
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Figure 9. Continuous OAE experiments. Comparison of mCDRcont
eff from both versions of

rapid-mCDR against ECCO-Darwin. Left panels (a–e) show monthly-mean rapid-mCDR vs.

ECCO-Darwin and associated R2 values. Middle panels show time series using a 12-month

centered-running mean; right panels show monthly-mean values for a zoom in period during

the last 10 years of simulation. Blue and red lines represent rapid-mCDR (HorAdv) and rapid-

mCDR (Deploy), respectively. Black line in middle and right panels shows ECCO-Darwin results.
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Figure 10. mCDReff for monthly-pulse and yearly-pulse experiments in (a) NAS and (b)

ACC. Solid lines show ECCO-Darwin, dashed lines show rapid-mCDR (HorAdv).

estimated by rapid-mCDR — a result that is consistent with the continuous OAE ex-719

periments in this region. Rapid-mCDR predicts that by the end of the simulation pe-720

riod mCDReff approaches a value of one, which is roughly 0.1 larger than ECCO-Darwin.721

4.2 Expanding Rapid-mCDR to Ocean-basin Scales722

In this section, we provide an example use case of rapid-mCDR to characterize mCDReff723

across spatial and temporal scales that might be prohibitively expensive to examine with724

ECCO-Darwin. We also use rapid-mCDR to identify physical processes that adversely725

impact mCDReff .726

We simulate Alk deployment across the meridional extent of the Pacific Ocean, cen-727

tered on 165◦W. The deployment sites are spaced 1◦apart in latitude from 77◦S to 55◦N.728

This latitudinal range is chosen so that deployment sites represent open-ocean conditions.729

Each site covers a rectangular area of 10◦ wide in longitude and 3◦ wide in latitude; the730

central deployment site locations are shown on Fig. 11a. For all of these sites, we use rapid-731
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mCDR (Deploy) version of the model and where the inputs, which are taken from the732

baseline ECCO-Darwin simulation. At each deployment site, we performed three exper-733

iments using rapid-mCDR — these are equivalent to the three ECCO-Darwin pulse ex-734

periments discussed in Section 2.2.4: Yr1995, Jul1995, and Yr1995. As with ECCO-Darwin,735

these experiments are run until December 31, 2017 and the values of mCDReff are eval-736

uated at the end of simulation.737

Furthermore, to isolate the role of physical processes (vertical advection, vertical738

diffusivity, and sea-ice cover) on mCDReff , we performed three additional sets of rapid-739

mCDR sensitivity experiments to separate and quantify the impact of each of these fac-740

tors. These three sensitivity experiments are based on the Yr1995 experiment described741

above with the following modifications: 1) Yr1995-w0 is an experiment with vertical ve-742

locity set to zero, 2) Yr1995-k0 is an experiment with vertical diffusivity set to zero, and743

3) Yr1995-ice0 is an experiment with no sea-ice cover (i.e., open-water conditions).744

Figure 11b shows mCDReff for the Yr1995 experiment at the end of the simula-745

tion, plotted against central latitude of deployment site, along with profiles of time-mean746

vertical velocity and vertical diffusivity. Figure 11c shows profiles of normalized Alk per-747

turbation (i.e., ∆Âlk normalized by the maximum value of all experiments) at the end748

of simulation time to show the vertical extent of the OAE perturbation.749

We find that mCDReff is strongly dependent on deployment site location, with the750

largest values found in tropical regions, mid-latitude and polar regions in the southern751

hemisphere (between approximately 60–50◦S) and mid-latitudes in the northern hemi-752

sphere (between approximately 40–50◦N). The lowest values (less than 0.5) are gener-753

ally found in subtropical regions and in the northern extent of polar regions. Except for754

polar regions in the southern hemisphere, high mCDReff values are found at locations755

associated with significant ocean upwelling and outcropping and the lowest values are756

located in downwelling regions. Figure 11c shows that high values of mCDReff are as-757

sociated with Alk perturbations that remain close to the surface; for locations associ-758

ated with low values, Alk perturbations are either transported to depth or spread over759

a substantial vertical extent.760

Figure 12 shows mCDReff for the three deployment seasons (Figure 12a) and for761

the three sensitivity experiments (Figure 12b); these quantities are compared against the762

