References
1. J. A. Boisduval, Lépidoptères de la Californie. Ann. Soc. Ent.
France 21 , 275–324 (1852).
2. J. C. Downey, W.H. Lange, Analysis of Variation in a recently extinct
polymorphic lycaenid butterfly, Glaucopsyche Xerces. Bull. South
Calif. Acad. Sci. 55 , 153–170 (1956).
3. F. Grewe, M. R. Kronforst, N. E. Pierce, C. S. Moreau, Museum
genomics reveals the Xerces blue butterfly ( Glaucopsyche xerces) was a distinct species driven to extinction . Biol. Lett.17 , 20210123 (2021).
4. P. F. Thomsen, et al. , Non-destructive sampling of ancient
insect DNA. PLoS One 4 , e5048 (2009).
5. M. Staats, et al. , Genomic Treasure Troves: Complete Genome
Sequencing of Herbarium and Insect Museum Specimens. PLoS One8 , e69189–e69189 (2013).
6. J.C. Hinojosa Galisteo, R. Vila, Darwin Tree of Life Barcoding
collective, Wellcome Sanger Institute Tree of Life programme, Wellcome
Sanger Institute Scientific Operations: DNA Pipelines collective, Tree
of Life Core Informatics collective, Darwin Tree of Life Consortium, The
genome sequence of the green-underside blue, Glaucopsyche alexis(Poda, 1761). Wellcome Open Res. 6 , 274 (2021).
7. M. Espeland, et al. , A Comprehensive and Dated Phylogenomic
Analysis of Butterflies. Curr. Biol. 28 , 770-778.e5
(2018).
8. N. Chazot, et al. , Priors and Posteriors in Bayesian Timing of
Divergence Analyses: The Age of Butterflies Revisited. Syst.
Biol. 68 , 797–813 (2019).
9. J. Meisner, A. Albrechtsen, Inferring population structure and
admixture proportions in low-depth NGS data. Genetics210 , 719–731 (2018).
10. H. Li, R. Durbin, Inference of human population history from
individual whole-genome sequences. Nature 475 , 493–496
(2011).
11. C. L. Batchelor, et al. , The configuration of Northern
Hemisphere ice sheets through the Quaternary. Nat. Comm.10 , 3713 (2019).
12. M. Coon, et al. , A program for annotating and predicting the
effects of single nucleotide polymorphisms, SnpEff. Fly6 , 80–92 (2012).
13. J. Fenner, et al. , Wnt Genes in Wing Pattern Development of
Coliadinae Butterflies. Front. Ecol. Evol. 8 , 197
(2020).
14. Z. A. Szpiech, et al. , Long Runs of Homozygosity Are Enriched
for Deleterious Variation. Am. J. Hum. Genet. 93 ,
90–102 (2013).
15. D. Spielman, B. W. Brook, R. Frankham, Most species are not driven
to extinction before genetic factors impact them. Proc. Natl.
Acad. Sci. U. S. A. 101 , 15261–15264 (2004).
16. E. Palkopoulou, et al. , Complete Genomes Reveal Signatures of
Demographic and Genetic Declines in the Woolly Mammoth. Curr.
Biol. 25 , 1395–1400 (2015).
17. T. van der Valk, D. Díez-Del-Molino, T. Marques-Bonet, K.
Guschanski, L. Dalén, Historical Genomes Reveal the Genomic Consequences
of Recent Population Decline in Eastern Gorillas. Curr. Biol.29 , 165-170.e6 (2019).
18. D. Díez-del-Molino, F. Sánchez-Barreiro, I. Barnes, M. T. P.
Gilbert, L. Dalén, Quantifying Temporal Genomic Erosion in Endangered
Species. Trends Ecol. Evol. 33 , 176–185 (2018).
19. L. Zhang, R. D. Reed, Genome editing in butterflies reveals that
spalt promotes and Distal-less represses eyespot colour patterns.Nat. Comm. 7 , 11769 (2016).
20. L. Zhang, A. Mazo-Vargas, R. D. Reed, Single master regulatory gene
coordinates the evolution and development of butterfly color and
iridescence. Proc. Natl. Acad. Sci. USA 114 ,
10707–10712 (2017).
