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Abstract 

In this paper we used the newly developed optimal approach namely Optimal Auxilary 

Function Method (OAFM) for the solution of the Falkner-Skan equation with heat 

transfer. The constitutive equations obtained from Navier-Stokes equations are converted 

into a set of nonlinear Ordinary Differential Equations (ODEs) with the help of a 

similarity transformation. For the solution of the obtained ODEs with boundary 

conditions is solved by OAFM. The OAFM along with convergence is studied in detail. 

The effects of the physical parameters are discussed with the help of tabular data and 

graphs. The reliability and effectiveness of the method is achieved by comparing the 

results available in the literature.   

Keywords: OAFM, Falkner-Skan equations, Navier Stokes Equations, Heat transfer, 

Non-linear differential equations. 

1. Introduction 

The boundary layer flow (BLF) of an incompressible fluid over a stretching sheet (SS) is 

common in many engineering and industrial processes. The field has attracted researchers 

in the last few decades. BLF flow has major applications in industries such as 

aerodynamic extraction of polymer paper from debris, thermal wrapping, cooling plate 

with no cooling tuber, and boundary layer next to liquid film in condensation phase, 

glass-fiber development [1-3]. By immersing them in quiescent liquids, many metal 

processes need to cool continuous such as fibers. The mechanical features of the final 

product depend only on the drawing costs and the process temperature. Sakiadis [4-5] has 

experimented with new work in this area and many researchers in the field have 

investigated the flow of the boundary layer into the ongoing SS at an increasing speed.  
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The third order nonlinear two point boundary value problem with no exact solution 

known as Falkner-Skan equation (FSE). Due to the importance of the boundary theory 

the (FSE) is considered widely in the last forty years. Due to the nonlinear nature of the 

(FSE) having no exact solutions available in the literature, the scientists have tried the 

analytical and numerical approaches. Hartree [6] obtain a solution of the (FSE) 

numerically.  Smith and Cebeci [7-8] solved (FSE) by shooting method. Maksyn [9] 

solved (FSE) by analytic approximation. Aasaithambi [10-12] found (FSE) solution by 

finite differences, S.J.  Liao [13] applied homotopy analysis method (HAM) to solved 

(FSE) and Vera [14] applied Fourier series for the solution of FSE. The important special 

case of (FSE) is known as Blasius equation (BE). The BE solved by Rosales and 

Valencia [15] with Fourier series. Boyd [16] establish the result by numerical method.  

The analytical and numerical methods studied have some advantages as well as some 

limitations. The numerical methods required linearization, discretization which may 

affects the accuracy.  The analytical methods are used by many researchers such as  

Adomian Decomposition Method (ADM) [17], Variational Iteration Method (VIM) [18], 

Differential Transform Method (DTM) [19], Radial basis function [19], and Homotopy 

Perturbation Method (HPM) [20-22] , Artificial Parameters Method [23], Homotopy 

Analysis Method (HAM) [24]  are used for the solutions of nonlinear equations. All these 

techniques either required the assumption of small parameter like HPM or an initial 

guess. Again it’s improper selection affect the accuracy. Herisanu et.al [25-26], currently 

introduced an optimal approach (OAFM). (OAFM) do not required the assumption of 

small parameter and initial guess.  In this paper we propose the (OAFM) for the FSE with 

heat transfer.  

In the succeeding section, the basic idea of OAFM is formulated. Section 3 is dedicated 

to results and discussion while in section 4 the conclusion is presented. 

2. Basic concept of OAFM  

Let us see the OAFM to nonlinear ODE  

                              0,f s f    L N                                     (1) 

whereL,N are the linear, nonlinear operator, s  source function,  f  is an unknown 

function at this stage. 

The initial/boundary conditions are  
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Since the exact solution of strongly nonlinear equations is very hard to find. The 

proposed approximate solution is given as 

     0 1, , , 1,2,...,k kf E f f E k s     .                               (3) 

Using Eq. (3) in Eq. (1), we obtain 
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, 1,2,...,kE k s are control convergence parameters, to be determined. 

The initial approximation is determined as  
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The first approximation is obtained as 

        1
1 0 1 1

( )
, , 0, ( ), 0.k k

f
f E f f E f

d


   



 
    

 
L N B              (6) 

The nonlinear term is expressed as  
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The last term in Eq. (7) seems difficult to solve, so to avoid this difficulty and to fast the 

convergence of the solution. Eq. (6) can be written as 
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where 1 2,D D  are optimal auxiliary functions depends on  0f   and ,n mE E  and 

   0F f N are functions which depends on the expression appearing in within in the 

nonlinear term of  in   0f N . The optimal auxiliary functions 1 2,D D should be 

expressed in the sum form of  0f   such as if  0f  are polynomial, exponential and 

trigonometric then 1 2,D D would be the sum of polynomial, exponential and trigonometric 

respectively.  Also  0f   would be the exact solution of the original problem if 

  0 0.f  N   The Optimal auxiliary functions can be obtained from Method of least 

square, collocation method, Galerkin method and Ritz Method. 

