Conflict of interest statement
The authors declare no financial or commercial conflict of interest.
References
1. Langer, R., & Vacanti, J. P. (1993). Tissue engineering.Science (New York, N.Y.) , 260 (5110), 920–926.
http://www.ncbi.nlm.nih.gov/pubmed/8493529
2. Carpentier, B., Layrolle, P., & Legallais, C. (2011). Bioreactors
for bone tissue engineering. The International Journal of
Artificial Organs , 34 (3), 259–270.
https://doi.org/10.5301/IJAO.2011.6333
3. Murugan, R., & Ramakrishna, S. (2006). Nanophase Biomaterials for
Tissue Engineering. In Nanotechnologies for Life Sciences, Vol. 9
Tissue, Cell and Organ Engineering (pp. 216–256).
https://doi.org/10.1002/9783527610419.ntls0099
4. Liu, Y., Lim, J., & Teoh, S.-H. (2013). Review: development of
clinically relevant scaffolds for vascularised bone tissue engineering.Biotechnology Advances , 31 (5), 688–705.
https://doi.org/10.1016/j.biotechadv.2012.10.003
5. Pape, H. C., Evans, A., & Kobbe, P. (2010). Autologous bone graft:
properties and techniques. Journal of Orthopaedic Trauma ,24 Suppl 1 (3), S36–S40.
https://doi.org/10.1097/BOT.0b013e3181cec4a1
6. Logeart-Avramoglou, D., Anagnostou, F., Bizios, R., & Petite, H.
(2005). Engineering bone: challenges and obstacles. Journal of
Cellular and Molecular Medicine , 9 (1), 72–84.
https://doi.org/10.1111/j.1582-4934.2005.tb00338.x
7. Rubin, J. P., & Yaremchuk, M. J. (1997). Complications and
toxicities of implantable biomaterials used in facial reconstructive and
aesthetic surgery: a comprehensive review of the literature.Plastic and Reconstructive Surgery , 100 (5), 1336–1353.
http://www.ncbi.nlm.nih.gov/pubmed/9326803
8. Brennan, M., Davaine, J.-M., & Layrolle, P. (2013).
Pre-vascularization of bone tissue-engineered constructs. Stem
Cell Research & Therapy , 4 (4), 96.
https://doi.org/10.1186/scrt307
9. dos Santos, B. P., Garbay, B., Fenelon, M., Rosselin, M., Garanger,
E., Lecommandoux, S., Oliveira, H., & Amédée, J. (2019). Development of
a cell-free and growth factor-free hydrogel capable of inducing
angiogenesis and innervation after subcutaneous implantation. Acta
Biomaterialia , 99 , 154–167.
https://doi.org/10.1016/j.actbio.2019.08.028
10. Goldstein, A. S., Juarez, T. M., Helmke, C. D., Gustin, M. C., &
Mikos, A. G. (2001). Effect of convection on osteoblastic cell growth
and function in biodegradable polymer foam scaffolds.Biomaterials , 22 (11), 1279–1288.
https://doi.org/10.1016/S0142-9612(00)00280-5
11. Leszczynska, J., Zyzynska-Granica, B., Koziak, K., Ruminski, S., &
Lewandowska-Szumiel, M. (2013). Contribution of Endothelial Cells to
Human Bone-Derived Cells Expansion in Coculture. Tissue
Engineering Part A , 19 (3–4), 393–402.
https://doi.org/10.1089/ten.tea.2011.0710
12. Grellier, M., Granja, P. L., Fricain, J.-C., Bidarra, S. J., Renard,
M., Bareille, R., Bourget, C., Amédée, J., & Barbosa, M. A. (2009). The
effect of the co-immobilization of human osteoprogenitors and
endothelial cells within alginate microspheres on mineralization in a
bone defect. Biomaterials , 30 (19), 3271–3278.
