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Abstract 25 

This study presents new seismic imaging of the Andean subduction zone through P-wave hybrid 26 

finite-frequency and ray-theoretical tomography. We measured both differential and absolute 27 

traveltimes using broadband seismic waveforms from stations in an array of ocean-bottom 28 

seismographs near the Chile Triple Junction (CTJ) and stations within 30° from the array. These 29 

data were combined with the global traveltime dataset to obtain a global P-wave velocity 30 

structure with a focus on central to southern South America. The new tomographic image 31 

showed the Nazca slab geometry as a continuous fast anomaly, which is consistent with seismic 32 

activity and prior slab models. Furthermore, two notable structures were observed: a broad 33 

extension of the fast anomaly beneath the Nazca slab at 26–35° S and a slow anomaly east of the 34 

CTJ. The checkerboard resolution and recovery tests confirmed the reliability of these large-35 

scale features. The fast anomaly, isolated from the Nazca slab, was interpreted as a relic Nazca 36 

slab segment based on its strong amplitude and spatial coincidence with the current Pampean and 37 

past Payenia flat slab segments. The slow anomaly near the CTJ was consistent with the 38 

previously inferred extent of the Patagonian slab window. Moreover, the active adakitic 39 

volcanoes are aligned with the southern edge of the anomaly, and the plateau basalts are located 40 

within the anomaly. Our model showed that the slow anomaly extended to a depth of up to 250 41 

km, suggesting a depth limit that the asthenospheric window can influence. 42 

Plain Language Summary 43 

The western margin of South America is one of the largest subduction zones on the Earth and 44 

has provided insights into the subduction dynamics of relatively young oceanic plates. We 45 

developed a new seismic P-wave velocity model beneath the Central to Southern South America 46 

using teleseismic traveltime tomography. Traveltime data picked from broadband seismograms 47 

and collected from the global catalog by the International Seismology Centre were used for the 48 

tomographic inversion. Our model shows mantle structure to the uppermost part of the lower 49 

mantle at a depth of ~1,000 km. The geometry of the Nazca slab in our model agrees well with 50 

other seismic imagings and slab models. Beneath the Nazca slab, a fast velocity anomaly was 51 

observed and interpreted as a relic Nazca slab segment. Moreover, strong, slow anomalies in the 52 

upper mantle were observed to be located on east side of where the actively spreading Chile 53 

Ridge is subducting. The extent of anomalies and comparison with volcanism suggest a depth 54 

limit that the asthenospheric window can influence of up to 250 km. 55 

1 Introduction 56 

The Chile Trench is a subduction zone more than ~7,000 km in length, where the 57 

Antarctic and Nazca plates are currently subducting eastward beneath the South America plate 58 

(Figure 1). The subduction system in Chile is characterized by a young, warm oceanic 59 

lithosphere that subducts less steeply, including horizontal flat-slab segments (e.g., Barazangi & 60 

Isacks, 1976; Cahill & Isacks, 1992; Suárez et al., 1983). The convergence rates along the trench 61 

are relatively constant at ~6.7 cm/yr at an azimuth of ~77º (DeMets et al., 2010). The age of the 62 

Nazca plate varies systematically along the Chile Trench, from 0 Myr at the Carnegie Ridge (~7° 63 

S) to 50 Myr at 20° S and 0 Myr at the Chile Ridge (Müller et al., 2008). At ~46° S, the Chile 64 

Ridge subducts against the Chile Trench to form the Chile Triple Junction (CTJ). This region is a 65 

unique example of the subduction of an actively spreading ridge. 66 
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 67 

Figure 1. Tectonic settings of the central to southern Andean subduction zone. The yellow 68 

triangles represent the broadband seismic stations from IRIS, and the orange square indicates the 69 

location of 12 Ocean Bottom Seismometers, which were used to measure traveltimes. Red circles 70 

indicate stations in the International Seismology Centre’s global traveltime data. Within the area 71 

of the anticipated Patagonian slab window, there are dense broadband stations that have not yet 72 

been included in ISC's global data. (a) Map of Central-Southern South America, showing Nazca 73 

slab contours of the Slab2 model as colored lines (Hayes et al., 2018), current plate boundaries as 74 

solid white lines (United States Geological Survey), and the primary aseismic ridges as dotted 75 

white lines. The yellow arrows indicate the motion of the Nazca and Antarctica plates relative to 76 

South America (DeMets et al., 2010). Slab2 model contours follow the depth color scale below. 77 

(b) Map of Southern Patagonia with the estimated extensions of the Patagonian slab window 78 

delineated by the black solid line (BT2009) as proposed by Breitsprecher & Thorkelson (2009). 79 

The black dotted lines, R50, R100, and R200, represent the iso-depths of the slab window edge 80 

according to the Vp anomaly contour by Russo et al. (2010). The red and blue triangles signify 81 

the basaltic and adakitic volcanism along the volcanic arc, respectively (Siebert & Simkin, 2002), 82 

while the green dots indicate the epicenters of the seismic event with magnitudes greater than 4, 83 

showing a seismic gap within the window. 84 

1.1 Subduction of Nazca Plate 85 

Seismic activity, volcanism, topography, and deformation along the western edge of 86 

South America exhibit significant variations along the trench strike. These variations are 87 

primarily attributed to complex geological processes associated with spatial and temporal 88 

changes in the geometry, dip angle, and behavior of the subducting Nazca plate (e.g., Chen et al., 89 

2019; Dávila & Lithgow-Bertelloni, 2013; Espurt et al., 2008; Kay & Coira, 2009; Martinod et 90 
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al., 2013; Ramos, 1999; Ramos & Folguera, 2009). In particular, the flat subduction of the Nazca 91 

plate has been attributed to its influence on the overriding plate, causing the cessation of arc 92 

volcanism, the uplift and deformation of the Andes, crustal thickening, and basement uplift over 93 

a broad area (e.g., Cristallini & Ramos, 2000; Kay & Mpodozis, 2002; Ramos et al., 2002). 94 

Understanding the character and behavior of the Nazca slab in comprehending the 95 

complexity and uniqueness of the subduction system of the Andean margin has prompted various 96 

seismic imaging studies in this region. Many regional teleseismic tomography studies have 97 

provided insights into the structure of the Nazca slab in the upper mantle, revealing features such 98 

as slab holes and tearing (Pesicek et al., 2012; Portner et al., 2017; Scire et al., 2016), 99 

lithospheric delamination (e.g., Bianchi et al., 2013), and variations in slab thickness (Scire et al., 100 

2017). More recently, continental-scale teleseismic tomography studies covering the lower 101 

mantle have improved the resolution and provided key constraints on the detailed structure of the 102 

Nazca slab (Ciardelli et al., 2022; Mohammadzaheri et al., 2021; Portner et al., 2020; Rodríguez 103 

et al., 2020). The observed behavior of the slab in global models is generally consistent with 104 

these regional models (e.g., Lu et al., 2019; Obayashi et al., 2013; Simmons et al., 2012). Such 105 

models show similar trends; for example, transitions from normal to flat subduction along the 106 

strike and dip directions, with the slab directly plunging into the lower mantle in the northern 107 

region of ~20° S.  108 

Flat subduction segments, which are unique features along the western margin of South 109 

