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1 | INTRODUCTION

The imperative need of transitioning current energy systems, heavily reliant on fossil fuels, to renewable and carbon-neutral en-
ergy sources is motivated by the need of addressing pressing environmental and societal challenges, including climate change,
public health, energy security, and economic development. Many countries have set ambitious net-zero emissions targets, neces-
sitating significant transformations, such as transitioning to renewable energy sources and increasing energy efficiency. Wind
energy is a crucial component of these plans due to its cost-effectiveness and minimal environmental impact throughout its life-
cycle. For example, the European Green Deal has established ambitious objectives for wind energy as a critical element of the
region’s shift toward a sustainable and carbon-neutral economy. Wind energy is expected to play a major part in achieving the
goal of generating 60% of the region’s electricity from renewable sources by 2030". Individual countries have already made
significant progress in achieving such targets. To date, Denmark remains the country with the highest share of wind power in
its electricity mix, with wind power accounting for over 47% of Denmark’s electricity generation”. The US has set a target of
achieving 100% clean electricity by 2035, and wind energy is expected to play a significant role in achieving that goal. China
is also a major player in the global wind energy market and has set ambitious targets for expanding its wind energy capacity. In
its 14" Five-Year Plan, China set a target of reaching 240 GW of wind power capacity by 2025, which will almost double the
country’s current installed wind capacity “. Decades of scientific advancements and technological progress have propelled wind
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energy to become a mainstream source of electricity, accounting for nearly 7% of the world’s total electricity generation”. Cur-
rent studies suggest that wind energy alone could fulfill the world’s entire energy demand by 2030*°. Nevertheless, ongoing
research and innovation are critical to meeting these expectations, as widespread use of wind energy will require technology
to be pushed into uncharted territories, both scientifically and engineering-wise>”. Additionally, continuous advancements are
essential to ensure the cost-effectiveness and competitiveness of wind energy in the market™. Specifically, Veers® identified
three primary challenges in wind energy research that must be tackled to enable an extensive and cost-effective utilization of
wind energy: (i) a comprehensive understanding of the atmospheric flow dynamics within wind farms’ operational zone, (ii) the
aerodynamics and structural dynamics of larger wind turbines, both onshore and offshore, and (iii) a collaborative integration
of wind farms into the future electricity grid. The present study contributes to the first objective by advancing understanding of
atmospheric flow dynamics with numerical simulations for wind energy applications.

Quantifying and predicting wind speeds at turbine hub height requires understanding atmospheric dynamics and microscale
flow properties within the planetary boundary layer (PBL), a task that is particularly challenging in regions of complex terrain®,
namely areas characterized by irregular topography and land use. Several studies have investigated microscale flows in complex
terrain via high resolution numerical simulations, in idealized settings (e.g., with Large Eddy Simulations (LES)®) or via lower
resolution Reynolds-Averaged Navier-Stokes (RANS) methods for Numerical Weather Prediction (NWP) applications, in real-
istic settings™. Accurate simulations of processes at such fine spatial scales also require acknowledgment that the microscale
flow is influenced by larger mesoscale conditions, thus developing coupled meso- to micro-scale simulations is critical to obtain
a realistic model output™™. The meso- to micro-scale coupling is particularly challenging, as current meso- and micro-scale
models rely on fundamentally different assumptions to resolve turbulence processes. Mesoscale models are based on the RANS
approach, where the steady-state properties of the flow are of interest and key sub-grid scale physics processes (e.g., radiation
transfers, surface and boundary layer processes, clouds, moisture) are parameterized. Conversely, microscale models, applied
at finer resolution (i.e., tens of meters), either resolve turbulence from the Navier-Stokes equations through expensive direct
numerical simulations (DNS) or through LES which parameterize small eddy scales. Major uncertainties and challenges still
remain as how to couple meso- to micro-scale simulations and to properly simulate phenomena at gray zone (GZ) or Terra
Incognita resolutions™, which occur at around 1km and for which subgrid scale (SGS) parameterization assumptions on the
grid size are violated with both RANS and LES™. As a result, unrealistic flow structures may be simulated if traditional closure
techniques are not revised =*°. However, it is of high interest to perform simulations at such resolutions, as they are critical to:
i) produce detailed numerical weather predictions (e.g., by improving representation of turbulent characteristics™, resolving
local flow characteristics related to topography** and land use™), ii) improve representation of the wind turbines impact on the
atmospheric flow (e.g., wake effect”*") and iii) provide appropriate boundary conditions to urban scale models (e.g., for urban
heat island quantification”’). While recent studies have explored new approaches to overcome these difficulties """ and
improve the accuracy and efficiency of multi-scale model runs (e.g., ”***“"), a comprehensive understanding on the subject
is still elusive *-*7,