21. A. Mazo-Vargas, et al. , Macroevolutionary shifts of WntA
function potentiate butterfly wing-pattern diversity. Proc. Natl.
Acad. Sci. 114 , 10701–10706 (2017).
22. J. Fenner, et al. , Wnt Genes in Wing Pattern Development of
Coliadinae Butterflies. Front. Ecol. Evol. 8 , 197
(2020).
23. T. Das Banerjee, S. K. Shan, A. Monteiro, optix is involved in
eyespot development via a possible positional information mechanism.bioRxiv (2021) https:/doi.org/10.1101/2021.05.22.445259.
24. L. V. Ugelvig, R. Vila, N. E. Pierce, D. R. Nash, A phylogenetic
revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with
special focus on the Phengaris-Maculinea clade. Mol. Phyl. Evol.61 , 237–243 (2011).
25. J. Dabney, et al. , Complete mitochondrial genome sequence of
a Middle Pleistocene cave bear reconstructed from ultrashort DNA
fragments. Proc. Natl. Acad. Sci. USA 110 , 15758–15763
(2013).
26. C. Carøe, et al. , Single-tube library preparation for
degraded DNA. Methods Ecol. Evol. 9 , 410–419 (2018).
27. J.M. Flynn, et al., RepeatModeler2 for automated genomic discovery
of transposable element families. Proc. Natl. Acad. Sci. U. S. A.117 , 9451-9457 (2020).
28. A.F.A. Smit, R. Hubley, P. Green. RepeatMasker. Published at:
http://www.repeatmasker.org (2013).
29. T. Brůna, K. J. Hoff, A. Lomsadze, M. Stanke, M. Borodovsky,
BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and
AUGUSTUS supported by a protein database. NAR Genomics
Bioinforma. 3, lqaa108 (2021).
30. T. Brůna, A. Lomsadze, M. Borodovsky, GeneMark-EP+: eukaryotic gene
prediction with self-training in the space of genes and proteins.NAR Genomics Bioinforma. 2, lqaa026 (2020).
31. E. V Kriventseva, et al. , OrthoDB v10: sampling the diversity
of animal, plant, fungal, protist, bacterial and viral genomes for
evolutionary and functional annotations of orthologs. Nucleic
Acids Res. 47 , D807–D811 (2019).
32. M. Schubert, S. Lindgreen, L. Orlando, AdapterRemoval v2: rapid
adapter trimming, identification, and read merging. BMC Res.
Notes 9 , 88 (2016).
33. H. Li, R. Durbin, Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25 , 1754–1760
(2009).
34. M. Schubert, et al. , Improving ancient DNA read mapping
against modern reference genomes. BMC Genomics 13 , 178
(2012).
35. Broad Institute, Picard. Web page:
http://broadinstitute.github.io/picard/
36. H. Li, et al. , The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25 , 2078–2079 (2009).
37. K. Okonechnikov, A. Conesa, F. García-Alcalde. Qualimap2: advanced
multi-scale quality control for high-throughput sequencing data.Bioinformatics 32 , 292-294.
38. P. Skoglund, et al. , Separating endogenous ancient DNA from
modern day contamination in a Siberian Neandertal. Proc. Natl.
Acad. Sci. USA. 111 , 2229–2234 (2014).
39. H. Jónsson, A. Ginolhac, M. Schubert, P. L. F. Johnson, L. Orlando,
MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage
parameters. Bioinformatics 29 , 1682–1684 (2013).
40. G. Jun, M.K. Wing, G.R. Abecasis, H.M. Kang, An efficient and
scalable analysis framework for variant extraction and refinement from
population-scale DNA sequence data. Genome Res. 25 ,
918–925 (2015).
41. A. R. Quinlan, I. M. Hall, BEDTools: A flexible suite of utilities
for comparing genomic features. Bioinformatics 26 ,
841–842 (2010).
42. M. Krzywinski, et al. , Circos: An information aesthetic for
comparative genomics. Genome Res. 19 , 1639–1645 (2009).
43. K. Prüfer, SNPAD: An ancient DNA genotype caller.Bioinformatics 34 , 4165–4171 (2018).
44. G. A. Van der Auwera, et al. , From fastQ data to
high-confidence variant calls: The genome analysis toolkit best
practices pipeline. Curr. Protoc. Bioinforma. 43 ,
11.10.1-33 (2013).