America, have been extensively debated (e.g., Espurt et al., 2008; Gutscher et al., 2000; Manea 110 

et al., 2017; Marot et al., 2014; Ramos & Folguera, 2009). Three well-known flat slab segments 111 

exist: the Mexican (5°–8° N), Peruvian (5°–15° S), and Pampean flat slabs (26°–32° S). They lie 112 

horizontally for hundreds of kilometers before steeply subducting into the deep mantle, although 113 

their horizontal dimensions and flattening depths are different. The presence of flat-slab 114 

subduction has been reported based on seismicity (e.g., Barazangi & Isacks, 1976; Pesicek et al., 115 

2012), volcanism (e.g., Kay & Mpodozis, 2002), electrical conductivity analysis (e.g., Burd et 116 

al., 2013), and seismic imaging studies. The seismic velocity structures of flat slabs and their 117 

surrounding regions down to ~150 km and those in the upper mantle have been resolved by 118 

surface wave tomography (e.g., Celli et al., 2020; Feng et al., 2007) and regional body wave 119 

tomography (e.g., Gao et al., 2021; Portner et al., 2017; Scire et al., 2016), respectively. The 120 

locations of the flat-slab segments coincide spatially with the intersections of the aseismic ridges 121 

and Chile Trench. Consequently, it has been widely argued that the current Peruvian and 122 

Pampean flat slabs are associated with the subduction of the Nazca and Juan Fernández ridges, 123 

which originated from hotspot volcanism (Figure 1a, e.g., Gutscher et al., 2000; Kay & 124 

Mpodozis, 2002). Recent numerical modeling studies have revealed that the overriding 125 

continental plate thickness, plate kinematics, and/or asthenospheric dynamics may play essential 126 

roles in the development of flat-slab subduction and oceanic plateau subduction (Manea et al., 127 

2017; 2012, and references therein). However, the mechanisms and tectonics of flat-slab 128 

subduction remain controversial (e.g., Gao et al., 2021; Liu & Currie, 2019). 129 

Slow anomalies just below the Peruvian and Pampean flat slabs have been identified 130 

(Celli et al., 2020), and their interactions with the slab have been discussed (Rodríguez et al., 131 

2020). Several possible models have been proposed to explain these slow anomalies, including 132 

asthenospheric upwelling associated with locally thinned oceanic lithosphere related to the 133 

Nazca Ridge (Scire et al., 2016), the presence of volatile-rich subslab mantle flow, increased 134 

temperature and/or decompression melting due to small-scale vertical flow (Antonijevic et al., 135 
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2016), and the entrainment of hotspot material (Portner et al., 2017). Moreover, a high-velocity 136 

anomaly disconnected from the subducting Nazca slab was reported beneath the slab. 137 

Teleseismic shear wave tomography by Rodríguez et al. (2020) and full waveform inversion by 138 

Gao et al. (2021) detected a fast S-wave velocity anomaly beneath the Chile Trench in the 139 

latitude range of 25–35° S. They interpreted this anomaly as either a remnant of a completely 140 

subducted slab or a detached Nazca slab. However, the geometry and amplitude of non-slab 141 

seismic anomalies, including slow and fast subslab anomalies, vary widely among models and 142 

remain debatable. 143 

1.2 Patagonian Slab Window 144 

The actively spreading Chile Ridge has been subducting since the mid-Miocene (Figure 145 

1b, Breitsprecher and Thorkelson, 2009; Cande et al., 1987; Eagles et al., 2009), forming the CTJ 146 

and providing an important opportunity to study ridge subduction. Since the 1980s, numerous 147 

geological, geochemical, and geophysical studies have been conducted on the subduction of the 148 

Chile Ridge (e.g., Bangs & Cande, 1997; Gallego et al., 2010; Kaeding et al., 1990; 149 

Maksymowicz et al., 2012). These studies revealed that the subduction of the Chile Ridge 150 

segments has widespread effects on the overriding continent plate: the pronounced gap in the 151 

Patagonian volcanic arc and seismicity along the subduction zone (Agurto-Detzel et al., 2014; 152 

Cande & Leslie, 1986; DeLong et al., 1979; Gutiérrez et al., 2005; Ramos & Kay, 1992), 153 

adakitic volcanism near the slab edges (Bourgois et al., 2016; Stern & Kilian, 1996; Thorkelson 154 

& Breitsprecher, 2005), back-arc–like plateau basalts in Patagonia (Espinoza et al., 2005; 155 

Gorring et al., 1997; Ramos & Kay, 1992), geologically recent volcanic activity anomalously 156 

close to the trench (Forsythe et al., 1986; Lagabrielle et al., 1994; 2000), anomalous isotopic 157 

compositions of the lavas from the southern Chile Ridge (Karsten et al., 1996), obduction of the 158 

Plio-Pleistocene Taitao ophiolite (Bourgois et al., 1996; Lagabrielle et al., 2000; Nelson et al., 159 

1993; Veloso et al., 2005), anomalously large negative bouguer gravity anomaly and extremely 160 

high heat flow on the eastern side of the CTJ (Ávila & Dávila, 2018; Cande et al., 1987; Murdie 161 

et al., 2000), and positive dynamic topography (Boutonnet et al., 2010; Guillaume et al., 2009; 162 

2010; Mark et al., 2022). 163 

When a spreading ridge intersects a trench, the ridge-transform system is surrounded by a 164 

hot asthenospheric mantle as it descends. The ridge-transform system continues to spread, and no 165 

new lithosphere is formed along the subducted ridge. Consequently, the slab window, the gap 166 

between the edges of the subducted-ridge transform system, progressively expands (DeLong et 167 

al., 1979; Dickinson & Snyder, 1979; Groome & Thorkelson, 2009; Thorkelson, 1996; 168 

Thorkelson & Breitsprecher, 2005; Thorkelson & Taylor, 1989). Slab windows provide gaps 169 

through which the asthenospheric mantle can flow and mix, resulting in local thermal anomalies 170 

in the asthenosphere and strong chemical and physical effects on the surrounding mantle 171 

(Thorkelson, 1996; Thorkelson & Taylor, 1989). 172 

The formation of the Patagonian slab window commenced at approximately 18 Ma when 173 

the Chile Ridge began to subduct at approximately 54° S on the South American continent 174 

(Breitsprecher & Thorkelson, 2009). Since then, the window has gradually extended as the triple 175 

junction has migrated northward by approximately 1,000 km, with major ridge segments 176 

subducting at 14, 10, 6, 3, and 100 ka to the present (Bourgois et al., 2000; Breitsprecher & 177 

Thorkelson, 2009). The extent of the Patagonian slab window has been estimated using 178 

kinematic reconstruction (Breitsprecher & Thorkelson, 2009) and imaged using seismic 179 
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tomography as upper mantle low-seismic-velocity anomalies (Gallego et al., 2010; Mark et al., 180 