Recent advances in high-performance computing now allow for high-resolution and multiscale simulations for wind en-
ergy purposes - where the coarsest LES domain is forced with boundary conditions generated by the finest mesoscale
simulation. Large-scale tendencies are thus dynamically integrated in high-resolution simulations, thus overcoming several
idealizations in canonical LES of the PBL™ . This integrated approach is particularly important to study transient phenomena
(e.g., frontal passages“®, thunderstorm outflows, baroclinic systems, low-level jets), changes in atmospheric stability associated
with the diurnal-nocturnal cycle™, topography-induced flow**, as well as to link site-specific wind conditions to the long-term
climatology of the area™. The latter plays a key role to provide reliable predictions of the annual energy potential of wind
farms and reduce financial risks®. Short-term wind energy forecasts can also benefit from LES coupled with mesoscale simula-
tions “*'. However, multiscale simulations are still in their early stage, are highly complex and require many input parameters
and assumptions, potentially resulting in uncertainties in their outputs. In this study, we take advantage of a recent dataset of 36
multiscale simulations® to explore the sensitivity of wind energy estimates calculated with LES runs coupled with mesoscale
forcing, with the goal of studying their uncertainty and sensitivity to different input factors. Specifically this work aims to:

1. Characterizing the time-resolved sensitivity and uncertainty of wind power production estimates with multiscale numerical
simulations, for an isolated 78 m wind turbine in complex terrain (Perdigdo field site);

2. Characterizing the spatial distribution of the sensitivity of multiscale simulations for wind energy purposes, to further
elucidate the role of complex terrain;
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3. Providing a benchmark study that can serve as a reference for wind energy assessments performed in areas of complex
terrain with multiscale simulations.

This paper relies on simulations presented in Giani and Crippa™ that focuses on PBL dynamics with the ultimate goal of
investigating how different configurations of multiscale simulations impact wind energy predictions.

The remainder of the paper is organized as follows. In the next Section, we present the numerical simulation ensemble
(Section [T), followed by the methodology for the sensitivity analysis (Section 72 and Section Z3). The results from the
sensitivity analysis are laid out in Section B, where we address and discuss the temporal (Section Bl) and the spatial (Section
B™) distribution of variability within the ensemble. Thereafter, we investigate the sensitivity of power production in Section
B3. Finally, in Section B, we present the main findings, draw overall conclusions and outline potential areas for future research.

2 | MATERIALS AND METHODS
2.1 | Numerical meso- to micro-scale simulations

This work is based upon a recent ensemble of four-day long multiscale simulations® over the Perdigdo field site (Portugal),
which is characterized by two parallel double ridges and a small valley in between, in an area that is approximately 6x6 km?**,
The two parallel ridges are about 1.5 km apart and are roughly 4 km long and 550 m high at their summit. The detailed
description of the dataset can be found in Giani and Crippa™, whereas here we report the main features of the simulations that
are key to interpret the wind energy analysis presented in this work. Relevant experimental details™ of the campaign and other
modeling work over the Perdigdo valley ***>* can be found in recent literature.

