References
1. Ginhoux F, Yalin A, Dutertre CA, Amit I. Single-cell immunology:
Past, present, and future. Immunity. 2022 Mar 8;55(3):393–404.
2. Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry:
helping to make sense of high-dimensional immunology data. Nat Rev
Immunol. 2016 Jul;16(7):449–62.
3. Park LM, Lannigan J, Jaimes MC. OMIP-069: Forty-Color Full Spectrum
Flow Cytometry Panel for Deep Immunophenotyping of Major Cell Subsets in
Human Peripheral Blood. Cytom Part J Int Soc Anal Cytol. 2020
Oct;97(10):1044–51.
4. Spitzer MH, Nolan GP. Mass Cytometry: Single Cells, Many Features.
Cell. 2016 May 5;165(4):780–91.
5. Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B. The end
of gating? An introduction to automated analysis of high dimensional
cytometry data. Eur J Immunol. 2016 Jan;46(1):34–43.
6. Maaten L van der, Hinton G. Visualizing Data using t-SNE. J Mach
Learn Res. 2008;9(86):2579–605.
7. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al.
Dimensionality reduction for visualizing single-cell data using UMAP.
Nat Biotechnol. 2018 Dec 3;
8. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir E ad D, Tadmor M,
et al. Data-driven phenotypic dissection of AML reveals progenitor-like
cells that correlate with prognosis. Cell. 2015 Jul 2;162(1):184–97.
9. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P,
Dhaene T, et al. FlowSOM: Using self-organizing maps for visualization
and interpretation of cytometry data. Cytom Part J Int Soc Anal Cytol.
2015 Jul;87(7):636–45.
10. Ashhurst TM, Marsh-Wakefield F, Putri GH, Spiteri AG, Shinko D, Read
MN, et al. Integration, exploration, and analysis of high-dimensional
single-cell cytometry data using Spectre. Cytom Part J Int Soc Anal
Cytol. 2022 Mar;101(3):237–53.
11. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et
al. ImmPort, toward repurposing of open access immunological assay data
for translational and clinical research. Sci Data. 2018 Feb 27;5:180015.
12. OMIQ - Flow Cytometry Software, Reimagined [Internet]. [cited
2023 Jul 25]. Available from: https://www.omiq.ai
13. Realize R&D Digital Transformation [Internet]. [cited 2023
Jul 25]. Realize R&D Digital Transformation. Available from:
https://www.dotmatics.com/
14. Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication
of flow cytometry experiments. Curr Protoc Cytom. 2010 Jul;Chapter
10:Unit10.17.
15. Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and
Immune Regulation. Front Immunol [Internet]. 2020 [cited 2023 Jun
26];11. Available from:
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00588
16. Szabolcs P, Park KD, Reese M, Marti L, Broadwater G, Kurtzberg J.
Coexistent naı̈ve phenotype and higher cycling rate of cord blood T cells
as compared to adult peripheral blood. Exp Hematol. 2003 Aug
1;31(8):708–14.
17. Chen L, Cohen AC, Lewis DB. Impaired Allogeneic Activation and
T-helper 1 Differentiation of Human Cord Blood Naive CD4 T Cells. Biol
Blood Marrow Transplant. 2006 Feb 1;12(2):160–71.
18. Galindo-Albarrán AO, López-Portales OH, Gutiérrez-Reyna DY,
Rodríguez-Jorge O, Sánchez-Villanueva JA, Ramírez-Pliego O, et al. CD8+
T Cells from Human Neonates Are Biased toward an Innate Immune Response.
Cell Rep. 2016 Nov 15;17(8):2151–60.
19. Luciano AA, Yu H, Jackson LW, Wolfe LA, Bernstein HB. Preterm labor
and chorioamnionitis are associated with neonatal T cell activation.
PloS One. 2011 Feb 8;6(2):e16698.
20. Ponsonby AL, Collier F, O’Hely M, Tang MLK, Ranganathan S, Gray L,
et al. Household size, T regulatory cell development, and early allergic
disease: a birth cohort study. Pediatr Allergy Immunol Off Publ Eur Soc
Pediatr Allergy Immunol. 2022 Jun;33(6):e13810.
21. Collier F, Ponsonby AL, O’Hely M, Tang MLK, Saffery R, Molloy J, et
al. Naïve regulatory T cells in infancy: Associations with perinatal
factors and development of food allergy. Allergy. 2019
Sep;74(9):1760–8.
22. Smith M, Tourigny MR, Noakes P, Thornton CA, Tulic MK, Prescott SL.
Children with egg allergy have evidence of reduced neonatal
CD4(+)CD25(+)CD127(lo/-) regulatory T cell function. J Allergy Clin
Immunol. 2008 Jun;121(6):1460–6, 1466.e1-7.
23. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial
reconstruction of single-cell gene expression data. Nat Biotechnol. 2015
May;33(5):495–502.
24. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating
single-cell transcriptomic data across different conditions,
technologies, and species. Nat Biotechnol. 2018 Jun;36(5):411–20.
25. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM,
et al. Comprehensive Integration of Single-Cell Data. Cell. 2019 Jun
13;177(7):1888-1902.e21.
26. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell. 2021 Jun
24;184(13):3573-3587.e29.
27. Bunis DG, Bronevetsky Y, Krow-Lucal E, Bhakta NR, Kim CC, Nerella S,
et al. Single-Cell Mapping of Progressive Fetal-to-Adult Transition in
Human Naive T Cells. Cell Rep. 2021 Jan 5;34(1):108573.
28. Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko
EZ. Single-Cell Multi-omic Integration Compares and Contrasts Features
of Brain Cell Identity. Cell. 2019 Jun 13;177(7):1873-1887.e17.
29. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for
comparing biological themes among gene clusters. Omics J Integr Biol.
2012 May;16(5):284–7.
30. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0:
A universal enrichment tool for interpreting omics data. Innov Camb
Mass. 2021 Aug 28;2(3):100141.
31. Hamann D, Baars PA, Rep MHG, Hooibrink B, Kerkhof-Garde SR, Klein
MR, et al. Phenotypic and Functional Separation of Memory and Effector
Human CD8+ T Cells. J Exp Med. 1997 Nov 3;186(9):1407–18.
32. Gorfu G, Rivera-Nieves J, Ley K. Role of β7 integrins in intestinal
lymphocyte homing and retention. Curr Mol Med. 2009 Sep;9(7):836–50.
33. Carrasco J, Godelaine D, Van Pel A, Boon T, van der Bruggen P.
CD45RA on human CD8 T cells is sensitive to the time elapsed since the
last antigenic stimulation. Blood. 2006 Nov 1;108(9):2897–905.
34. Wong MT, Ong DEH, Lim FSH, Teng KWW, McGovern N, Narayanan S, et al.
A High-Dimensional Atlas of Human T Cell Diversity Reveals
Tissue-Specific Trafficking and Cytokine Signatures. Immunity. 2016
Aug;45(2):442–56.
35. Staton TL, Habtezion A, Winslow MM, Sato T, Love PE, Butcher EC.
CD8+ recent thymic emigrants home to and efficiently repopulate the
small intestine epithelium. Nat Immunol. 2006 May;7(5):482–8.
36. Hsu PS, Lai CL, Hu M, Santner-Nanan B, Dahlstrom JE, Lee CH, et al.
IL-2 Enhances Gut Homing Potential of Human Naive Regulatory T Cells
Early in Life. J Immunol. 2018 Jun 15;200(12):3970–80.
37. Nitsche A, Zhang M, Clauss T, Siegert W, Brune K, Pahl A. Cytokine
profiles of cord and adult blood leukocytes: differences in expression
are due to differences in expression and activation of transcription
factors. BMC Immunol. 2007 Aug 31;8(1):18.
38. Crespo M, Martinez DG, Cerissi A, Rivera-Reyes B, Bernstein HB,
Lederman MM, et al. Neonatal T-cell maturation and homing receptor
responses to Toll-like receptor ligands differ from those of adult naive
T cells: relationship to prematurity. Pediatr Res. 2012
Feb;71(2):136–43.
39. Liu DD, Hong WC, Qiu KY, Li XY, Liu Y, Zhu LW, et al. Umbilical cord
blood: A promising source for allogeneic CAR-T cells. Front Oncol
[Internet]. 2022 [cited 2023 Mar 15];12. Available from:
https://www.frontiersin.org/articles/10.3389/fonc.2022.944248
40. Fergusson JR, Hühn MH, Swadling L, Walker LJ, Kurioka A, Llibre A,
et al. CD161int CD8+ T cells: a novel population of highly functional,
memory CD8+ T cells enriched within the gut. Mucosal Immunol. 2016
Mar;9(2):401–13.
41. Walker LJ, Kang YH, Smith MO, Tharmalingham H, Ramamurthy N, Fleming
VM, et al. Human MAIT and CD8αα cells develop from a pool of type-17
precommitted CD8+ T cells. Blood. 2012 Jan 12;119(2):422–33.
42. Bai Y, Hu M, Chen Z, Wei J, Du H. Single-Cell Transcriptome Analysis
Reveals RGS1 as a New Marker and Promoting Factor for T-Cell Exhaustion
in Multiple Cancers. Front Immunol. 2021;12:767070.
43. Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et
al. An atlas of the protein-coding genes in the human, pig, and mouse
brain. Science. 2020 Mar 6;367(6482):eaay5947.
44. Zhao HC, Chen CZ, Song HQ, Wang XX, Zhang L, Zhao HL, et al.
Single-cell RNA Sequencing Analysis Reveals New Immune Disorder
Complexities in Hypersplenism. Front Immunol. 2022;13:921900.
45. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
46. Yang R, Cheng S, Luo N, Gao R, Yu K, Kang B, et al. Distinct
epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer
patients revealed by genome-wide DNA methylation analysis. Genome Biol.
2019 Dec 31;21(1):2.
47. Yang Y, Liou HC, Sun XH. Id1 potentiates NF-kappaB activation upon T
cell receptor signaling. J Biol Chem. 2006 Nov 17;281(46):34989–96.
48. Li Y, Ren P, Dawson A, Vasquez HG, Ageedi W, Zhang C, et al.
Single-Cell Transcriptome Analysis Reveals Dynamic Cell Populations and
Differential Gene Expression Patterns in Control and Aneurysmal Human
Aortic Tissue. Circulation. 2020 Oct 6;142(14):1374–88.
49. Gene Ontology Consortium, Aleksander SA, Balhoff J, Carbon S, Cherry
JM, Drabkin HJ, et al. The Gene Ontology knowledgebase in 2023.
Genetics. 2023 May 4;224(1):iyad031.
50. Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev
A. Fast gene set enrichment analysis [Internet]. bioRxiv; 2021
[cited 2023 Jul 25]. p. 060012. Available from:
https://www.biorxiv.org/content/10.1101/060012v3
51. Keyes TJ, Koladiya A, Lo YC, Nolan GP, Davis KL. tidytof: a
user-friendly framework for scalable and reproducible high-dimensional
cytometry data analysis. Bioinforma Adv. 2023;3(1):vbad071.
52. Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, et al. A comparison
framework and guideline of clustering methods for mass cytometry data.
Genome Biol. 2019 Dec 23;20(1):297.
53. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al.
Fast, sensitive and accurate integration of single-cell data with
Harmony. Nat Methods. 2019 Dec;16(12):1289–96.
54. Wang K, Yang Y, Wu F, Song B, Wang X, Wang T. Comparative analysis
of dimension reduction methods for cytometry by time-of-flight data. Nat
Commun. 2023 Apr 1;14(1):1836.
55. Run CyTOF analysis with Seurat [Internet]. [cited 2023 Jul
25]. Available from:
https://tjburns08.github.io/run_cytof_with_seurat.html
56. Verstegen NJM, Hagen RR, van den Dijssel J, Kuijper LH, Kreher C,
Ashhurst T, et al. Immune dynamics in SARS-CoV-2 experienced
immunosuppressed rheumatoid arthritis or multiple sclerosis patients
vaccinated with mRNA-1273. eLife. 2022 Jul 15;11:e77969.
57. Büttner M, Hempel F, Ryborz T, Theis FJ, Schultze JL. Pytometry:
Flow and mass cytometry analytics in Python [Internet]. bioRxiv;
2022 [cited 2023 Jul 21]. p. 2022.10.10.511546. Available from:
https://www.biorxiv.org/content/10.1101/2022.10.10.511546v1
58. Takahashi T, Dejbakhsh-Jones S, Strober S. Expression of CD161
(NKR-P1A) Defines Subsets of Human CD4 and CD8 T Cells with Different
Functional Activities1. J Immunol. 2006 Jan 1;176(1):211–6.
59. Billerbeck E, Kang YH, Walker L, Lockstone H, Grafmueller S, Fleming
V, et al. Analysis of CD161 expression on human CD8+ T cells defines a
distinct functional subset with tissue-homing properties. Proc Natl Acad
Sci U S A. 2010 Feb 16;107(7):3006–11.
60. Fergusson JR, Smith KE, Fleming VM, Rajoriya N, Newell EW, Simmons
R, et al. CD161 defines a transcriptional and functional phenotype
across distinct human T cell lineages. Cell Rep. 2014 Nov
6;9(3):1075–88.
61. Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, et
al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi
IL-17-secreting T cells. Blood. 2011 Jan 27;117(4):1250–9.
62. Halkias J, Rackaityte E, Hillman SL, Aran D, Mendoza VF, Marshall
LR, et al. CD161 contributes to prenatal immune suppression of
IFN-γ –producing PLZF+ T cells. J Clin
Invest. 2019 Sep 3;129(9):3562–77.
