Conflict of interest statement
The authors declare no financial or commercial conflict of interest.
References
1. Langer, R., & Vacanti, J. P. (1993). Tissue engineering.Science (New York, N.Y.) , 260 (5110), 920–926. http://www.ncbi.nlm.nih.gov/pubmed/8493529
2. Carpentier, B., Layrolle, P., & Legallais, C. (2011). Bioreactors for bone tissue engineering. The International Journal of Artificial Organs , 34 (3), 259–270. https://doi.org/10.5301/IJAO.2011.6333
3. Murugan, R., & Ramakrishna, S. (2006). Nanophase Biomaterials for Tissue Engineering. In Nanotechnologies for Life Sciences, Vol. 9 Tissue, Cell and Organ Engineering (pp. 216–256). https://doi.org/10.1002/9783527610419.ntls0099
4. Liu, Y., Lim, J., & Teoh, S.-H. (2013). Review: development of clinically relevant scaffolds for vascularised bone tissue engineering.Biotechnology Advances , 31 (5), 688–705. https://doi.org/10.1016/j.biotechadv.2012.10.003
5. Pape, H. C., Evans, A., & Kobbe, P. (2010). Autologous bone graft: properties and techniques. Journal of Orthopaedic Trauma ,24 Suppl 1 (3), S36–S40. https://doi.org/10.1097/BOT.0b013e3181cec4a1
6. Logeart-Avramoglou, D., Anagnostou, F., Bizios, R., & Petite, H. (2005). Engineering bone: challenges and obstacles. Journal of Cellular and Molecular Medicine , 9 (1), 72–84. https://doi.org/10.1111/j.1582-4934.2005.tb00338.x
7. Rubin, J. P., & Yaremchuk, M. J. (1997). Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: a comprehensive review of the literature.Plastic and Reconstructive Surgery , 100 (5), 1336–1353. http://www.ncbi.nlm.nih.gov/pubmed/9326803
8. Brennan, M., Davaine, J.-M., & Layrolle, P. (2013). Pre-vascularization of bone tissue-engineered constructs. Stem Cell Research & Therapy , 4 (4), 96. https://doi.org/10.1186/scrt307
9. dos Santos, B. P., Garbay, B., Fenelon, M., Rosselin, M., Garanger, E., Lecommandoux, S., Oliveira, H., & Amédée, J. (2019). Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomaterialia , 99 , 154–167. https://doi.org/10.1016/j.actbio.2019.08.028
10. Goldstein, A. S., Juarez, T. M., Helmke, C. D., Gustin, M. C., & Mikos, A. G. (2001). Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds.Biomaterials , 22 (11), 1279–1288. https://doi.org/10.1016/S0142-9612(00)00280-5
11. Leszczynska, J., Zyzynska-Granica, B., Koziak, K., Ruminski, S., & Lewandowska-Szumiel, M. (2013). Contribution of Endothelial Cells to Human Bone-Derived Cells Expansion in Coculture. Tissue Engineering Part A , 19 (3–4), 393–402. https://doi.org/10.1089/ten.tea.2011.0710
12. Grellier, M., Granja, P. L., Fricain, J.-C., Bidarra, S. J., Renard, M., Bareille, R., Bourget, C., Amédée, J., & Barbosa, M. A. (2009). The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials , 30 (19), 3271–3278. https://doi.org/10.1016/j.biomaterials.2009.02.033
13. Baudequin, T., & Tabrizian, M. (2018). Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Advanced Healthcare Materials , 7 (3), 1700734. https://doi.org/10.1002/adhm.201700734
14. Pennings, I., Dijk, L. A., Huuksloot, J., Fledderus, J. O., Schepers, K., Braat, A. K., Hsiao, E. C., Barruet, E., Morales, B. M., Verhaar, M. C., Rosenberg, A. J. W. P., & Gawlitta, D. (2019). Effect of donor variation on osteogenesis and vasculogenesis in hydrogel cocultures. Journal of Tissue Engineering and Regenerative Medicine , 13 (3), 433–445. https://doi.org/10.1002/term.2807
15. Zhang, J., Neoh, K. G., & Kang, E. (2018). Electrical stimulation of adipose‐derived mesenchymal stem cells and endothelial cells co‐cultured in a conductive scaffold for potential orthopaedic applications. Journal of Tissue Engineering and Regenerative Medicine , 12 (4), 878–889. https://doi.org/10.1002/term.2441