In this work, we analyze an ensemble of 36 multiscale runs generated with the Weather Research and Forecasting (WRF)
model version 4.4™, that encompass five nested domains. The resolutions of the five different domains span from 11.25 km in
the outermost domain to 30 m in the innermost one. The general circulation in the outermost domain is solved with a mesoscale
turbulence parameterization (1D PBL scheme) while the flow in the innermost domain, that interacts with the double-ridge
topography, is solved with microscale LES closures. The difference across the 36 configurations lies in four different input fac-
tors. Specifically, the ensemble runs include (i) different topography and land use datasets in the finest domains (Topography),
(ii) different initial and lateral boundary conditions for the outermost domain (LBCs), (iii) different turbulence closures in the
intermediate gray zone domains (GZ treatment) and (iv) different SGS models for the LES innermost domain (SGS-LES). Two
different options are used for Topography, and include the default WRF coarse datasets (around 900m in resolution) and tailored
fine datasets from NASA’s Shuttle Radar Topography Mission (SRTM*¥) for topography and the Coordination of Information
on the Environment (CORINE) for land use™, that have 30 m and 100 m resolution, respectively. Three choices are used for
LBCs, including the Global Data Assimilation System (GDAS) final analysis®™, the high-resolution operational data from the
European Centre for Medium-Range Weather Forecast (HRES-ECMWF®") and ECMWF’s ERAS reanalysis®. Three choices
are considered for GZ treatment, a traditional 1D PBL scheme (The Yonsei University Scheme, YSU®), the scale-aware ver-
sion of YSU (Shin-Hong“®) and Zhang’s 3D blending closure”. Finally, two options are tested for LES-SGS, the Turbulent
Kinetic Energy (TKE) closure of Deardorff> and the deformation-based Lilly-Smagorinsky closure®-*®, Each combination of
the different options of the four different input factors is available in the dataset, i.e. in total there are 2 x 3 x 3 x 2 = 36
simulations. More details about specific choices of the input factors can be found in Giani and Crippa™.

The simulations cover four days during the Intensive Operation Period (IOP) of the Perdigao field experiment, from May
19, 00 UTC to May 23, 00 UTC. Note that the local time is UTC+1 during the simulated episode. During the simulation days,
no precipitation and a mixture of clear sky days and high and medium clouds are observed. The episode is characterized by
a periodic passage of low and high pressure, and towards the end of the simulation time synoptic and local winds decrease
substantially.

2.2 |  Four-way Analysis of Variance

The goal of this work is to disentangle the effect and the relative importance of the four different input factors described in the
previous section on time-resolved wind energy calculations at a specific point in space, where a 78 m tall wind turbine is, as
well as across the simulated spatial domain. We focus on the innermost domain, discretized at 30 m resolution, which is solved
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with the LES technique in the 36 configurations described in the previous section. To evaluate the sensitivity of the dataset to
various input factors, we conduct a four-way Analysis of Variance (ANOVA®™). By decomposing the variance, this analysis
identifies which factors have the greatest impact on variability across the ensemble members. As a result, this investigation
may help with future simulations optimal design by providing insights on ways to reduce uncertainties. It will also help save
computational resources by identifying factors/setup the model is most sensitive to, thus improving the overall robustness of
the multiscale simulations.

To assess both the spatial and temporal variability of the model output, we conduct two separate analyses. The spatial analysis
covers the entire innermost domain, while the temporal analysis focuses only on the turbine site. Both analyses examine the
relationship between wind speed at 78 m and power production. Further, we conduct the sensitivity analysis for both the entire
simulated time period and four specific sub-periods of interest: (i) daytime (12-15 UTC), which featured a fully developed
convective boundary layer (CBL); (ii) late afternoon (16-20 UTC), which represent the transition period from daytime to
nighttime; (iii) nighttime (00-03 UTC), when stable boundary layer conditions prevail; and (iv) a period characterized by a
change in synoptic conditions (May 21, 12 UTC to May 22, 06 UTC), when both the prevailing wind direction and wind speed
vary significantly (synoptic transition). Here we introduce the fundamental concepts of a one-way ANOVA, and then generalize
it to a four-way version.