https://doi.org/10.1016/j.biomaterials.2009.02.033
13. Baudequin, T., & Tabrizian, M. (2018). Multilineage Constructs for
Scaffold-Based Tissue Engineering: A Review of Tissue-Specific
Challenges. Advanced Healthcare Materials , 7 (3), 1700734.
https://doi.org/10.1002/adhm.201700734
14. Pennings, I., Dijk, L. A., Huuksloot, J., Fledderus, J. O.,
Schepers, K., Braat, A. K., Hsiao, E. C., Barruet, E., Morales, B. M.,
Verhaar, M. C., Rosenberg, A. J. W. P., & Gawlitta, D. (2019). Effect
of donor variation on osteogenesis and vasculogenesis in hydrogel
cocultures. Journal of Tissue Engineering and Regenerative
Medicine , 13 (3), 433–445. https://doi.org/10.1002/term.2807
15. Zhang, J., Neoh, K. G., & Kang, E. (2018). Electrical stimulation
of adipose‐derived mesenchymal stem cells and endothelial cells
co‐cultured in a conductive scaffold for potential orthopaedic
applications. Journal of Tissue Engineering and Regenerative
Medicine , 12 (4), 878–889. https://doi.org/10.1002/term.2441
16. Bidarra, S. J., Barrias, C. C., Barbosa, M. a, Soares, R., Amédée,
J., & Granja, P. L. (2011). Phenotypic and proliferative modulation of
human mesenchymal stem cells via crosstalk with endothelial cells.Stem Cell Research , 7 (3), 186–197.
https://doi.org/10.1016/j.scr.2011.05.006
17. Thébaud, N. B., Siadous, R., Bareille, R., Remy, M., Daculsi, R.,
Amédée, J., & Bordenave, L. (2012). Whatever their differentiation
status, human progenitor derived - or mature - endothelial cells induce
osteoblastic differentiation of bone marrow stromal cells. Journal
of Tissue Engineering and Regenerative Medicine , 6 (10),
e51–e60. https://doi.org/10.1002/term.1539
18. Guerrero, J., Catros, S., Derkaoui, S. M., Lalande, C., Siadous, R.,
Bareille, R., Thébaud, N., Bordenave, L., Chassande, O., Le Visage, C.,
Letourneur, D., & Amédée, J. (2013). Cell interactions between human
progenitor-derived endothelial cells and human mesenchymal stem cells in
a three-dimensional macroporous polysaccharide-based scaffold promote
osteogenesis. Acta Biomaterialia , 9 (9), 8200–8213.
https://doi.org/10.1016/j.actbio.2013.05.025
19. Nasser, M., Wu, Y., Danaoui, Y., & Ghosh, G. (2019). Engineering
microenvironments towards harnessing pro-angiogenic potential of
mesenchymal stem cells. Materials Science and Engineering: C ,102 , 75–84. https://doi.org/10.1016/j.msec.2019.04.030
20. Liu, J., Chuah, Y. J., Fu, J., Zhu, W., & Wang, D.-A. (2019).
Co-culture of human umbilical vein endothelial cells and human bone
marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel
system to enhance angiogenesis. Materials Science and Engineering:
C , 102 , 906–916. https://doi.org/10.1016/j.msec.2019.04.089
21. Kang, P. L., Huang, H. H., Chen, T., Ju, K. C., & Kuo, S. M.
(2019). Angiogenesis-promoting effect of LIPUS on hADSCs and HUVECs
cultured on collagen/hyaluronan scaffolds. Materials Science and
Engineering: C , 102 , 22–33.
https://doi.org/10.1016/j.msec.2019.04.045
22. Hayashi, K., Munar, M. L., & Ishikawa, K. (2020). Effects of
macropore size in carbonate apatite honeycomb scaffolds on bone
regeneration. Materials Science and Engineering: C , 110848.
https://doi.org/10.1016/j.msec.2020.110848
23. Correia, C., Grayson, W. L., Park, M., Hutton, D., Zhou, B., Guo, X.
E., Niklason, L., Sousa, R. a, Reis, R. L., & Vunjak-Novakovic, G.