2022; Miller et al., 2023; Russo et al., 2010). 181 

Russo et al. (2010) first delineated the Patagonian slab window to a depth of 200 km 182 

using regional body-wave tomography with teleseismic data recorded on temporal seismic 183 

networks. Recently, Miller et al. (2023) enhanced the tomographic image of the Chile Ridge 184 

subduction using a technique similar to that employed by Russo et al. (2010) with a different 185 

dataset. Their results showed pronounced slow anomalies with an amplitude of ~3% between 186 

depths of 100 and 300 km on the east side of the CTJ, along with a fast anomaly interpreted as a 187 

young Nazca plate on its northern side. They discussed in detail the geometry of the subducted 188 

Nazca plate near the CTJ and proposed slab tears along the fracture zone among subducted 189 

Nazca plate segments. The results obtained from the kinematic reconstruction and seismic 190 

models are in good agreement. Previous body wave studies on slab windows focused on an area 191 

of hundreds of kilometers around the CTJ. Mark et al. (2022) provided an extensive image using 192 

Rayleigh wave tomography across the entire Patagonian slab window. They observed slow S-193 

wave velocities within a slab window at shallow depths and discussed the thermal erosion of the 194 

lithosphere in the young slab window. To comprehensively discuss the mantle response to slab 195 

window formation, a more extensive and deep seismic velocity structure that provides 196 

constraints on the full extent and depth of the window is required. However, other regional and 197 

global tomography models, which cover broader areas, have limited resolution in southern South 198 

America owing to the paucity of stations and low seismic activity. 199 

In this paper, we report a new three-dimensional P-wave velocity model beneath central 200 

to southern South America based on traveltime data measured using broadband seismograms 201 

collected in the target region and recent our seafloor observations near the CTJ. Our findings 202 

suggest two remarkable structures: fast anomalies beneath the Nazca slab and slow anomalies 203 

east to the CTJ. We then discuss the origin of the subslab fast anomalies and the extent of the 204 

Patagonian slab window based on these slow anomalies. 205 

2 Data 206 

An Ocean Bottom Seismograph (OBS) array was deployed directly above the CTJ for 207 

almost two years, from January 2019 to January 2021 (Ito et al., 2023). This OBS array 208 

comprised seven broadband OBSs and five long-term OBSs. We collected seismograms from 209 

~100 onshore broadband stations within 30° of the OBS arrays for the same period as the OBS 210 

observations via the Incorporated Research Institutions for Seismology (IRIS) Data Management 211 

Center (Figure 1a). Most of these onshore broadband stations are located along the Chilean coast 212 

between 25° and 55° S. Only a few stations are located in the interior and eastern passive 213 

margins as well as along the coast of Antarctica. Using the data from the OBS array and onshore 214 

broadband stations, we measured two types of traveltimes for tomography inversion: absolute P-215 

wave and finite-frequency differential P-wave traveltimes between every pair of stations. 216 

Absolute P-wave traveltimes were obtained using the Adaptive Stacking method 217 

(Rawlinson & Kennett, 2004). In this method, P-wave waveforms were first stacked along the 218 

predicted traveltime curve using the seismic velocity model IASP91 (Kennett & Engdahl, 1991) 219 

to calculate a reference trace. Subsequently, the alignment of the individual traces and stacked 220 

reference trace was iteratively improved by time-shifting each trace to minimize the misfit from 221 

the reference trace, leading to an estimation of the residuals from the model prediction. The 222 
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absolute traveltimes for each station were obtained by adding the time shift of each station from 223 

the reference trace to the onset time picked on the high-signal-to-noise ratio reference trace. 224 

Differential traveltimes were measured by cross-correlating band-passed seismograms for 225 

all possible station pairs. In this study, we measured the traveltimes for 10 frequency bands with 226 

center periods of 30, 21, 15, 10.6, 7.5, 5.3, 3.7, 2.7, 1.9, and 1.3 seconds. The differential 227 

traveltime is defined as the time shift between bandpassed waveforms at which the cross-228 

correlation function achieves the maximum value of the cross-correlation coefficient (Dahlen et 229 

al., 2000). The appropriate time windows were set to be sufficiently longer than the center period 230 

of each frequency band and to include the manually picked first arrival time. Measurements with 231 

correlation coefficients of 0.9 or higher were selected and visually confirmed. We obtained a 232 

total of 1,642 P-wave absolute traveltimes for 32 events during the OBS observation period and 233 

224,549 P-wave differential traveltimes for 25 events, as shown in Figure 2. Prior to the 234 

inversion, the traveltime residuals were corrected for topography and ellipticity. 235 

In addition to these regional data, global onset times from January 1964 to March 2020 236 

published by the International Seismology Centre (ISC) were obtained (Figure S1). We extracted 237 

events with a magnitude of ≥ 4.0 and several P observations > 50 and selected to be distributed 238 

as uniformly as possible in space and time. Traveltime data with residuals of 10 s or more were 239 

removed as outliers. Consequently, we obtained 31,011,580 traveltime data for approximately 240 

123,000 events. The ISC catalog contains data from short-period seismometers and broadband 241 

networks that are not available in the IRIS data management center, resulting in more stations in 242 

the eastern region than in the regional array. 243 

 244 

Figure 2. Distribution of the events (red stars) within a distance of 90º from the OBS array used 245 

to measure traveltimes. 246 

 247 
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 248 

Figure 3. Histograms showing traveltime residuals between the measured traveltimes from the 249 

broadband seismograms and the theoretical traveltimes calculated with the initial one-250 

dimensional velocity model. The initial one-dimensional model was derived through 251 

tomographic inversion using only ISC global data, involving the averaging of three-dimensional 252 

structures at each depth. The total number of (a) relative and (b) absolute traveltime data is 253 

approximately 220,000 and 1,600, respectively. 254 

3 Methods 255 

The tomographic inversion method followed Obayashi et al. (2013) and was based on 256 

Inoue et al. (1990). Starting from the initial model, the following steps were repeated until 257 

convergence was achieved: (1) relocation of all events; (2) calculation of traveltime residuals; (3) 258 

back-projection of traveltime residuals to the slowness perturbation model; and (4) refinement of 259 

the one-dimensional velocity model by spherical averaging of the slowness perturbations. 260 

The seismic velocity structure of the entire mantle was parameterized using a block 261 

model that divided the mantle into latitudes, longitudes, and depths. The horizontal block size 262 

varied from 0.625° × 0.625° to 5° × 5°, which was determined such that the total length of the 263 

rays passing through each block was as uniform as possible. Additionally, the areas bounded by 264 

30° S, 65° S, 55° W, and 80° W, which were the focus of this study, were parameterized with a 265 

minimum block size of 0.625° × 0.625°. The block configuration is illustrated in Figure S2. In 266 

the radial direction, the mantle was divided into 32 layers with thicknesses of 12, 68, and 334 km 267 

at the surface, uppermost, and bottom layers, respectively. 268 
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The initial three-dimensional P-wave velocity model was calculated by tomographic 269 

inversion using only onset time data from the ISC. Figure 3 shows the traveltime residuals of the 270 

regional datasets from the theoretical traveltime for the initial one-dimensional model obtained 271 

as the spherical average of the initial three-dimensional structures. All the events were then 272 

relocated using an initial velocity model. After relocation, traveltime residuals were calculated 273 

and back-projected onto the mantle as a slowness perturbation. In this study, we used inversion 274 

combining methods based on conventional ray theory (Inoue et al., 1990) and finite-frequency 275 

theory (Dahlen et al., 2000; Hung et al., 2000). The former approximates seismic waves with 276 

infinite frequency, whereas the latter considers frequency-dependent scattering and diffraction. 277 