Yr1995 experiment (Figure 12a,b, black lines) and CDRpot and sea-ice cover (Figure 12c).763
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All quantities are plotted as a function of deployment site latitude. For locations in mid-764

latitudes and subtropical regions, there is strong dependence of mCDReffon the deploy-765

ment season. Summer months are generally associated with higher efficiency compared766

to winter, which is consistent with the pulse experiments results for NAS and ACC (see767

Section 3.3). The difference of mCDReffbetween the deployments in summer season reach768

up to 0.3 higher values than the deployments in the winter season.769

The experiments shown in Figure 12b demonstrate that for polar OAE deployment770

sites in the southern hemisphere, which are under the influence of seasonal sea ice, the771

ice cover efficiently prevents CO2 uptake and therefore these regions are associated with772

low values of mCDReff . Removing sea-ice cover in rapid-mCDR (Figure 12b, orange line)773

increases mCDReff to values close to one below roughly 50◦S. Therefore, our simulations774

suggest that mCDR efforts will be much less effective in this, and other ice-covered re-775

gions.776

From the two dominant ocean circulation processes, vertical velocity and diffusiv-777

ity, we find that vertical velocity dominates low-efficiency regions (i.e., the role of ver-778

tical diffusivity here is second order). There is only a small increase of mCDReff with779

respect to the Yr1995 experiment if the vertical diffusivity is set to zero (Figure 12b, pur-780

ple line). However, if the vertical velocity is set to zero mCDReffbecomes close to one781

for most of the deployment sites (Figure 12b, green line), except for ice-covered regions782

in the southern hemisphere. Figure 12c shows mCDRpot vs. latitude; the lowest values783

are found in the tropical/subtropical regions of the Pacific Ocean, with increasing val-784

ues towards the poles. The variability of mCDRpot over each deployment site is small785

(Figure 12c, gray shaded envelope) compared to the latitudinal variability.786
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Figure 11. (a) Location of rapid-mCDR deployment sites across the Pacific Ocean; (b)

mCDReff at the end of 2017 for Yr1995 experiment (solid black line), profile of mean verti-

cal velocity (colored contours), and vertical diffusivity (grayscale contour lines with units of

10−2 m2 s−1); (c) mCDReff at the end of 2017 for Yr1995 experiment (solid black line) and

normalized ∆Âlk (colored contours).

–37–



manuscript submitted to Global Biogeochemical Cycles

Figure 12. Pacific Ocean vertical sections of mCDReff at the end of 2017 for (a) 3 different

pulse deployment seasons (Jul1995, Jan1995, and Yr1995). (b) Experiment with vertical velocity

and diffusivity set to zero (Yr1995-w0 and Yr1995-k0, respectively) and simulation without sea

ice forcing (Yr1995-ice0). (c) Mean mCDRpotand variability over the deployment site (solid black

lines and gray shading, respectively); these are computed from daily-mean values and time-mean

sea-ice cover. All values are shown at the central latitude of the deployment site.
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5 Discussion787

In recent years, mCDR efforts via OAE have gathered considerable attention as a788

potential method for removing anthropogenic CO2 from the atmosphere. The OAE ap-789

proach mimics natural processes (Subhas et al., 2023) and has a potential to be scaled-790

up to significantly mitigate climate change (Renforth & Henderson, 2017). As the effi-791

ciency of OAE-based mCDR varies across different spatial and temporal scales, field de-792

ployments must be carefully planned to achieve maximum efficiency while minimizing793

cost and logistical risk. While a number of field methods, technical approaches, and ex-794

periment designs have been proposed (Eisaman et al., 2023), the use of numerical ocean795

models to simulate and quantify OAE impacts before expensive field trials occur, and796

provide much-needed MRV quantification (Ho et al., 2023), still remains in its infancy.797