Let x;; be run j in group i, so for example x;3 is the third element in first group. If we consider the LBC factor for the one-
way anova, the three groups are the three options for LBC, i.e. GDAS, ERAS, HRES-ECMWF. From simple algebra, each
individual element of the dataset can be decomposed as:

X=X+ G-D+ @ -%), Vi=l,..Kj=1,.,N (1)

where X is the grand mean (average of all 36 experiments) and X; is the mean of group i. In our notation, K refers to the total
number of elements per group and N refers to the number of groups (for instance, in the case of LBC, N = 3 since we have
three options for the lateral and initial boundary conditions, and K = 12, where we are assuming that each group has the same
amount of elements, which is true in our case). Thus, each individual wind prediction is equal to the sum of the grand mean,
the deviation of the group mean from the grand mean, and the deviation of the individual prediction from the group mean.
According to the decomposition of Equation [, measures of dispersion within the ensemble can be computed as follows:

szxplained = % Z Z(fi_x)z = % Z(fi_x)z 2)
i J i

szesidual = I;W Z Z(-xij _fi)z (3)
i

The explained variance indicates the extent to which group means match the grand mean, thus large values of s?xp,amed

indicate large departures among the means of the three groups. The individual terms (¥;—%)> quantify how much of the ensemble
variability is explained by differences in each factor. The residual variance, instead, quantifies differences within each group
and consequently computes the amount of variability introduced by other factors. Given the law of total variance, the sum of
the previous two quantities equals total ensemble variance:

1
2 _ =2 — 2 2
Se o= — E g i —X) =85 1000 F S @
total KN & : /) explained residual
t J

A four-way ANOVA is a variation of a one-way ANOVA and calculates the corresponding szxplained for each individual input
option and allocates the remaining variance to 52, ;- Additionally, when multiple factors are analyzed, interaction effects may
contribute to the variance. For a four-way ANOVA, six interaction terms among two factors, three interaction terms among
three factors and one interaction term among all factors can be considered. However, if interactions are excluded, as in this
work, the residual variance will account for their contribution. In other words, the residual variance can be decomposed into the
sum of all the 10 interaction factors. We use the software R to compute the four-way ANOVA. It is worth noting that our case is
a balanced dataset case, and therefore the order that different terms are inputted into anova () function is unimportant. Each
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group consistently has an equal number of elements. Therefore, the decomposition of total variance for a multi-way ANOVA
can be expressed as follows:

M

2 : 2 2 _ 2
Sexp]ained,m + Sesidual = Stotal (5 )
m=1

where M is the number of factors (i.e. M=4 in our case).

2.3 | Power curve and wind energy production

We focus on the time-resolved sensitivity analysis of the 36 multiscale simulations at one specific point in the domain, before
expanding the discussion to the entire spatial domain. The specific point that we consider is co-located with an ENERCON
E-82 E1 wind turbine, with a height of 78 m and a rated power of 2 MW. The wind turbine is located on the south-west ridge
(39.708N, 7.745W) and has been in operation since 2007. The model sensitivity over the whole time series of both wind speed
and power production is tested at the numerical grid point closest to the wind turbine location. The following power curve is
used to estimate wind power production based on the simulated wind speeds at turbine hub height. As shown in Figure [, the
cut-in wind speed for power to be generated is about 2 m s~!. After that threshold is met, wind power increases approximately
with the third power of wind speed until it reaches the rated speed at 13 m s™'. Further increases in wind speed will not affect
power production, which remains constant at the wind turbine rated power (2 MW). However, if the wind speed exceeds the
cut-off value (25 m s7!), the turbine is not allowed to deliver power to prevent excessive stress on the structure. The impact of
the 36 model configurations on wind power is also analyzed through ANOVA, as small discrepancies in wind speeds among
runs may lead to significant differences in power and energy production levels, given the non-linear relationship between wind
speed and wind power.