Thus, the theory is valid for smaller inhomogeneities. In the ray-theoretical method, traveltime 278 

residual 𝛿𝑇 is a linear integral along the ray 𝑙 as follows: 279 

𝛿𝑇 = ∫ 𝛥𝑠𝑑𝑙  (1) 

where ∆𝑠 is the slowness perturbation. Because 𝛿𝑇 is sensitive to only velocity heterogeneity 280 

along the ray path, the computation cost is very low. In contrast, finite-frequency theory gives 281 

traveltime residual as a three-dimensional volume integral as follows: 282 

𝛿𝑇 = ∭
∆𝑠

𝑠̅
 𝐾 𝑑𝑞1𝑑𝑞2𝑑𝑙  (2) 

where 𝑞1, 𝑞2 are the coordinates perpendicular to the ray-path. K is the finite-frequency 283 

sensitivity kernel, which represents the sensitivity of the 𝛿𝑇 to three-dimensional mantle 284 

structure ∆𝑠/𝑠̅. This finite-frequency sensitivity kernel is like a “Banana–Doughnut” shape: 285 

sensitive in a region surrounding the unperturbed ray path and insensitive on the ray. Because the 286 

width of the sensitivity kernel depends on the wave frequency, this method can constrain the size 287 

of heterogeneity using traveltime data measured in different frequency bands. The differential 288 

traveltime residual is as follows: 𝛿(∆𝑇) = 𝛿(∆𝑇𝐵 − ∆𝑇𝐴), where ∆𝑇𝐴 and ∆𝑇𝐵 are traveltime 289 

residuals calculated by Equation 2 at different stations A and B, respectively. The differential 290 

sensitivity kernel 𝐾𝐵−𝐴 is the difference between the kernels for individual stations (Hung et al., 291 

2000). In this case, the differential kernel has strong sensitivity only directly below the station 292 

and is unaffected by the structure near the source because the overlapping parts of the two 293 

kernels are canceled out by subtraction. Sensitivity kernels were calculated using the method 294 

described by Dahlen et al. (2000). 295 

The equation of the back-projection of traveltime residuals is as follows: 296 

(
𝐆

𝐃
) 𝛿𝐦 = (

𝛿𝐝

−𝐃𝐦𝟎
) (3) 

where 𝐆 is the data kernel, 𝐃 is the smoothness kernel, 𝛿𝐦 is the improvement of the slowness 297 

perturbation model vector, 𝐦𝟎 is the initial model, and 𝛿𝐝 is the traveltime residual vector. A 298 

first-order smoothness prior was imposed. Solving this equation using the least-squares 299 

conjugate gradient method yielded a new three-dimensional model. The L2 norm Π to be 300 

minimized for Equation 3 is as follows: 301 

Π = ∑
1

𝜎𝑖
2 (𝑡𝑖

𝑜𝑏𝑠 − t𝑖
1D − ∑ 𝛥𝑠𝑘𝑙𝑖𝑘

𝑘

)

2

𝑖

+ ∑
1

𝜎𝑗
2 (𝑡𝑗

𝑜𝑏𝑠 − t𝑗
1D − ∑

𝛥𝑠𝑘

𝑠̅
 𝐾𝑗𝑘 𝑉𝑘

𝑘

)

2

𝑗

+  ∑ [
1

𝜎ℎ
2 (

∆𝑆𝜃

𝑟∆𝜃
 ∆𝑚𝜃

2 +  
∆𝑆𝜙

𝑟∆𝜙 𝑠𝑖𝑛𝜃
 ∆𝑚𝜙

2 ) + 
1

𝜎𝑣
2

∆𝑆𝑟

∆𝑟
 ∆𝑚𝑟

2]

𝑉

 (4) 

where 𝑖 and 𝑗 are the index of residuals and 𝑘 is the block index. 𝑙 is the length of the ray path 302 
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segments, and 𝑉 is the volume of each block. ∆𝜃, ∆𝜙, and ∆𝑟 are step widths in latitude, 303 

longitude, and radial direction, ∆𝑆 is the contact area of the adjacent blocks along the coordinate, 304 

and ∆𝑚 are the differences of adjacent slowness perturbations. There are some prior parameters; 305 

𝜎𝑖 and 𝜎𝑖 are the standard error of 𝑡𝑖, 𝜎𝑣 and 𝜎ℎ are the errors of the vertical and horizontal 306 

smoothness. The first and second terms in Equation 4 fit the model parameters to the data using 307 

ray and finite-frequency theories, respectively. The third term smooths the model with roughness 308 

parameters 𝜎𝑣 and 𝜎ℎ adopted from Obayashi et al. (2013). 309 

The ray theoretical method was applied to the regional absolute traveltimes and onset 310 

times from the ISC bulletin, and the finite-frequency method was applied to the differential 311 

traveltimes as a function of the frequency. It is technically straightforward to jointly invert finite-312 

frequency traveltime measurements with ray theoretical arrival times (Montelli et al., 2004). In 313 

addition, Obayashi et al. (2013) showed that the difference between models obtained using 314 

finite-frequency kernels and ray-theoretical kernels was negligible for onset times. Therefore, a 315 

high-resolution model can be obtained with a large amount of data while saving computational 316 

cost by using the ray-theoretical method for a huge amount of global traveltime and the banana–317 

doughnut kernel for finite-frequency traveltimes for the target region. 318 

4 Results 319 

4.1 Checkerboard Resolution Tests 320 

Checkerboard Resolution Tests (CRT) were performed to evaluate the resolution of the 321 

velocity structure obtained from the dataset. To examine the resolutions at different scales, two 322 

input models with horizontal pattern sizes of 2.5° × 2.5° and 5° × 5° were defined. The pattern 323 

changed vertically every three layers. Both input models were given slowness perturbations of 324 

amplitude ±2%. 325 

The outputs for the long-wavelength structure with 5° × 5° showed that the pattern was 326 

well recovered in the continental region down to a depth of approximately 1,200 km (Figure 4a). 327 

The input anomaly amplitudes (±2%) were fully recovered from above the transition zone to 328 

approximately 1,000 km depth, indicating good amplitude recovery at all of these depths. The 329 

high-resolution region where input anomalies were well reconstructed was along the west coast 330 

at a shallow depth of 110–150 km and extended east and west with depth. The 5° × 5° pattern 331 

was well-reconstructed on the South American continent below a depth of 300 km. Smearing 332 

artifacts elongated in a northwest to southeast direction were observed in the southeast area. 333 

Reconstruction of the 2.5° × 2.5° pattern indicated that the structures beneath the western part of 334 

the continental region were well resolved (Figure 4b). The patterns did not recover well south of 335 