While experiments and observations (Boyd et al., 2023) will be invaluable to in-798

form these efforts, environmentally- and societally-responsible OAE perturbations (Fakhraee799

et al., 2022; Nawaz et al., 2023) should modify the natural ocean carbonate and ecolog-800

ical state (Ferderer et al., 2022) only slightly compared to its natural variability. Our801

work shows that the impacts of OAE are spatially dispersed across ocean basins before802

the full CO2 potential is realized. Due to these two factors, it will be difficult if not im-803

possible to observe and separate actual OAE-deployment effects from natural ocean vari-804

ability. Therefore, the optimization of deployment strategies and their MRV will have805

to heavily rely on numerical models. Numerical models are also the ideal tool for explor-806

ing and quantifying efficiencies of potential mCDR deployment strategies before signif-807

icant investments in deployment infrastructure occur.808

In this paper, we use a state-of-the-art ocean biogeochemistry state estimate (ECCO-809

Darwin) constrained by a suite of in-situ and remotely-sensed observations, to quantify810

OAE additionality and to characterize the resultant 3-D ocean carbonate state pertur-811

bation attributed to regional-scale, multi-decadal 1) continuous and 2) month- and year-812

long surface-ocean Alk deployment. To our knowledge, ECCO-Darwin is the only open-813

source model at present time that is ideally suited for attribution of the ocean physical-814

sea-ice-biogeochemical state and OAE additionality. This is because of its unique data815

assimilation approach, which is a combination of adjoint-based (Wunsch et al., 2009; Wun-816

sch & Heimbach, 2013) and Green’s function (Menemenlis et al., 2005) approaches that817

constrains the dynamical, carbonate, and biogeochemical state with a suite of observa-818
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tions (Carroll et al., 2022). Thus ECCO-Darwin provides an accurate background state,819

and in particular, 3-D ocean physics, for studying the impact of mCDR over multi-decadal820

timescales. Furthermore, the data assimilation in ECCO-Darwin does not introduce non-821

physical observation-based nudging or increments which can conceal the impact of OAE.822

The alternative approaches include forward-only ocean-biogeochemistry models un-823

constrained by observations. These models typically exhibit larger biases in terms of ocean824

dynamics and carbonate cycle (e.g., Séférian et al., 2020; Fu et al., 2022) compared to825

the ECCO-Darwin solution described in Carroll et al. (2020, 2022). These model biases826

are expected to contribute to additional uncertainty and biases in ocean CO2 solubil-827

ity and dynamics, which are both important considerations for mCDR studies. Model-828

ing systems that assimilate either one or all of the components of the ocean system (e.g.,829

Perruche, 2018; Turner et al., 2023) are usually based on sequential data assimilation and830

correct simulated fields with observational increment. These data assimilation systems831

are geared towards the best representation of the ocean state, but conceal relationship832

between processes which introduces uncertainties in attribution studies, for example at-833

tribution of OAE additionality.834

Furthermore, we use our numerical ocean model results to motivate and develop835

a 1-D model for rapid quantification of OAE additionality (rapid-mCDR). Rapid-mCDR836

provides a user friendly and easily-deployable model for mCDR end-users that can be837

used across various ocean conditions without the need for supercomputing resources —838

which is a key advantage compared to more-complex ECCO-Darwin simulations. Com-839

bining the 1-D model approach with output from a numerical ocean biogeochemistry model,840

such as ECCO-Darwin, permits rapid characterization of mCDR additionality at any lo-841

cation in the global-ocean model grid, which can be a backbone for MRV purposes, as842

well as a tool for rapid comparison and optimization of different OAE deployment strate-843

gies. All of our experiments represent open-ocean deployments (rather than coastal sites).844