3 | RESULTS
3.1 | Temporal variability of wind speed at the turbine site

In this section, we present simulated wind speed data extracted from the 36 ensemble members at the turbine location at hub
height (Figure D). Although a full model evaluation is beyond the scope of this study, we briefly compare the simulated wind
speeds with the observed values at the closest meteorological mast that include near hub-height measurements (100m). The
meteorological mast was located on the South-West ridge (39.706N, 7.744W) and its code for the Perdigdo field campaign is
tse04. The observations reveal a clear diurnal cycle, with wind speeds decreasing during convective daytime conditions and
increasing at night, a trend that is generally captured by all model runs. However, during the synoptic transition on late May
21 and May 22, a notable shift in the typical diurnal cycle is observed. Specifically, the wind direction shifts from ENE to
SSW, the wind speed drops, and the typical nighttime increase in wind speed is not observed. This perturbation is driven by
weaker winds aloft, as well as by a change in wind direction that precludes the typical wind speed amplification observed on
the second/downwind ridge, where the turbine is located, when there is a northeasterly flow.

The analysis of the four periods of interest reveals that the ensemble average over the entire time period closely matches the
observed data, as shown in the whole timeseries boxplot in Figure B. However, a closer examination of the data indicates that
the model tends to overestimate wind speeds by approximately 1.5 m s™' during the daytime and late afternoon periods and
underestimate it by roughly the same amount during nighttime. The different model setups adopted do not have a significant
impact on the discrepancies across the ensemble members, as highlighted by the small spread between the 1% and 3" quartiles of
approximately 0.5 m s~! during daytime and late afternoon periods. During these time periods, the model consistently exhibits
a positive bias against the observed data. The variability across the ensemble members also varies through time, with the largest
variability occurring during nighttime and synoptic transition periods. For example, on May 22, during the synoptic transition
characterized by a shift to a southerly flow, the wind speed is weaker on average compared to the previous nights and similar to
the day-night transition. However, the spread across the ensemble runs is larger during this period (Figure B), indicating higher
uncertainty in the model’s ability to accurately capture the wind speed variability. This highlights the importance of different
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FIGURE 1 ENERCON-2MW wind turbine power curve®. Dashed red lines represent the cut-in speed, rated speed and
cut-off values, from left to right.

parameterizations or forcing in generating uncertainty across runs. These results demonstrate that the model does not capture
all the PBL dynamics equally well and struggles the most during nighttime and stratified flow conditions.

As this preliminary analysis indicates that there are significant differences in the wind speed estimates among the ensemble
members over time, we conduct a sensitivity analysis to identify the sources of discrepancy and spread across the ensemble
members with respect to each of the four factors under examination. This investigation is aimed at contributing to a better
understanding of model’s limitations and strengths and provide insights into ways to improve its performance. Specifically, a
sensitivity analysis is performed over wind speeds averaged either over the whole timeseries or over the individual four sub-
periods of interest at the turbines hub height. Figure 8 illustrates the total variance (in gray) and how it is broken down across
factors. With the exception of the synoptic transition, it is observed that topography is the primary factor contributing to 40-
80% of wind speed variability across runs. This can be attributed to the spatial resolution of the various topography products
used. The coarser terrain dataset, which is the default in WREF, considerably smooths the terrain and have a large impact on
the wind predictions. Furthermore, having a smooth three-dimensional hill rather than a double ridge topography may have
led to inaccuracies in the simulation of mountain-valley flow and thus generated discrepancies across the runs. The surface
roughness is also quite different between the coarse and fine land use datasets, and it is expected to generate differences
in near-surface quantities®™, because of the presence of non-negligible canopy®. During daytime and nighttime periods, the
LBCs and the GZ treatment also contribute to the spread, each by more than 20%, whereas their impact is much less relevant
during other time periods (i.e., day-night transition and whole-day averages). As far as the synoptic transition is concerned, the
LBCs factor mostly drives discrepancies in wind speed estimates at the microscale, by contributing to 45% of total variance.
Here, topography only accounts for 24% of the variability across runs. This is most likely due to the mesoscale nature of
the phenomena that govern the PBL under changes of synoptic conditions as the one occurring on late May 21 and May 22.
Therefore, when simulating synoptic transition circumstances great emphasis should be placed on how initial and later boundary
conditions for the outermost domain are defined. The SGS model adopted is generally the least relevant factor, contributing to
about 1% of the total variability across runs. This is a somewhat surprising result, as previous idealized studies suggested that
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FIGURE 2 Temporal variability of simulated wind speed (m s at the turbine location at hub height (i.e., 78 m) across
the 36 ensemble members. Observations are in black and the arrows on top represent the hourly mean direction the wind is
blowing to and the length of the bar is proportional to the mean wind speed across the ensemble runs. The vertical bars indicate
the hours used in the analyses over specific period of interest defined in Section X (i.e., daytime, late afternoon, nighttime and