~45° S and deeper than 800 km compared to the long-wavelength case. These results indicate 336 

that our model resolves velocity inhomogeneities greater than 250 km under the continent at 337 

depths as low as ~800 km. 338 

 339 
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 340 

Figure 4. Output models for checkerboard resolution tests using (a) 5º × 5º and (b) 2.5º × 2.5º 341 

patterns of slowness perturbations with an amplitude of ±2%. The green dots denote seismic 342 

stations and plate boundaries are represented by dark-green lines. The slowness anomaly is 343 

presented as a percentage deviation from the one-dimensional initial velocity model. 344 

 345 
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 346 

Figure 5. Depth slices of our final tomography model up to approximately 1,000 km depth. The 347 

red color indicates slower seismic velocity anomalies relative to the spherical averaged seismic 348 

velocity at each layer, while blue denotes faster anomalies. Detailed, enlarged views of the 349 

vicinity of the CTJ are shown in Figure 6. Event hypocenters within each depth layer are marked 350 

with white dots. The contour of the Nazca slab by the Slab2 model (Hayes et al., 2018) is 351 

denoted by magenta lines. Anomalies labeled “F1,” “S1,” and “S2” are described in the text. 352 

 353 
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 354 

Figure 6. Result model focusing on the vicinity of CTJ (black line area in Figure 6). The black 355 

dotted lines indicate contours of a slow anomaly stronger than 0.5% in the result model, in 356 

0.25% increments. The geometry of the Chile Ridge and associated fracture zones are projected 357 

to depth, as shown by dark-green dotted lines. Previously estimated slab windows, according to 358 

Russo et al. (2010) and Breitsprecher & Thorkelson (2009), are included for comparison. 359 

 360 
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 361 

Figure 7. Cross sections of the resulting model approximately perpendicular to the trench strike 362 

along a–i are delineated in the map. Two black dashed lines represent the 410 and 660 km 363 

seismic discontinuities, respectively. White dots denote the hypocenters of seismic events. The 364 

top surface of the subducting Nazca slab of the Slab2 model (Hayes et al., 2018) is denoted by 365 

magenta lines. The topography along the profile is shown above each cross-section. Anomalies 366 

“F1,” “S1,” and “S2” are labeled following the text. 367 

 368 

4.2 Tomography Model  369 

The horizontal and cross sections of our final tomography model are shown in Figures 5–370 

7. These figures represent slowness perturbations in percentages, which are the residuals of the 371 

average slowness at each depth layer divided by the spherical average slowness. The traveltime 372 
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data measured using the regional data revealed detailed structures of the region from latitudes of 373 

25° S to ~55° S. (Figure S3).  374 

The most notable structure in the northern part is the fast anomalies extending in a north-375 

south direction. These fast anomalies are consistent with the Wadati–Benioff zone in the upper 376 

mantle and the geometry of the Chile Trench and thus can be interpreted as the subducted Nazca 377 

slab. In the upper mantle, the Nazca slab anomaly is relatively narrow, with a horizontal width of 378 

less than 200 km perpendicular to the trench. Up to a depth of 1,000 km, the slab was 379 

continuously observed as a region where the negative slowness perturbation was approximately 380 

0.65% or stronger. These anomalies shift eastward with increasing depth and can be interpreted 381 

as cold lithospheric subduction at a certain dip angle. At 37–40º S between the depths of 150 and 382 

300 km, the fast anomaly is weakened, as if the slab breaks off (Figure 7e). These local decreases 383 

in the slab anomaly amplitude are considered to be mainly attributed to the low resolution due to 384 

lack of the ray paths. In addition, no strong, fast anomaly was observed south of 40° S at the 385 

expected slab position shallower than 200 km, whereas it was continuously resolved on the 386 

deeper side (Figure 7f). This can be attributed to the low seismicity and few stations in the 387 

southern part and/or to the fact that the slab is very young and relatively warm. The pattern of 388 

slab subduction varied significantly along the trench. At latitudes of 20°–26° S, the slab subducts 389 

at a constant dip angle (approximately 15°–20°) from the Chile Trench to the mantle transition 390 

zone and is stagnant horizontally for more than 1,000 km in the mantle transition zone. In 391 

contrast, in the range of 28°–32° S, the slab lies horizontally for more than 300 km at a depth of 392 

approximately 130 km and then abruptly subducts with a larger dip angle. Further south, no slab 393 

bending associated with flat subduction was observed. These features are consistent with those of 394 

previous studies on the Nazca slab geometry (Ciardelli et al., 2022; Mohammadzaheri et al., 395 

2021; Portner et al., 2020). 396 

Three prominent strong anomalies were observed around the subducted Nazca slab: (1) 397 

slow anomalies between 20° and 32° S in the mantle transition zone (S1 in Figure 5), (2) fast 398 

anomalies beneath the Nazca slab at depths of 300–800 km between 26° and 35° S (F1 in Figure 399 

5), and (3) strong slow anomalies on the eastern side of the CTJ (S2 in Figure 5). The location of 400 

the S1 anomalies is generally consistent with Portner et al. (2017), who interpreted the slow 401 

anomalies as a warm asthenospheric mantle derived from a hotspot entrained by Nazca plate 402 

motion, although the S1 anomalies were weaker and narrower. 403 

The F1 anomalies are approximately parallel to the bottom of the Nazca slab; however, 404 

the deeper and southern parts of the F1 anomalies approach the Nazca slab, and their separation 405 

becomes unclear. The amplitude was less than that of the Nazca slab anomaly at all depths, with 406 

a maximum amplitude of 1.06% at the top of the mantle transition zone at 28.5° S. In the upper 407 

part of the transition zone, F1 extended 800 km along the trench direction, with an approximate 408 

width of 300 km. It extended to the south, reaching a north-south length of 1,200 km just below 409 

the transition zone. These large fast anomalies have been observed in prior teleseismic studies, 410 

with amplitudes equal to or slightly weaker than those of the Nazca slab (Pesicek et al., 2012; 411 

Portner et al., 2020), but there are discrepancies in their distributions. Pesicek et al. (2012) 412 

observed weak (~1.0%) fast anomalies from 37° S to 40° S at depths ranging from 200 to 800 413 

km, whereas Portner et al. (2020) showed strong (~2.0–3.0%) fast anomalies from 24° S (depths 414 

of 300–800 km) to 38° S (depths of 500–1,000 km). 415 

In the vicinity of the CTJ, notably slow anomalies (S2 in Figures 5 and 7g–i) were 416 

observed, with a maximum perturbation of 1.6% at ~48° S in a depth slice of 110–148 km. These 417 
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anomalies were bounded on the west side by the trench and extended southeast to 54° S with a 418 

gradually decreasing amplitude. The region of strong anomalies shifts eastward with depth, 419 

suggesting that S2 dips eastward. S2 was observed continuously up to a depth of 350 km. Based 420 

on its location, S2 can be interpreted as a slow anomaly associated with a Patagonian slab 421 

window. S2 is generally consistent with previous studies of regional teleseismic P-wave 422 

tomography near the CTJ (Miller et al., 2023; Russo et al., 2010) and a recent Rayleigh wave 423 

dispersion analysis (Mark et al., 2022). Active adakitic volcanism (Stern & Kilian, 1996) is 424 

located at the southern edge of S2. As noted above, the Nazca slab, which was expected to be on 425 

the north side of the slab window, was imaged as a less anomalous region surrounded by slow 426 

anomalies to the west and south. The southern side of S2 (48°–52° S), the Antarctic slab, which 427 

is expected to exist up to a depth of 45 km (Breitsprecher & Thorkelson, 2009), was not clearly 428 

represented in the resulting velocity model. Although weak fast anomalies were observed at a 429 

depth of 50 km, we did not interpret them because of low ray path coverage and weak amplitude. 430 