We are aware that many planned OAE field deployments will occur in coastal regions845

or from the nearshore zone, which might require additional model improvements and fea-846

tures.847

Similar to Wang et al., 2023, we separate mCDR efficiency into two factors con-848

trolling: 1) CO2 solubility (mCDR potential, mCDRpot; the maximum amount of CO2849

that can be sequestered per deployed Alk), and 2) dynamical efficiency (mCDReff ; a non-850
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dimensional function that represents a fraction of realized mCDRpotwith the time after851

deployment, which is dominated by ocean dynamics and sea-ice cover). We character-852

ize mCDRpot globally from two independent data sources, the 1) baseline ECCO-Darwin853

simulation and 2) OceanSODA-ETHZ dataset. The mCDRpot from both datasets shows854

similar features, including:855

• Meridional dependence dominated by increase of CO2 solubility with colder SSTs.856

This indicates that in the absence of dynamical effects, near-polar regions would857

be associated with the highest potential for CO2 removal.858

• Weaker dependence within the ocean basins dominated by meridional transport859

and vertical mixing associated with basin-scale boundary currents, river inflows,860

and sea-ice melt which impact the saturated surface-ocean CO2 state.861

• Seasonal variability is small for most regions; the highest seasonal variability is862

found in the mid-latitudinal regions and particularly in western boundary currents.863

• Despite substantial secular trends in CO2 uptake (Carroll et al., 2020), the lin-864

ear trend of mCDRpot remains below 0.01 mol C/mol Alk per decade, with min-865

imal interannual variability. We expect an overall decrease of mCDRpot in the fu-866

ture climate due to ocean warming and accelerated acidification.867

Compared to mCDR potential, evaluation of dynamical mCDR efficiency using ECCO-868

Darwin is computationally intensive – for each considered OAE deployment, a multi-decadal869

ECCO-Darwin simulation is run and mCDReff is computed from the additionality of CO2870

uptake with respect to the baseline simulation.871

We find that OAE simulations with continuous Alk deployment are well suited for872

a general characterization of regional mCDR efficiency, as these simulations can also pro-873

vide information on the seasonal cycle of OAE-induced CO2 uptake. Locations associ-874

ated with large seasonality are likely to exhibit sensitivity in mCDReff depending on the875

deployment season, which can be further quantified with targeted short-term (pulse) ex-876

periments. The main feature of dynamical mCDR efficiency are:877

• Regional-scale ocean circulation, and in particular vertical transport, exerts a strong878

control on the space-time distribution of mCDReff and taken together with mCDRpot879

are the first-order control on sequestration efficiency of OAE-induced atmospheric880

CO2 to depth.881
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• Downwelling/subduction regions are associated with low values of mCDReff and882

upwelling regions exhibit high mCDReff — this is because of the relatively long883

timescales of ocean-atmosphere CO2 equilibration (on the order of years) which884

takes place against the backdrop of shorter-scale ocean dynamics which can iso-885

late CO2 from non-equilibrated waters from the atmosphere.886

• In high-latitude regions, sea-ice cover can strongly reduce mCDReff due to block-887

ing of air-sea gas exchange.888

• For extratropical deployments, mCDReffcan be heavily dependent on the deploy-889

ment season — summer is generally associated with higher values.890

• Multi-annual variability in mCDReff is found for all deployment sites, and is par-891

ticularly significant in the Tropical and Equatorial Pacific Ocean.892

• For most of the studied deployments, OAE-impacted waters remain above 500 m893

depth for the duration of the 27-year long continuous experiments. The exception894

to this is NAS, in which the OAE perturbation reaches below 1000 m within roughly895

four years and eventually penetrates below 2000 m.896

We stress that care must be taken when relating the seasonal cycle of dynamical897

efficiency from continuous OAE experiments to the most efficient deployment season, as898

these are not the same. The seasonal efficiency from continuous OAE experiments in-899