synoptic transition).

SGS modeling is important for the velocity spectrum as well as the velocity field* ", but in the context of our real case dataset
it appears to have a marginal role compared to other modeling choices (e.g., LBC).

Finally, the decomposition of variance performed on the individual five-minutes data over the whole time series is presented
in Figure B and indicates some inter-daily variability. Occasionally, a single factor may persistently prevail over the others for
a certain time frame (e.g., gray zone treatment on the first night). However, a consistent daily pattern cannot be inferred. On
May 19 and May 20, the largest total variance is found at night, consistently with the results presented in Figure B. However,
this is not the case on May 22 and May 23, where constantly high and low variances are observed throughout the two days,
respectively. On May 23, none of the four factors is found to dominate during the last day, which can be interpreted in light
of the overall small variance associated with the low simulated wind speeds. As discussed earlier, the change in synoptic
conditions might be responsible for this pattern, which is also reflected in the large variance explained by LBC between 12 and
18 UTC on May 21. The five minutes analysis allows further identifying interesting phenomena that are not revealed by the
time-averaged analysis. For example, during the night between May 19 and May 20, the vast majority of the spread within the
ensemble can be traced back to how turbulence has been modeled at gray zone resolutions. Conversely, as previously shown in
Figure B, nighttime averaged variances show that topography is the leading factor in explaining the model sensitivity. Note that
the average of the variances in Figure B is different from the variance on the wind averages, as compensating effects between
large and low values of wind speed in different simulations can effectively lead to negligible variance on the winds time
averages. In conclusion, it can be stated that when a time aggregated analysis is of relevance, as in the cases of optimal turbine
siting and regional climatology, topography and land use datasets are the leading factors in determining the time-averaged wind
speeds. The reason is that lower or higher surface roughness, for instance, consistently lead to higher and lower wind speed,
respectively, biasing the time averages. On the contrary, when a prediction with a short time resolution is of interest as in the
case of hourly forecasts necessary to match the energy demand, different results should be expected. Dynamical analyses® are
needed to investigate the physical mechanism underlying specific sensitivity patterns and thus help generalize current results.
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FIGURE 3 Time-averaged wind speed at the turbine height and location for each sub-period of interest and for the whole
simulated period. Each whisker extends to the furthest data point that is within 1.5 times the interquartile range (IQR). The red
cross shows observations at tse04 averaged during the same time periods.