4.3 Synthetic Recovery Tests 431 

In addition to checkerboard resolution analysis, we performed synthetic recovery tests in 432 

which synthetic structures were reconstructed to examine how well the given structures were 433 

recovered using the dataset used in this study. Synthetic P-wave traveltime and differential 434 

traveltime data of all event-station pairs used in the tomographic inversion were calculated for 435 

the given test structures and then inverted to recover the test model. This test was applied to 436 

assess the reliability of three notable structures: the Nazca slab, the subslab fast anomaly (F1), 437 

and the slow anomaly associated with the Patagonian slab window (S2). 438 

The first synthetic recovery test was conducted on a Nazca slab. Based on the resulting 439 

velocity model, we constructed synthetic fast anomaly structures for the Nazca slab, in which a 440 

uniform fast anomaly of 2% was given. The recovered model is shown in Figure 8a. The 441 

geometry of the fast anomalies in the recovered model was in accordance with that of the test 442 

model, although the recovered intensity varied regionally. North of 30° S, approximately 100% 443 

of the amplitude of the input slab model was recovered at all depths. South of 30° S, the 444 

recovered amplitude was smaller than that of the input model at a depth range of 200–400 km 445 

and in the lowermost mantle transition layer. The results of this test and the CRT suggest that the 446 

abrupt decrease in the fast anomaly intensity of the Nazca slab to the south of 30° S reflects poor 447 

resolution, whereas the configuration of the Nazca slab is well-constrained. Furthermore, weak, 448 

slow anomalies appeared around the slab, indicating that caution should be exercised when 449 

interpreting low-velocity anomalies with small amplitudes around slabs. 450 

Another synthetic test was performed to examine the resolution of subslab fast anomalies 451 

(F1). The input model was constructed by adding fast subslab anomalies to the synthetic Nazca 452 

slab used in the previous recovery test. We tested two different subslab fast anomalies with 453 

amplitudes of 2%, which were the same as those of the synthetic Nazca slab and 1% (Figures 8b 454 

and c). In both cases, the shape and amplitude of the input subslab anomalies recovered well, 455 

indicating that the intensity of the F1 anomalies was significantly lower than that of the Nazca 456 

slab at the same latitude. Slow anomalies appeared between the Nazca slab and F1 in the 457 

recovered models, suggesting that those in the resulting model were artifacts. 458 

Synthetic recovery tests were also conducted to slow anomalies associated with the slab 459 

window. The synthetic slab window was defined based on areas with slowness perturbations 460 

greater than the thresholds in each layer (0.7% in the shallowest layer and 0.3% in the deepest 461 
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layer at a depth of 350 km) in the resulting model and assigned a slow anomaly of 3%. To assess 462 

the depth of the slow anomalies, we created three input models with different bottom depths 463 

(approximately 150, 240, and 350 km) of slow anomalies. The recovered models showed a 464 

smearing of up to two layers from the bottom of the given slow anomalies in all cases, indicating 465 

that the actual vertical extent of the structure could be shallower than the deepest layer of the 466 

resulting model (Figure 9). Our final tomographic model best matched the model recovered from 467 

input anomalies down to 240 km. In addition, the horizontal spread of the slow anomalies was 468 

tested using two different input models (Figure S4). One was the maximum distribution, based 469 

on the slab window predicted by the plate reconstruction model (Breitsprecher & Thorkelson, 470 

2009), and the other was the minimum extent, based on a slow area at a depth of 110 km in the 471 

resulting velocity model. The amplitude of the input velocity anomaly was 3% in both cases. The 472 

western and north-south extents were well constrained for the most part, but the eastern edge 473 

could not be constrained because of the lack of stations to the east. 474 

 475 

Figure 8. Results of synthetic anomaly recovery tests for Nazca slab and subslab fast anomaly. 476 

The traces for cross sections are shown as a red line in the left map. These tests are for (a) Nazca 477 

slab anomaly (2%), (b) Nazca slab anomaly (2%) with F1 anomaly (2%), and (c) Nazca slab 478 

anomaly (2%) with F1 anomaly (1%). The dotted black line outlines the input uniform anomalies 479 

in all panels. 480 

 481 
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 482 

Figure 9. Results of synthetic anomaly recovery test for the vertical smearing of S2 anomaly for 483 

alternate depth layers. Tests are conducted for slow anomalies with an amplitude of 3% up to a 484 

depth of approximately (a) 150 km, (b) 250 km, and (c) 350 km. In (a)–(c) panels, the dotted 485 

black line outlines the input anomaly. (d) For comparison, the final tomography model is in the 486 

same horizontal section. 487 

 488 
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5 Discussions 489 

5.1 Subslab Fast Anomaly Beneath the Nazca Slab 490 

An evident high-velocity anomaly (F1) was observed beneath the Nazca slab between 26° 491 

and 35° S (Figures 5, 7b–d, and 10b). F1 is isolated from the Nazca slab fast anomaly and 492 

extends to depths of 300–900 km between the latitudes of 26–33° S, where the flat Nazca slab is 493 

located, although it approaches the Nazca slab southward. South of 33° S, in the region of 494 

normal Nazca slab subduction, F1 is situated in and below the transition zone and gradually 495 

becomes one with the Nazca slab. The amplitudes of the F1 anomalies were smaller than those of 496 

the Nazca slab anomalies over the entire F1 range. Such fast anomalies beneath the Nazca slab 497 

have been observed in previous global and regional tomographic studies, albeit with varying 498 

sizes, geometries, and amplitudes (Amaru, 2007; Li et al., 2008; Mohammadzaheri et al., 2021; 499 

Pesicek et al., 2012; Portner et al., 2017; Scire et al., 2017; Simmons et al., 2012). 500 

Recently, several interpretations have been proposed for the F1-like fast anomalies. 501 

Rodríguez et al. (2020) found a fast anomaly beneath the Chile Trench in the latitude range of 502 

25–35° S, with a depth of 200–1,000 km, using teleseismic shear wave tomography, and 503 

attributed it to a remnant of the Phoenix slab that was detached and stagnated in the mantle 504 

transition zone. Gao et al. (2021) estimated the S-wave velocity structure in the upper mantle 505 

through full waveform inversion and detected a high-velocity anomaly at a depth range of 200–506 

350 km at locations similar to F1. They interpreted this anomaly as a fossil fragment of the 507 

