References

Amundson, R. (2001). The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29 , 535-562. Retrieved from <Go to ISI>://WOS:000168810800017. doi:DOI 10.1146/annurev.earth.29.1.535
Baldrian, P., Větrovský, T., Cajthaml, T., Dobiášová, P., Petránková, M., Šnajdr, J., & Eichlerová, I. (2013). Estimation of fungal biomass in forest litter and soil. Fungal Ecology, 6 (1), 1-11.
Bartnicki-Garcia, S. (1968). Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Reviews in Microbiology, 22 (1), 87-108.
Berg, B. (1984). Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a Scots pine forest. Soil Biology and Biochemistry, 16 (6), 609-617.
Berg, B. (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest ecology and Management, 133 (1-2), 13-22.
Boström, B., Comstedt, D., & Ekblad, A. (2007). Isotope fractionation and 13 C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia, 153 (1), 89-98.
Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays, 28 (8), 799-808.
Butler, M., & Day, A. (1998). Fungal melanins: a review. Canadian Journal of Microbiology, 44 (12), 1115-1136.
Cairney, J. W. (2012). Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry, 47 , 198-208.
Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., . . . Lindahl, B. D. (2013). Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science, 339 (6127), 1615-1618. Retrieved from <Go to ISI>://WOS:000316731600051. doi:10.1126/science.1231923
Cleveland, C. C., & Liptzin, D. (2007). C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?Biogeochemistry, 85 (3), 235-252.
Conn, C., & Dighton, J. (2000). Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biology and Biochemistry, 32 (4), 489-496.
Cuchietti, A., Marcotti, E., Gurvich, D. E., Cingolani, A. M., & Harguindeguy, N. P. (2014). Leaf litter mixtures and neighbour effects: low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. Applied Soil Ecology, 82 , 44-51.
Cui, J., Zhu, Z., Xu, X., Liu, S., Jones, D. L., Kuzyakov, Y., . . . Ge, T. (2020). Carbon and nitrogen recycling from microbial necromass to cope with C: N stoichiometric imbalance by priming. Soil Biology and Biochemistry, 142 , 107720.
Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon Pools and Flux of Global Forest Ecosystems. Science, 263 (5144), 185-190. Retrieved from <Go to ISI>://WOS:A1994MQ87900022. doi:DOI 10.1126/science.263.5144.185
Drigo, B., Anderson, I. C., Kannangara, G., Cairney, J. W., & Johnson, D. (2012). Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities. Soil Biology and Biochemistry, 49 , 4-10.
Evans, C. S., Dutton, M. V., Guillén, F., & Veness, R. G. (1994). Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiology Reviews, 13 (2-3), 235-239.
Feofilova, E. (2010). The fungal cell wall: modern concepts of its composition and biological function. Microbiology, 79 (6), 711-720.
Fernandez, C. W., Heckman, K., Kolka, R., & Kennedy, P. G. (2019). Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecology Letters, 22 (3), 498-505. Retrieved from <Go to ISI>://WOS:000457829800008. doi:10.1111/ele.13209
Fernandez, C. W., & Koide, R. T. (2012). The role of chitin in the decomposition of ectomycorrhizal fungal litter. Ecology, 93 (1), 24-28.
Fernandez, C. W., & Koide, R. T. (2013). The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress.Fungal Ecology, 6 (6), 479-486.
Fernandez, C. W., & Koide, R. T. (2014). Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biology and Biochemistry, 77 , 150-157.
Hendricks, J. J., Mitchell, R. J., Kuehn, K. A., & Pecot, S. D. (2016). Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest.New Phytologist, 209 (4), 1693-1704.
Hobbie, J. E., & Hobbie, E. A. (2006). 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra.Ecology, 87 (4), 816-822.
Högberg, M. N., & Högberg, P. (2002). Extramatrical ectomycorrhizal mycelium contributes one‐third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist, 154 (3), 791-795.
Kang, X., Kirui, A., Muszyński, A., Widanage, M. C. D., Chen, A., Azadi, P., . . . Wang, T. (2018). Molecular architecture of fungal cell walls revealed by solid-state NMR. Nature communications, 9 (1), 1-12.
Koide, R. T., & Malcolm, G. M. (2009). N concentration controls decomposition rates of different strains of ectomycorrhizal fungi.Fungal Ecology, 2 , 197-202. Retrieved from <Go to ISI>://WOS:000270349700005. doi:10.1016/j.funeco.2009.06.001
Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., & Read, D. (2014). Erratum: Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Botany, 92 (1), 83-83.
Manzoni, S., Trofymow, J. A., Jackson, R. B., & Porporato, A. (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80 (1), 89-106.
Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics.Ecology, 63 (3), 621-626.
Mouginot, C., Kawamura, R., Matulich, K. L., Berlemont, R., Allison, S. D., Amend, A. S., & Martiny, A. C. (2014). Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biology and Biochemistry, 76 , 278-285.
Read, D., & Perez‐Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytologist, 157 (3), 475-492.
Read, D. J., Leake, J. R., & Perez-Moreno, J. (2005). Erratum: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 83 (8), 1073.
Rosas, Á. L., & Casadevall, A. (1997). Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS microbiology letters, 153 (2), 265-272.
Ryan, M. E., Schreiner, K. M., Swenson, J. T., Gagne, J., & Kennedy, P. G. (2020). Rapid changes in the chemical composition of degrading ectomycorrhizal fungal necromass. Fungal Ecology, 45 . Retrieved from <Go to ISI>://WOS:000530878800014. doi:ARTN 100922
10.1016/j.funeco.2020.100922
Schimel, J. P., & Weintraub, M. N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology & Biochemistry, 35 (4), 549-563. Retrieved from <Go to ISI>://WOS:000182365300005. doi:10.1016/S0038-0717(03)00015-4
Sietsma, J., & Wessels, J. (1994). Apical wall biogenesis. InGrowth, Differentiation and Sexuality (pp. 125-141): Springer.
Talbot, J. M., & Treseder, K. K. (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships.Ecology, 93 (2), 345-354.
Wallander, H., Göransson, H., & Rosengren, U. (2004). Production, standing biomass and natural abundance of 15 N and 13 C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia, 139 (1), 89-97.
Wang, Y., & Casadevall, A. (1994). Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Applied and Environmental Microbiology, 60 (10), 3864-3866.
Wessels, J., Mol, P., Sietsma, J., & Vermeulen, C. (1990). Wall structure, wall growth, and fungal cell morphogenesis. InBiochemistry of cell walls and membranes in fungi (pp. 81-95): Springer.
Wilkinson, A., Alexander, I. J., & Johnson, D. (2011). Species richness of ectomycorrhizal hyphal necromass increases soil CO2 efflux under laboratory conditions. Soil Biology and Biochemistry, 43 (6), 1350-1355.
Wittmann, C., Kähkönen, M. A., Ilvesniemi, H., Kurola, J., & Salkinoja-Salonen, M. S. (2004). Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils.Soil Biology and Biochemistry, 36 (3), 425-433.