3.2 | Spatial sensitivity of wind speed to model setup

In this section, results of the sensitivity analysis performed over the the entire innermost domain are presented. The goal is to
characterize the spatial distribution of the sensitivity of multiscale calculations of wind speed and thus investigate the role and
the consistency in space of each of the four factors under examination. To this end, a four-way ANOVA has been carried out in
each grid point on time-averaged wind speeds at the turbines hub height (78 m). Figure B shows the variance explained by each
factor variable, displayed on a logarithmic scale. Each row represents the five sub-periods of interest over which time-averaged
wind speed has been computed. Regardless of the sub-period, results show a significant influence of topography and land use
datasets choices on the wind speed estimates, especially on the two parallel ridges and on the deepest section of the in-between
valley (upper-left area), where the total variance itself is higher compered to the rest of the domain. As also highlighted in
Section B, a different accuracy in characterizing the topography of the area may have led to significant differences in the
simulation of the mountain-valley flows and thus generated discrepancies within the ensemble. On the contrary, in all sub-
periods and over the whole spatial domain, the model is insensitive to the LES SGS model, as also found with the time-resolved
analysis. During nighttime and the synoptic transition, other factors gain importance, as shown in Figure [. In particular, these
effects are visible on the second ridge downwind (the SW and NE ones, respectively for Nighttime and Synoptic transition)
where discrepancies among simulation members are higher, as well as in the flat region further downwind (respectively, lower-
left and upper-right corners). Furthermore, it is of interest to note that in the deepest region of the valley it is again only
topography that leads to substantial differences in wind speed estimates within the ensemble. Under both synoptic transition
and nighttime conditions, whens variance is higher, a portion of total variance is explained by the residuals. As interactions
of all orders between additive terms are not allowed in the current ANOVA model, residuals account for them all and thus for
the variability introduced by varying two or more factors simultaneously. ANOVAs with first-order interactions have shown
prevalence of interactions of topography, LBCs, and GZ treatment as most relevant ones (not shown). Therefore, when nocturnal
time-averaged wind fields are of interest, the focus should be reserved to how all factors but LES’s SGS model are modeled.
Lastly, an area of numerical instabilities is observed at the northwest edge of the northern ridge, which is most likely a result
of the limited capability of WRF hybrid hydrostatic pressure terrain-following coordinates to accurately simulate very steep
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FIGURE 4 Decomposition of total variance (in gray) of time-averaged wind speed, among factor variables. Wind speeds
have been simulated at the turbine site and at 78 m. On top of the gray bars, is the coefficient of variation (i.e., standard deviation
divided by the mean) is shown, while at the bottom of each colored bar, the percentage of explained and residual variance is
displayed.

slopes close to numerical boundaries (not shown). This is reflected in the non-negligible portion of variance explained by the
LES SGS model in that area, suggesting that different subgrid scale models play a role in dissipating the numerical instabilities
created by the fast horizontal and vertical velocities in the steep region of the domain (slope angles greater than 45 degrees).
In summary, when simulating multi-day averaged wind speed in complex terrain through multiscale simulations, as well as
for daytime and late afternoon sub-periods, the elevation mapping and the land use dataset chosen for the site mostly drive the
spread within the ensemble. This holds particularly true over ridges and in the valleys in between. With the exception of LBCs
in the daytime, the other factors under examination do not significantly influence wind field simulations. When nighttime and
synoptic transition wind speeds are of interest, instead, also the resolution and temporal forcing of global dataset, as well as the
representation of turbulence in the gray zone are of relevance in dictating discrepancies in wind speed estimates. In Table [, an
overview of these findings is presented. In each entry, mean values of the variance explained by each factor computed over the
whole innermost domain are given. Results are presented as percentages of the mean value of total variance, which is instead

displayed in the last column in m? s~2.
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FIGURE 5 Decomposition of total variance [m?> s] of wind speed at 78 m above ground at the turbine site on each
simulated day. The total variance is reported in gray.
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FIGURE 6 Variance explained (m? s~2) by each factor over the whole time series and the individual four periods of interest.
The last column shows the part of variance not explained by the adopted ANOVA model. Note the log,, scale of the colorbar.
In white, variances of less than 0.01 m 2 s are shown. X and Y axis are displayed as distances in meters from the most
South-West point of the domain (39.685N, 7.774W). The topography contours are showed in gray colorscale.
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FIGURE 7 Factors explaining most of the variance at each location and time period. X and Y axis are displayed as
distances in meters from the most South-West point of the domain (39.685N, 7.774W).