Nazca slab that subducted steeply before the onset of flattening. They also argued that it is not 508 

appropriate to interpret this anomaly as a relic of the Phoenix plate, which was completely 509 

subducted by the Late Cretaceous (Gianni et al., 2018; Horton, 2018). Our model suggests that 510 

F1 corresponds to a detached segment of the Nazca slab associated with flat slab subduction for 511 

several reasons. 512 

The range of F1 values observed in the resulting model was in good agreement with the 513 

locations of the current and past flat-slab segments. The northern edge of F1 (~26° S) is 514 

consistent with the Pampean flat-slab segment, which has been flat since 12Ma when the Juan 515 

Fernández Ridge was subducted (Horton, 2018). South of the current Pampean segment, the 516 

magmatic distribution, tectonic evolution, and structure of the overriding plate indicate that flat-517 

slab subduction (Payenia flat slab) occurred from 13 to 5 Ma but is currently subducting 518 

relatively steeply (Ramos & Folguera, 2009). Although the eastern edge of the current 519 

downgoing slab in this region is still debated, it is continuous to at least ~60° W in our resulting 520 

model. The coincidence of the locations between the F1 anomaly and flat slabs indicates that the 521 

F1 anomaly may have been the relic Nazca slab that detached when slab flattening occurred (12–522 

13Ma). 523 

Slab break-off associated with the flat-slab subduction process has been debated in 524 

geodynamic models for both steep-to-flat (e.g., Axen et al., 2018; Liu & Currie, 2016; 2019) and 525 

flat-to-steep (e.g., Dai et al., 2020) transitions. In the case of a steep-to-flat transition, assuming 526 

that flat subduction originates from the trench-forward fast migration of the overriding 527 

continental plate and the subduction of a buoyant oceanic plateau, the oceanic lithosphere on the 528 

continental side is under tensional stress owing to the competing effects of the dense slab and 529 

buoyant oceanic plateau. This extensional stress can lead to slab break-off, in which a dense slab 530 

segment is detached. After the break-off of a dense slab, the oceanic lithosphere with a buoyant 531 

plateau is deflected upward to a sub-horizontal position near the base of the continental 532 
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lithosphere (Liu & Currie, 2016). Flat-slab subduction is generally unstable and eventually 533 

transitions to normal (steep) subduction via slab rollback or delamination (Dai et al., 2020). Slab 534 

rollback or delamination can occur if the slab becomes denser due to eclogitization after it has 535 

existed for a sufficient time at suitable pressures and temperatures for phase change. 536 

Additionally, the partial eclogitization of an oceanic plateau before or after flat subduction may 537 

play an important role in the sinking of broke-off slab segments and their timing (Arrial & 538 

Billen, 2013; Liu & Currie, 2016, 2019). 539 

If the slab break occurred at the beginning of the slab flattening at the Pampean and 540 

Payenia (12–13 Ma), the Nazca slab should have been at least as long as the slab had been 541 

subducted. The paleo-convergence rate between the Nazca and South America plates is 542 

estimated to be 10–12 cm/yr for the period 25–5 Ma (Cande & Leslie, 1986), while the current 543 

convergence rate is ∼7 cm/yr (DeMets et al. 2010). Assuming these convergence rates, the slab 544 

length, subducted for 13M years, is 1,150–1,310 km. These values are not significantly different 545 

from the ~1,500 km long fast anomalies of the Nazca slab extending from the Chile Trench to 546 

the mantle transition zone in our model. Furthermore, the South American trench has been 547 

retreating westward over a long period, and the reconstruction model suggests that it has 548 

retreated 240 ± 50 km since 12 Ma (Liu & Currie, 2019; Schepers et al., 2017). Therefore, if the 549 

Nazca slab break-off associated with slab flattening occurred near the trench at that time and the 550 

detached slab segment subsided vertically, the slab fragment would be expected to be several 551 

hundred kilometers east of the present-day trench location. This was consistent with the location 552 

of F1 in the model. 553 

However, the temperature difference between F1 and the Nazca slab, which is estimated 554 

from the fast anomaly intensities, does not suggest that F1 was caused by slab detachment due to 555 

the subduction of the spreading ridge. The history of subduction in this region is associated with 556 

complex tectonics, resulting primarily from spreading between the Pacific, Phoenix, Antarctic, 557 

and Farallon plates since at least 84 Ma. The Farallon–Phoenix Ridge began to subduct beneath 558 

South America at ~63 Ma, although its latitude along the trench is still under debate (Cande & 559 

Leslie, 1986). At ~27 Ma, the Farallon plate was split into the Nazca and Cocos plates. The 560 

Nazca–Phoenix Ridge continues to spread and subduct beneath South America. At ~18 Ma, the 561 

triple junction of the Nazca, Phoenix, and Antarctic plates began to subduct, and after ~10 Ma, 562 

the Nazca–Phoenix Ridge completely subducted, leaving only a triple junction between Nazca, 563 

Antarctica, and South America (Breitsprecher & Thorkelson, 2009). This tectonic history 564 

suggests that spreading ridge subduction in the F1 region extended back to at least ~50 Ma 565 

(Gianni et al., 2018). 566 

Assuming that the anomaly amplitude is sufficiently recovered based on the results of the 567 

synthetic recovery test, the maximum amplitude of the anomaly is ~1.0% for F1 and ~2.0% for 568 

the subducted Nazca slab at F1 depth. The seismic velocity anomaly was related to the 569 

temperature anomaly using the following equation (Karato, 1993): 570 

𝜕𝑇 = (
𝜕𝑙𝑛𝑣0

𝜕𝑇
−

𝐻∗

𝑄𝜋𝑅

1

𝑇2
)

−1 𝜕𝑣

𝑣
 (5) 

where 𝑇 is temperature, 𝑣 is seismic velocity, 𝐻∗ is activation enthalpy, 𝑄 is a seismic quality 571 

factor and 𝑅 is gas constant. In the upper part of the transition zone, a difference in velocity 572 

anomaly of 1% between the F1 and the Nazca slab corresponds to a temperature difference of 573 

approximately 210 K with 𝜕𝑙𝑛𝑣0 / 𝜕𝑇 = 5.27 ×  105 1/𝐾 (Karato, 1993), 𝑇 = 1,938 𝐾 574 

(Katsura, 2022), 𝑄 = 143 (PREM: Dziewonski & Anderson, 1981), 𝐻∗ = 80 𝐾𝐽/𝑚𝑜𝑙 (Dai & 575 
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Karato, 2009) and 𝑅 = 8.13 𝐽/(𝐾・𝑚𝑜𝑙). From numerical simulations, it takes ~30 Myr for the 576 

stagnant slab to warm to 200 K in the transition zone, although this time highly depends on the 577 

properties of the slab and the surrounding mantle (e.g., Motoki & Ballmer, 2015). Therefore, if 578 