45. P. Danecek, et al. , The variant call format and VCFtools.Bioinformatics 27 , 2156–2158 (2011).
46. T. S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: Analysis of
Next Generation Sequencing Data. BMC Bioinformatics 15 ,
356 (2014).
47. B. S. Pedersen, A. R. Quinlan, Mosdepth: Quick coverage calculation
for genomes and exomes. Bioinformatics 34 , 867–868
(2018).
48. R. Allio, et al. , MitoFinder: Efficient automated large-scale
extraction of mitogenomic data in target enrichment phylogenomics.Mol. Ecol. Resour. 20 , 892–905 (2020).
49. L. T. Nguyen, H. A. Schmidt, A. Von Haeseler, B. Q. Minh, IQ-TREE: A
fast and effective stochastic algorithm for estimating
maximum-likelihood phylogenies. Mol. Biol. Evol. 32 ,
268–274 (2015).
50. A. J. Drummond, A. Rambaut, BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evol. Biol. 7 , 214 (2007).
51. S. P. Quek, S. J. Davies, T. Itino, N. E. Pierce, Codiversification
in an ant-plant mutualism: Stem texture and the evolution of host use in
Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga
(Euphorbiaceae). Evolution 58 , 554–570 (2004).
52. M. Wiemers, N. Chazot, C. W. Wheat, O. Schweiger, N. Wahlberg, A
complete time-calibrated multi-gene phylogeny of the european
butterflies. Zookeys 2020 , 97–124 (2020).
53. S. H. Martin, et al. , Natural selection and genetic diversity
in the butterfly Heliconius melpomene . Genetics203 , 525–541 (2016).
54. C. Sarabia, B. vonHoldt, J. C. Larrasoaña, V. Uríos, J. A. Leonard,
Pleistocene climate fluctuations drove demographic history of African
golden wolves (Canis lupaster ). Mol. Ecol. , mec.15784
(2021).
55. V. Narasimhan, et al. , BCFtools/RoH: A hidden Markov model
approach for detecting autozygosity from next-generation sequencing
data. Bioinformatics 32 , 1749–1751 (2016).
56. F. C. Ceballos, P. K. Joshi, D. W. Clark, M. Ramsay, J. F. Wilson,
Runs of homozygosity: windows into population history and trait
architecture. Nat. Rev. Genet. 19 , 220–234 (2018).
57. R. Ihaka, R. Gentleman, R: A Language for Data Analysis and
Graphics. J. Comput. Graph. Stat. 5 , 299–314 (1996).
58. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic
local alignment search tool. J. Mol. Biol. 215 , 403–410
(1990).
59. H. Wickham, ggplot2: Elegant Graphics for Data Analysis(Springer-Verlag New York, 2016).
60. A. Telschow, P. Hammerstein, J. H. Werren, The effect of Wolbachia
versus genetic incompatibilities on reinforcement and speciation.Evolution 59 , 1607–1619 (2005).
61. R. Schmieder, R. Edwards, Quality control and preprocessing of
metagenomic datasets. Bioinformatics 27 , 863–864
(2011).
62. D. E. Wood, J. Lu, B. Langmead, Improved metagenomic analysis with
Kraken 2. Genome Biol. 20 , 257 (2019).
63. M. A. Supple, et al. , Genomic architecture of adaptive color
pattern divergence and convergence in Heliconius butterflies.Genome Res. 23 , 1248–1257 (2013).
64. X. Li, et al. , Outbred genome sequencing and CRISPR/Cas9 gene
editing in butterflies. Nat. Commun. 6 , 8212 (2015).
65. L. Gu, et al. , Dichotomy of Dosage Compensation along the Neo
Z Chromosome of the Monarch Butterfly. Curr. Biol. 29 ,
4071-4077.e3 (2019).
66. J. Ou, et al. , Transcriptomic analysis of developmental
features of Bombyx mori wing disc during metamorphosis. BMC
Genomics 15 , 820 (2014).
67. A. McKenna, et al. , The genome analysis toolkit: A MapReduce
framework for analyzing next-generation DNA sequencing data.Genome Res. 20 , 1297–1303 (2010).