Convergence of the Method: In order to obtain the convergent solution, we calculate the 

optimal constants also known as control convergence constant by Method of Least 

Squares: These optimal constants are re-submitted into original equation to get the series 

solution  
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where I is equation domain.  

The unknown constants are establish as  
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3. Problem formulation and solution  procedure 

We consider two dimensional laminar viscous flows over a semi-infinite flat plate under 

the boundary layer approximation. The governing equations  
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where  sU x  is the free stream velocity, u  and v  are velocity components in x  and y  

directions, " "a is the thermal diffusivity ,  is the kinematic viscosity. 

 

 

Fig. 1. Geometry of the problem 

 

 The incompressible boundary layer flow over a wedge of angle   as shown in Fig. 1, 

when   r
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Using Eq. (13) into Eq. (10)-(12), we obtained the Falkner-Skan equation 
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with boundary conditions  
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where Pr is the prandl number. 

The linear and nonlinear operators are given as  
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From Eq. (5), we have  
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has solution 
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Based on Eq. (19), we get 
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The first approximation on based of Eq. (8), (16) and (20), we have 
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With BCS 
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The OAF can be chosen freely as 
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We obtained the first approximate solution  
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and its solution is given as  
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Fig. 2. Velocity distribution  f   for different values of     

 

Fig. 3. Temperature profile     for different values of Pr .    

 

Fig. 4. Velocity distribution for Blasius equation   f   for 0  .   

 

 

 

   In case of  0   in we obtain the famous Blasius equation.  

 

 

                  

Fig. 5. Comparison of Velocity distribution for  different values of    (OAFM, RK-4 Method)   



Fig. 6. Comparison of Temperature profile    for  different values of Pr  (OAFM, RK-4 Method)   

 

 

4. Results and Discussions 

The detail OAFM presented in section 2, deliver a high accurate and fastly convergent 

solution for the BLF model. For the computational analysis we have used Mathematica 

11. The Table 1 presented the values of the optimal constants obtained by the method of 

least square and being used for obtaining the first order solution of OAFM. The Table 2 

demonstrates the comparison of the proposed method results with the results already 

available in the literature and we have found an excellent agreement even at first order 

approximation of the OAFM.  The graphical comparisons of the velocity profile for 

 f   with respect to    and temperature profile for     with respect to   are 

elaborated in Figs. 2-6. Fig. 1 presents the geometry of the flow problem. From Figs. 5-6, 

excellent agreements of the OAFM results with Numerical method results (Runge Kutta 

method of order 4) are obtained.  The absolute errors demonstrated in Table 3 reveal the 

accuracy of the OAFM. Also the physical parameters effects are given in figs. 2-3 for 

velocity and temperature distributions. From these figures it is observed that by 

increasing the values of   and Pr the boundary layer thickness reduces for velocity and 

temperature distributions. Fig. 4 shows the well BE with strong agreement with the 

results in literature [30]. 

5. Conclusion 

 

In this study a new analytical method is suggested for the solution of the boundary layer 

flow model (FSE).  We obtain the first order series solution for the governing equations 

of the FSE model and achieved the first order solution with high accuracy.  For the 

accuracy and validity of our method, we compared the OAFM results with the results 

available in the literature and the numerical results obtained by using the RK Method of 

order, from the comparison it is concluded that the suggested method is very accurate and 

good agreement of our results with the numerical results proves the validity of our 

method. OAFM is applicable is very easy in applicable to high nonlinear initial and 

boundary value problems even if the nonlinear initial/ boundary value problem does not 

contain the small parameter. In comparison with other analytical method, OAFM is very 

easy in applicability and provide us good results of more complex nonlinear 

initial/boundary value problems. OAFM contain the optimal auxiliary constants through 

which we can control the convergence as OAFM contain the auxiliary functions 

1 2 3 4, , ,D D D E  in which the optimal constants , , ,m n r pE E E E  the control convergence 

parameters exist to play an important role to get the convergent solution which are 

obtained rigorously.  The computational work in OAFM is less when compared to other 

methods and even a low specification computer can do the computational work easily. 

Upto now there is no limitation of this method which enable us to implement this 

efficient and fast convergent method in our future work for more complex models arising 

from real world problems. 
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