F1 was a detached Phoenix plate, the amplitude of its fast anomaly should be much smaller while 579 

remaining stagnant in the transition zone for approximately 50 Myr. 580 

Although we focused on F1 anomaly in this paper, the resulting model also resolved the 581 

geometry of the Nazca slab clearly, offering insights into its evolutionary patterns. As seen in 582 

synthetic recovery tests, the Nazca slab anomaly had a reduced amplitude toward the south due 583 

to limited ray sampling. Such changes in resolution with location should be considered; however, 584 

we may be able to speculate the noted variations in slab geometry as the proxy for variation of 585 

sunken slabs over time. The strike and subduction rates along the Chile Trench south of 20° were 586 

relatively constant, while the age of the oceanic plate becomes younger to the south. Therefore, 587 

in a simplified view, the southern cross-section represents the slab’s condition after a longer 588 

period since its subduction. Figure 7d and e show that the F1 anomaly was interrupted in the 589 

upper mantle as if the slab had detached. Moreover, the lower part of the slab continued deeper 590 

to the south, giving the idea that the slab had detached and then was gradually sinking. In 591 

contrast, on the east side of the upper slab there was a horizontally lying high velocity anomalies. 592 

These were not continuous to the surface and therefore they were unlikely to be high velocity 593 

anomalies associated with cratons influences observed in the north region (Rocha et al., 2011). 594 

Although it was difficult to completely separate the horizontal smearing from the slab anomaly 595 

in our final model, these structures, together with future numerical calculations and geophysical 596 

observations, will contribute to understanding of the development of the Nazca slab. 597 

5.2 Patagonian Slab Window 598 

Our model showed a prominent low-velocity anomaly (S2) in the putative extension of 599 

the Patagonian slab window on the eastern side of the CTJ (Figures 6 and 10). The strongest 600 

anomaly was ~1.6% at a latitude of ~48° S and a depth of ~130 km. The center of S2 coincided 601 

with the approximate location of the spreading ridge segment between the Tres Montes and 602 

Esmeralda fracture zones (green dotted line in Figure 6). The northern and western edges of S2 603 

are bounded by the extension of the Taitao transform fault and CTJ, respectively, which 604 

constrain the edge of the Patagonian slab window. The eastern end was not well-constrained by 605 

our model because of its low resolution, as indicated by the synthetic recovery test. Further 606 

measurements extending east of our study region would help illuminate the easten edge of the 607 

Patagonian slab window. North of ~50° S, the western edge of S2 is consistent with prior 608 

imaging and the inferred extension (Breitsprecher & Thorkelson, 2009; Mark et al., 2022; Russo 609 

et al., 2010). South of ~50° S, the southern edge of the low-velocity anomaly is farther north than 610 

that predicted by the kinematic reconstruction at depths shallower than 100 km, but is generally 611 

agrees with the prediction at depths deeper than 100 km. Considering the results of the synthetic 612 

recovery test, the resulting velocity model indicates that the low-velocity anomalies associated 613 

with the slab window are continuous up to a depth of at least 200 km and do not extend to depths 614 

greater than 300 km. 615 

At the surface, the active adakitic volcanoes in southern Patagonia are considered to be 616 

the result of partial melting of the trailing young plate edges of a slab window margin that lines 617 

the southern edge of S2. The S2 area also agrees with the proposed volcanic gap, which suggests 618 

that there is no dehydration from the slab and that the upper mantle in this region may be highly 619 
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depleted and have a low water content (Ben-Mansour et al., 2022; Ramos & Kay, 1992). In the 620 

back-arc region, S2 covered the distribution of plateau lavas younger than 3.3 Myr. These 621 

plateau lavas originate from decompression melting of the subslab asthenosphere through the 622 

slab window (Gorring & Kay, 2001). 623 

The anomalously slow seismic velocities observed within the Patagonian slab window 624 

have been attributed to high temperatures caused by mantle upwelling, which compensates for 625 

the window and thermal erosion of the lithospheric mantle (Mark et al., 2022). Mantle upwelling 626 

in the area of the window is supported by studies on extensive Neogene Patagonian plateau lavas 627 

(e.g., Gorring et al., 1997), and net upflow can occur through the window depending on 628 

differential density, rheology, or pressure (Thorkelson, 1996). The slow anomalies throughout S2 629 

indicate that the slab window was filled with hot material from the deeper mantle at depths of up 630 

to 250 km. The estimated depth range of the slab window also agrees with the vertical extent of 631 

the slab gap, to which upwelling can occur in the laboratory model (Király et al., 2020). In 632 

contrast, Sanhueza et al. (2023) recently conducted a numerical modeling study on the 633 

geodynamic processes caused by ridge subduction at the CTJ and suggested that asthenospheric 634 

upflow could only occur for a short time (~2 Ma) associated with the beginning of window 635 

opening. Instead, they proposed that horizontal flow from the oceanic mantle to the continental 636 

mantle might be more efficient for temperature changes. In addition, shear wave splitting 637 

analyses showed a strong EW fast direction in the vicinity of the CTJ, indicating vigorous mantle 638 

flow through the window (Russo et al., 2010; Ben-Mansour at el., 2022). Since the Chile Ridge 639 

began to subduct at around 54˚S at 18Ma, the CTJ has been migrating northward over time. 640 

Therefore, the north-south change in the crosssections can be interpreted as a proxy for the time 641 

lapse since the ridge axis was subducted. Figures 7g–i showed that the amplitude of S2 becomes 642 

smaller to the south and gradually shifts to the east. This structure may implies that the slow 643 

anomalies are like high-temperature anomalies that were generated just after the ridge subduction 644 

and are gradually weakening, rather than like a plume from the deep mantle. It is also inferred 645 

that the mantle flow is not highly turbulent, and these interpretations are consistent with 646 

Sanhueza et al. (2023). 647 

 648 
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 649 

Figure 10. (a) Southeastern view and (b) southwestern view of the schematic three-dimensional 650 

image of the subducting Nazca slab and two prominent velocity anomalies interpreted in this 651 

paper from our final tomographic model. The image illustrates the interpreted Nazca slab in dark 652 

blue, the fast velocity anomaly F1 beneath the Nazca slab in light blue, and the slow velocity 653 
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anomaly to the east of the CTJ in red. The areas are same as in Figure 5, and the colored lines 654 

correspond to depth.  655 

6 Conclusions 656 

We performed hybrid finite-frequency and ray theoretical tomography to obtain a new P-657 

wave velocity model for Southern South America (Figure 10). Approximately 1,600 arrivals and 658 

224 thousand differential traveltimes were picked from broadband seismic stations, including our 659 

temporal OBS arrays at the CTJ, and 31 million global traveltime data from the ISC were used 660 

for inversion. The resulting tomography image showed some notable features of the mantle 661 

structure up to the uppermost part of the lower mantle at a depth of ~1,000 km. 662 

(1) A fast anomaly extending beneath the Nazca slab was approximately parallel to the Nazca 663 

slab between 26° and 35° S. This fast anomaly beneath the Nazca slab may be a relic of 664 

the Nazca slab associated with flat slab subduction, based on its location, geometry, and 665 

anomaly amplitude. 666 

(2) A strong, slow anomaly on the east of the CTJ, which is consistent with the extent of the 667 

Patagonian slab window. Our model indicated that slow anomalies associated with the 668 

slab window persisted up to depths of approximately 250 km. 669 
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