dicates the seasonality of OAE additionality with the most-efficient deployment time of-900

ten being a few months prior to the season with the highest CO2 uptake.901

One of our deployment sites, NAS, is very close to the Iceland pulse experiment902

from (He & Tyka, 2023), for which they find a much lower efficiency compared to their903

other locations. Our experiments indicate that the time-mean mCDR efficiency of that904

location is comparable to the other sites examined in this study. The NAS location is905

however associated with large seasonal variability of mCDR efficiency, with very low val-906

ues during winter for which the deployment in (He & Tyka, 2023) was performed. There-907

fore, our results largely agree with (He & Tyka, 2023) and we further show that their908

results are heavily influenced by the seasonal cycle of mCDR efficiency.909

We find that the 1-D model rapid-mCDR can rapidly and realistically reproduce910

OAE simulations performed with a complete 3-D ocean biogeochemistry model. Futher-911

more, rapid-mCDR can be used to isolate and compare the individual processes that drive912

mCDR efficiency and thus provides additional benefits in terms of improving the phys-913
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ical understanding of mechanisms that control mCDR efficiency. The rapid-mCDR in-914

puts are horizontal mean fields from the baseline ECCO-Darwin simulation, which pro-915

vides a background information on the ocean state that is affected by OAE. We test two916

approaches with respect to the horizontal averaging method: 1) ocean fields are spatial917

means over the deployment site — the results of this approach neglect horizontal advec-918

tion of the OAE perturbation and 2) Surface-ocean advection is included and used to919

advect the OAE perturbation throughout the water column. We refer to the two approaches920

as rapid-mCDR (Deploy) and rapid-mCDR (HorAdv), respectively.921

The key findings using rapid-mCDR are:922

• We find good agreement with ECCO-Darwin in extratropical regions, especially923

when the horizontal advection is considered.924

• For tropical regions, interannual variability is poorly represented, especially for925

the rapid-mCDR simulation which neglects horizontal advection. We note that926

including horizontal advection improves its representation, although there is still927

room for improvement. We speculate that the horizontal advection of OAE per-928

turbation and strong spatial gradients in ocean dynamics surrounding the EU de-929

ployment site play an important role in controlling mCDReff , which can only be930

crudely represented by the 1-D rapid-mCDR model.931

• Ocean vertical velocity dominates over vertical diffusivity in its control on mCDReff .932

In high-latitudes, seasonal sea-ice cover can significantly decrease mCDReff .933

5.1 Future Model Improvements934

The ECCO-Darwin experiments shown in this work are idealized and we assume935

that surface-ocean Alk rate is known without consideration of a specific deployment method.936

Therefore, we suggest that future work tailoring numerical ocean simulations towards937

more-realistic deployment strategies might include:938

• Improved parameterization of interactions between the OAE material and seawa-939

ter to represent relevant processes for the particular deployment strategy and might940

include mineral dissolution and precipitation (e.g., Fennel et al., 2023).941

• Simulation of deployment via minerals and dissolution products, such as Si and942

Fe, which might interact with ocean biota (Bach et al., 2019). While there is un-943
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certainty in understanding of the response of major phytoplantkton types to in-944

creased Alk (e.g., Gately et al., 2023), ECCO-Darwin is well suited to account for945

dispersion of these products as the Darwin component can simulate their impact946

on key plankton functional types.947

• In the current version of ECCO-Darwin, air-sea CO2 flux in seasonally ice-covered948

regions is simplified — with CO2 flux being scaled by the fraction of open-water949

area, i.e., 1 - sea-ice cover. Future work should account for a realistic represen-950

tation of air-sea gas exchange through sea-ice cracks and leads (Loose & Schlosser,951