(2011). In vitro model of vascularized bone: synergizing vascular
development and osteogenesis. PloS One , 6 (12), e28352.
https://doi.org/10.1371/journal.pone.0028352
24. Baudequin, T., Bedoui, F., Dufresne, M., Paullier, P., & Legallais,
C. (2015). Towards the Development and Characterization of an Easy
Handling Sheet-Like Biohybrid Bone Substitute. Tissue Engineering
Part A , 21 (11–12), 1895–1905.
https://doi.org/10.1089/ten.tea.2014.0580
25. Lian, J. B., & Stein, G. S. (1992). Concepts of Osteoblast Growth
and Differentiation: Basis for Modulation of Bone Cell Development and
Tissue Formation. Critical Reviews in Oral Biology & Medicine ,3 (3), 269–305. https://doi.org/10.1177/10454411920030030501
26. Aubin, J. E., Turksen, K., & Heersche, J. N. M. (1993).
Osteoblastic cell lineage. In Cellular and Molecular Biology of
Bone . Elsevier Science. https://books.google.fr/books?id=x_pfAwAAQBAJ
27. Hughes, M. A., Brennan, P. M., Bunting, A. S., Cameron, K., Murray,
A. F., & Shipston, M. J. (2014). Patterning human neuronal networks on
photolithographically engineered silicon dioxide substrates
functionalized with glial analogues. Journal of Biomedical
Materials Research. Part A , 102 (5), 1350–1360.
https://doi.org/10.1002/jbm.a.34813
28. Ducy, P. (2000). The Osteoblast: A Sophisticated Fibroblast under
Central Surveillance. Science , 289 (5484), 1501–1504.
https://doi.org/10.1126/science.289.5484.1501
29. Zaidi, M. (2007). Skeletal remodeling in health and disease.Nature Medicine , 13 (7), 791–801.
https://doi.org/10.1038/nm1593
30. Reinders, J. H., DeGroot, P. G., Sixma, J. J., & van Mourik, J. A.
(1988). Storage and Secretion of von Willebrand Factor by Endothelial
Cells. Pathophysiology of Haemostasis and Thrombosis ,18 (4–6), 246–261. https://doi.org/10.1159/000215811
31. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros,
L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin,
D., Zhu, Z., Hackett, N. R., Crystal, R. G., Moore, M. A. S., Hajjar, K.
A., Manova, K., Benezra, R., & Rafii, S. (2001). Impaired recruitment
of bone-marrow–derived endothelial and hematopoietic precursor cells
blocks tumor angiogenesis and growth. Nature Medicine ,7 (11), 1194–1201. https://doi.org/10.1038/nm1101-1194
32. Oliveira, H., Catros, S., Castano, O., Rey, S., Siadous, R., Clift,
D., Marti-Munoz, J., Batista, M., Bareille, R., Planell, J., Engel, E.,
& Amédée, J. (2017). The proangiogenic potential of a novel calcium
releasing composite biomaterial: Orthotopic in vivo evaluation.Acta Biomaterialia , 54 , 377–385.
https://doi.org/10.1016/j.actbio.2017.02.039
33. Melchiorri, A. J., Nguyen, B. B., & Fisher, J. P. (2014).
Mesenchymal Stem Cells : Roles and Relationships in Vascularization.Tissue Engineering , 20 (3), 218–228.