16. Bidarra, S. J., Barrias, C. C., Barbosa, M. a, Soares, R., Amédée, J., & Granja, P. L. (2011). Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells.Stem Cell Research , 7 (3), 186–197. https://doi.org/10.1016/j.scr.2011.05.006
17. Thébaud, N. B., Siadous, R., Bareille, R., Remy, M., Daculsi, R., Amédée, J., & Bordenave, L. (2012). Whatever their differentiation status, human progenitor derived - or mature - endothelial cells induce osteoblastic differentiation of bone marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine , 6 (10), e51–e60. https://doi.org/10.1002/term.1539
18. Guerrero, J., Catros, S., Derkaoui, S. M., Lalande, C., Siadous, R., Bareille, R., Thébaud, N., Bordenave, L., Chassande, O., Le Visage, C., Letourneur, D., & Amédée, J. (2013). Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomaterialia , 9 (9), 8200–8213. https://doi.org/10.1016/j.actbio.2013.05.025
19. Nasser, M., Wu, Y., Danaoui, Y., & Ghosh, G. (2019). Engineering microenvironments towards harnessing pro-angiogenic potential of mesenchymal stem cells. Materials Science and Engineering: C ,102 , 75–84. https://doi.org/10.1016/j.msec.2019.04.030
20. Liu, J., Chuah, Y. J., Fu, J., Zhu, W., & Wang, D.-A. (2019). Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis. Materials Science and Engineering: C , 102 , 906–916. https://doi.org/10.1016/j.msec.2019.04.089
21. Kang, P. L., Huang, H. H., Chen, T., Ju, K. C., & Kuo, S. M. (2019). Angiogenesis-promoting effect of LIPUS on hADSCs and HUVECs cultured on collagen/hyaluronan scaffolds. Materials Science and Engineering: C , 102 , 22–33. https://doi.org/10.1016/j.msec.2019.04.045
22. Hayashi, K., Munar, M. L., & Ishikawa, K. (2020). Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. Materials Science and Engineering: C , 110848. https://doi.org/10.1016/j.msec.2020.110848
23. Correia, C., Grayson, W. L., Park, M., Hutton, D., Zhou, B., Guo, X. E., Niklason, L., Sousa, R. a, Reis, R. L., & Vunjak-Novakovic, G. (2011). In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PloS One , 6 (12), e28352. https://doi.org/10.1371/journal.pone.0028352
24. Baudequin, T., Bedoui, F., Dufresne, M., Paullier, P., & Legallais, C. (2015). Towards the Development and Characterization of an Easy Handling Sheet-Like Biohybrid Bone Substitute. Tissue Engineering Part A , 21 (11–12), 1895–1905. https://doi.org/10.1089/ten.tea.2014.0580
25. Lian, J. B., & Stein, G. S. (1992). Concepts of Osteoblast Growth and Differentiation: Basis for Modulation of Bone Cell Development and Tissue Formation. Critical Reviews in Oral Biology & Medicine ,3 (3), 269–305. https://doi.org/10.1177/10454411920030030501
26. Aubin, J. E., Turksen, K., & Heersche, J. N. M. (1993). Osteoblastic cell lineage. In Cellular and Molecular Biology of Bone . Elsevier Science. https://books.google.fr/books?id=x_pfAwAAQBAJ
27. Hughes, M. A., Brennan, P. M., Bunting, A. S., Cameron, K., Murray, A. F., & Shipston, M. J. (2014). Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues. Journal of Biomedical Materials Research. Part A , 102 (5), 1350–1360. https://doi.org/10.1002/jbm.a.34813
28. Ducy, P. (2000). The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science , 289 (5484), 1501–1504. https://doi.org/10.1126/science.289.5484.1501
29. Zaidi, M. (2007). Skeletal remodeling in health and disease.Nature Medicine , 13 (7), 791–801. https://doi.org/10.1038/nm1593
30. Reinders, J. H., DeGroot, P. G., Sixma, J. J., & van Mourik, J. A. (1988). Storage and Secretion of von Willebrand Factor by Endothelial Cells. Pathophysiology of Haemostasis and Thrombosis ,18 (4–6), 246–261. https://doi.org/10.1159/000215811
31. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N. R., Crystal, R. G., Moore, M. A. S., Hajjar, K. A., Manova, K., Benezra, R., & Rafii, S. (2001). Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Medicine ,7 (11), 1194–1201. https://doi.org/10.1038/nm1101-1194
32. Oliveira, H., Catros, S., Castano, O., Rey, S., Siadous, R., Clift, D., Marti-Munoz, J., Batista, M., Bareille, R., Planell, J., Engel, E., & Amédée, J. (2017). The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation.Acta Biomaterialia , 54 , 377–385. https://doi.org/10.1016/j.actbio.2017.02.039
33. Melchiorri, A. J., Nguyen, B. B., & Fisher, J. P. (2014). Mesenchymal Stem Cells : Roles and Relationships in Vascularization.Tissue Engineering , 20 (3), 218–228. https://doi.org/10.1089/ten.teb.2013.0541
34. Santos, M. I., Unger, R. E., Sousa, R. a., Reis, R. L., & Kirkpatrick, C. J. (2009). Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials , 30 (26), 4407–4415. https://doi.org/10.1016/j.biomaterials.2009.05.004
35. Bulnheim, U., Müller, P., Neumann, H.-G., Peters, K., Unger, R. E., Kirkpatrick, C. J., & Rychly, J. (2014). Endothelial cells stimulate osteogenic differentiation of mesenchymal stem cells on calcium phosphate scaffolds. Journal of Tissue Engineering and Regenerative Medicine , 8 (10), 831–840. https://doi.org/10.1002/term.1590
36. McFadden, T. M., Duffy, G. P., Allen, a B., Stevens, H. Y., Schwarzmaier, S. M., Plesnila, N., Murphy, J. M., Barry, F. P., Guldberg, R. E., & O’Brien, F. J. (2013). The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomaterialia , 9 (12), 9303–9316. https://doi.org/10.1016/j.actbio.2013.08.014
37. Joensuu, K., Uusitalo‐Kylmälä, L., Hentunen, T. A., & Heino, T. J. (2018). Angiogenic potential of human mesenchymal stromal cell and circulating mononuclear cell cocultures is reflected in the expression profiles of proangiogenic factors leading to endothelial cell and pericyte differentiation. Journal of Tissue Engineering and Regenerative Medicine , 12 (3), 775–783. https://doi.org/10.1002/term.2496
38. Crosby, C. O., Valliappan, D., Shu, D., Kumar, S., Tu, C., Deng, W., Parekh, S. H., & Zoldan, J. (2019). Quantifying the Vasculogenic Potential of Induced Pluripotent Stem Cell-Derived Endothelial Progenitors in Collagen Hydrogels. Tissue Engineering Part A ,25 (9–10), 746–758. https://doi.org/10.1089/ten.tea.2018.0274
39. Bersini, S., Gilardi, M., Arrigoni, C., Talò, G., Zamai, M., Zagra, L., Caiolfa, V., & Moretti, M. (2016). Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.Biomaterials , 76 , 157–172. https://doi.org/10.1016/j.biomaterials.2015.10.057
40. Kang, Y., Kim, S., Fahrenholtz, M., Khademhosseini, A., & Yang, Y. (2013). Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomaterialia ,9 (1), 4906–4915. https://doi.org/10.1016/j.actbio.2012.08.008
41. Gao, S., Calcagni, M., Welti, M., Hemmi, S., Hild, N., Stark, W. J., Meier Bürgisser, G., Wanner, G. A., Cinelli, P., & Buschmann, J. (2014). Proliferation of ASC-derived endothelial cells in a 3D electrospun mesh: Impact of bone-biomimetic nanocomposite and co-culture with ASC-derived osteoblasts. Injury , 45 (6), 974–980. https://doi.org/10.1016/j.injury.2014.02.035
42. Ding, X., Yang, G., Zhang, W., Li, G., Lin, S., Kaplan, D. L., & Jiang, X. (2017). Increased stem cells delivered using a silk gel/scaffold complex for enhanced bone regeneration. Scientific Reports , 7 (1), 2175. https://doi.org/10.1038/s41598-017-02053-z
43. Dufrane, D. (2017). Impact of Age on Human Adipose Stem Cells for Bone Tissue Engineering. Cell Transplantation , 26 (9), 1496–1504. https://doi.org/10.1177/0963689717721203