2011; Søren et al., 2011).952

• Developing regional downscaled set-ups of ECCO-Darwin on higher-resolution grids,953

or incorporation of unstructured grids in nearshore mCDR simulations (Ward et954

al., 2020), to improve resolution and representation of the coastal periphery and955

topography in the desired region. This will provide a better representation of ocean956

dynamics and help resolve small-scale coastal flows, which may be important for957

coastally-based deployment strategies.958

We envision that rapid-mCDR will continue to be a useful tool for quick and ef-959

ficient evaluation of potential OAE deployments or as the backbone for MRV. Future im-960

provements to rapid-mCDR might include:961

• Improved representation of horizontal advection and dispersion of OAE-impacted962

seawater. The rapid-mCDR simulations at all 5 deployment regions demonstrate963

improvements in terms of fit to ECCO-Darwin when surface-ocean advection is964

considered. We note that this improvement is particularly significant for tropical965

regions (EU). We suggest that two possible approaches could be used to improve966

rapid-mCDR accuracy in this regard: 1) an Eulerian approach where surface ad-967

vection is estimated using an offline calculation, for example with OceanPARCELS968

(Lange & van Sebille, 2017; Delandmeter & van Sebille, 2019) and 2) a Lagrangian969

approach where rapid-mCDR is coupled to a particle tracking model and solved970

at each point along the dispersal trajectory. This could be used to estimate the971

transport, sinking, and dissolution of minerals added to the surface ocean and in-972

form regional-scale Eulerian ocean model simulations.973

• Improving representation of bathymetry and its impact on the spread of OAE-impacted974

waters. The current version of rapid-mCDR is developed for the deep ocean and975
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we assume that the OAE impact does not spread to the seafloor. At the seafloor,976

rapid-mCDR could be coupled with a sediment diagenesis model, such as RADI977

(Sulpis et al., 2021), to account for sequestration of particulate carbon in sediment978

and the resultant fluxes between porewaters and the overlying seawater.979

• Parameterization of biogeochemical processes to tailor rapid-mCDR for other mCDR980

approaches, e.g., ocean afforestation/macroalgage growth, iron-fertilization, and981

enhanced phytoplankton growth.982

• Implement a module for uncertainty quantification of mCDR impact using a Monte-983

Carlo/ensemble approach.984

6 Summary and Conclusions985

Using a data-assimilative ocean biogeochemistry model (ECCO-Darwin), we have986

characterized the regional-scale efficiency of OAE additionality over seasonal to multi-987

decadal timescales. Using both pulsed and continuous OAE experiments at five distinct988

open-ocean deployment sites, this work highlights the strong role of three-dimensional989

ocean dynamics in transporting OAE-induced atmospheric carbon across ocean basins990

and to depth. We also develop a 1-D model approach (rapid-mCDR) that can be run991

on a personal computer to rapidly characterize OAE efficiency at any global-ocean lo-992

cation, with a single multi-decadal simulation taking only about 1 CPU minute. Rapid-993

mCDR can be readily expanded to other mCDR approaches, such as ocean afforestation994

and iron fertilization. Our foundational data-constrained modeling work provides a path995

forward for quantifying the global-ocean response to OAE deployments and can be used996

to develop high-resolution downscaled OAE simulations to complement and support fu-997

ture mCDR field trials.998
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Gaspar, P., Grégoris, Y., & Lefevre, J.-M. (1990). A simple eddy kinetic energy1088

model for simulations of the oceanic vertical mixing: Tests at station papa and1089

long-term upper ocean study site. Journal of Geophysical Research: Oceans,1090

95 (C9), 16179-16193.1091

Gately, J. A., Kim, S. M., Jin, B., Brzezinski, M. A., & Iglesias-Rodriguez, M. D.1092

(2023). Coccolithophores and diatoms resilient to ocean alkalinity en-1093

hancement: A glimpse of hope? Science Advances, 9 (24), eadg6066. doi:1094

10.1126/sciadv.adg60661095

Gent, P. R., & McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation1096

models. Journal of Physical Oceanography , 20 (1), 150–155.1097
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