https://doi.org/10.1089/ten.teb.2013.0541
34. Santos, M. I., Unger, R. E., Sousa, R. a., Reis, R. L., &
Kirkpatrick, C. J. (2009). Crosstalk between osteoblasts and endothelial
cells co-cultured on a polycaprolactone-starch scaffold and the in vitro
development of vascularization. Biomaterials , 30 (26),
4407–4415. https://doi.org/10.1016/j.biomaterials.2009.05.004
35. Bulnheim, U., Müller, P., Neumann, H.-G., Peters, K., Unger, R. E.,
Kirkpatrick, C. J., & Rychly, J. (2014). Endothelial cells stimulate
osteogenic differentiation of mesenchymal stem cells on calcium
phosphate scaffolds. Journal of Tissue Engineering and
Regenerative Medicine , 8 (10), 831–840.
https://doi.org/10.1002/term.1590
36. McFadden, T. M., Duffy, G. P., Allen, a B., Stevens, H. Y.,
Schwarzmaier, S. M., Plesnila, N., Murphy, J. M., Barry, F. P.,
Guldberg, R. E., & O’Brien, F. J. (2013). The delayed addition of human
mesenchymal stem cells to pre-formed endothelial cell networks results
in functional vascularization of a collagen-glycosaminoglycan scaffold
in vivo. Acta Biomaterialia , 9 (12), 9303–9316.
https://doi.org/10.1016/j.actbio.2013.08.014
37. Joensuu, K., Uusitalo‐Kylmälä, L., Hentunen, T. A., & Heino, T. J.
(2018). Angiogenic potential of human mesenchymal stromal cell and
circulating mononuclear cell cocultures is reflected in the expression
profiles of proangiogenic factors leading to endothelial cell and
pericyte differentiation. Journal of Tissue Engineering and
Regenerative Medicine , 12 (3), 775–783.
https://doi.org/10.1002/term.2496
38. Crosby, C. O., Valliappan, D., Shu, D., Kumar, S., Tu, C., Deng, W.,
Parekh, S. H., & Zoldan, J. (2019). Quantifying the Vasculogenic
Potential of Induced Pluripotent Stem Cell-Derived Endothelial
Progenitors in Collagen Hydrogels. Tissue Engineering Part A ,25 (9–10), 746–758. https://doi.org/10.1089/ten.tea.2018.0274
39. Bersini, S., Gilardi, M., Arrigoni, C., Talò, G., Zamai, M., Zagra,
L., Caiolfa, V., & Moretti, M. (2016). Human in vitro 3D co-culture
model to engineer vascularized bone-mimicking tissues combining
computational tools and statistical experimental approach.Biomaterials , 76 , 157–172.
https://doi.org/10.1016/j.biomaterials.2015.10.057
40. Kang, Y., Kim, S., Fahrenholtz, M., Khademhosseini, A., & Yang, Y.
(2013). Osteogenic and angiogenic potentials of monocultured and
co-cultured human-bone-marrow-derived mesenchymal stem cells and
human-umbilical-vein endothelial cells on three-dimensional porous
beta-tricalcium phosphate scaffold. Acta Biomaterialia ,9 (1), 4906–4915. https://doi.org/10.1016/j.actbio.2012.08.008
41. Gao, S., Calcagni, M., Welti, M., Hemmi, S., Hild, N., Stark, W. J.,
Meier Bürgisser, G., Wanner, G. A., Cinelli, P., & Buschmann, J.
(2014). Proliferation of ASC-derived endothelial cells in a 3D
electrospun mesh: Impact of bone-biomimetic nanocomposite and co-culture
with ASC-derived osteoblasts. Injury , 45 (6), 974–980.
https://doi.org/10.1016/j.injury.2014.02.035
42. Ding, X., Yang, G., Zhang, W., Li, G., Lin, S., Kaplan, D. L., &
Jiang, X. (2017). Increased stem cells delivered using a silk
gel/scaffold complex for enhanced bone regeneration. Scientific
Reports , 7 (1), 2175. https://doi.org/10.1038/s41598-017-02053-z
43. Dufrane, D. (2017). Impact of Age on Human Adipose Stem Cells for
Bone Tissue Engineering. Cell Transplantation , 26 (9),
1496–1504. https://doi.org/10.1177/0963689717721203