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Motivation Results
Floods are extremely destructive and affect many people each year, such as Hurricane lan in 2022, which was responsible for over 150 deaths and over $112 billion in damage
(NOAA, 2023). Approximately 52% of the U.S. population lives in coastal watersheds (NOAA, 2013). Coastal watersheds are vulnerable to flooding hazards from both intense - | | Pluvial CondHtions | | |
rainfall and coastal storm surge (Bilskie and Hagen, 2018, Comer et al., 2017, Silva-Araya et. al, 2018). Floods can emerge from several driving forces such as pluvial, fluvial, or Node 1 ——Node2 —— Node3 ——Node4 ——Node 5 ——Node 6
coastal flood drivers (Bacopaulos et al., 2017, Serafin et al., 2019). When inundation occurs from a coastal flood driver and an additional pluvial or fluvial flood driver, it is . ]
considered a compound flood event. With the effects of climate change, coastal watersheds are expected to be subjected to additional flood stressors, such as sea level rise. =
Overview 8" ‘
We developed a coupled overland and river model for modeling compound flooding using the kinematic wave approximation on inland sections of an unstructured mesh, and the g o ]
diffusive wave approximation on riverine sections. A finite element method is used for spatial discretization and a Crank-Nicolson scheme is used for time discretization. A wetting E
and drying algorithm is implemented for improved efficiency in the model. Pluvial conditions and tidal conditions are implemented as source terms in the river model. i
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Case Study Conclusions and Future Work ol i
As a case §tudy, we used the same mesh In the analytlcal_(_:ase, but reduced the rainfall duration and introduced a Our results show that compound effects on an £ i
tidal condition as a downstream Neumann boundary condition. . . £ o5l )
unstructured mesh can be captured in the Continuous g \
| Galerkin Finite Element framework using the Em— !
. Flood Drivers S Idealized case study: combination of tidal conditions and lateral discharge. 215l :
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