63. Reyes JGA, Ni D, Santner-Nanan B, Pinget GV, Kraftova L, Ashhurst
TM, et al. A unique human cord blood CD8+CD45RA+CD27+CD161+ T cell
subset identified by flow cytometric data analysis using Seurat
[Internet]. bioRxiv; 2023 [cited 2023 Aug 18]. p.
2023.08.01.549954. Available from:
https://www.biorxiv.org/content/10.1101/2023.08.01.549954v1
64. Okada R, Kondo T, Matsuki F, Takata H, Takiguchi M. Phenotypic
classification of human CD4+ T cell subsets and their differentiation.
Int Immunol. 2008 Sep 1;20(9):1189–99.
65. Fergusson J, Fleming V, Klenerman P. CD161-Expressing Human T Cells.
Front Immunol [Internet]. 2011 [cited 2023 Mar 10];2. Available
from: https://www.frontiersin.org/articles/10.3389/fimmu.2011.00036
66. de Jesús-Gil C, Sans-de SanNicolàs L, García-Jiménez I, Ferran M,
Celada A, Chiriac A, et al. The Translational Relevance of Human
Circulating Memory Cutaneous Lymphocyte-Associated Antigen Positive T
Cells in Inflammatory Skin Disorders. Front Immunol [Internet]. 2021
[cited 2023 Mar 13];12. Available from:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.652613
67. Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS, Yu D, et al. CXCR5
Expressing Human Central Memory CD4 T Cells and Their Relevance for
Humoral Immune Responses. J Immunol. 2011 May 15;186(10):5556–68.
68. Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A,
Fernández-Rubio L, et al. Understanding LAG-3 Signaling. Int J Mol Sci.
2021 May 17;22(10):5282.
69. Wang J, Lindholt JS, Sukhova GK, Shi MA, Xia M, Chen H, et al. IgE
actions on CD 4 + T cells, mast cells, and
macrophages participate in the pathogenesis of experimental abdominal
aortic aneurysms. EMBO Mol Med. 2014 Jul;6(7):952–69.
70. Boisvert M, Gendron S, Chetoui N, Aoudjit F. Alpha2beta1 integrin
signaling augments T cell receptor-dependent production of
interferon-gamma in human T cells. Mol Immunol. 2007 Jul
1;44(15):3732–40.
71. Boisvert M, Chetoui N, Gendron S, Aoudjit F. Alpha2beta1 integrin is
the major collagen-binding integrin expressed on human Th17 cells. Eur J
Immunol. 2010;40(10):2710–9.
72. Palma C, Binaschi M, Bigioni M, Maggi CA, Goso C. CD137 and CD137
ligand constitutively coexpressed on human T and B leukemia cells signal
proliferation and survival. Int J Cancer. 2004;108(3):390–8.
73. Tsuda H, Michimata T, Sakai M, Nagata K, Nakamura M, Saito S. A
novel surface molecule of Th2- and Tc2-type cells, CRTH2 expression on
human peripheral and decidual CD4+ and CD8+ T cells during the early
stage of pregnancy. Clin Exp Immunol. 2001 Jan;123(1):105–11.
74. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ.
Molecular mechanism and function of CD40/CD40L engagement in the immune
system. Immunol Rev. 2009 May;229(1):10.1111/j.1600-065X.2009.00782.x.
75. Yeo CJJ, Fearon DT. T-bet-mediated differentiation of the activated
CD8+ T cell. Eur J Immunol. 2011 Jan;41(1):60–6.
76. Tai TS, Pai SY, Ho IC. GATA-3 regulates the homeostasis and
activation of CD8+ T cells. J Immunol Baltim Md 1950. 2013 Jan
1;190(1):428–37.
77. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD,
et al. Bcl6 Mediates the Development of T Follicular Helper Cells.
Science. 2009 Aug 21;325(5943):1001–5.
78. Liu Z, Guo Y, Tang S, Zhou L, Huang C, Cao Y, et al. Cutting Edge:
Transcription Factor BCL6 Is Required for the Generation, but Not
Maintenance, of Memory CD8+ T Cells in Acute Viral Infection. J Immunol.
2019 Jul 15;203(2):323–7.
79. Mayer CT, Floess S, Baru AM, Lahl K, Huehn J, Sparwasser T.
CD8+Foxp3+ T cells share developmental and phenotypic features with
classical CD4+Foxp3+ regulatory T cells but lack potent suppressive
activity. Eur J Immunol. 2011;41(3):716–25.
80. Liebmann M, Hucke S, Koch K, Eschborn M, Ghelman J, Chasan AI, et
al. Nur77 serves as a molecular brake of the metabolic switch during T
cell activation to restrict autoimmunity. Proc Natl Acad Sci U S A. 2018
Aug 21;115(34):E8017–26.