TABLE 1 Mean values of the variance explained by each factor when simulating wind speed in different time frames
(columns 1-5, in percentage) computed over the whole innermost domain. Residuals account for interactions of all orders.
Results are shown as percentages of the spatial mean of total variance (m? s2), which is presented in the last column.

LBCs Topography GZ SGS-LES Residuals Total (m? s72)
Whole Period 19.5 60.9 12.7 0.29 6.69 0.219
Daytime 429 29.5 10.8 0.46 16.4 0.160
Late afternoon 14.5 62.9 5.54 0.30 16.7 0.234
Nighttime 194 32.9 323 0.32 15.0 1.142
Synoptic transition 554 21.6 7.81 0.21 15.0 0.848
3.3 | Sensitivity of wind power production at the turbine site

In this section, we examine how various modeling approaches affect the power generation predictions. Our focus is on the
particular location where the wind turbine is situated on the southern ridge of the Perdigdo domain. Although we can apply
our findings to any point within the study area, we concentrate on this specific reference site as a realistic application with
an existing wind turbine. In addition, measurements st zse04 enable the comparison of power production estimates obtained
from the WRF-LES simulated wind speeds with those from the actual observations. Figure B illustrates the fluctuation of wind
power generation over time among the ensemble members and in comparison with the measurements. Similarly to the wind
speed in Figure O, the power production peaks over nighttime and is lowest during daytime periods, with a mean of 1390



SENSITIVITY OF MULTISCALE LARGE EDDY SIMULATIONS FOR WIND POWER PRODUCTION IN COMPLEX TERRAIN 13

daytime

late afternoon
nighttime
synoptic transition

2000

1500
|
SN

E é
% %
: %
2 g5 - WER WIS ik | /
o) - ’ %
2 g; |
8 — éi | /
I| il J 7
o | \ Ab i /,%
rrrrrrrrrerererererrerr et
O O O O O O 0O O 0O 0O OO0 OO0 O O O O O O O O 0O O O O O oo O o o o o
290920 Q0 Q0 Q92000 QQ0 Q00900 QQQ Q0 Qo
SEEENOE S8 EENPE S EENGESFEENBELS
2 8 & & 8
8 8 8 8 8

FIGURE 8 Power production estimates [kW] for an ENERCON-2MW turbine derived from the simulated wind speeds at
78 m at the location of the existing wind turbine on the southern ridge. The different lines represent the wind power generated
using wind speeds from different ensemble members. The black line refers to the power estimated from the observed wind
from a nearby meteorological mast (tse04), at near hub height (100m).

kW and 490 kW, respectively. While the mean wind speed over the entire time period analyzed only slightly overestimates
observations (see Figure [), the model bias for the mean power production is much larger, 840 kW from the model versus 525
kW from observations. Namely, a 37% average power difference is found for the ensemble mean, while the same wind speed
bias in percentage was only 7%. The imbalance increases in all sub-periods, although it is during daytime that the highest
difference is found, as the discrepancy between observations and ensemble mean is equal to 74% of latter (19% for wind
speed). This can be explained by considering that the power production generally scales with the cube of the wind speed (see
Figure ), thus biases in wind speeds may be significantly amplified when estimating wind power. As expected, the variability
among the ensemble members is also amplified in relation to the wind speeds, as demonstrated in Figure B. The coefficient of
variation (CV), displayed on top of each bar in both Figure B and Figure [, is used to quantify and compare such differences.
Values of CV (the standard deviation between ensemble members divided by the ensemble mean) are twice or even three
times (during daytime) higher compared to their wind speed equivalents. In the case of wind power, the greatest variability
within the ensemble is found during the period of synoptic transition (coefficient of variation equals to 0.31), although the
greatest variation in absolute terms occurs in nighttime as its standard deviation is 305 kW, against the 270 kW of synoptic
transition. For comparison, the average electricity power consumption for a single American household is approximately 1.2
kW, from U.S. Energy Information Administration® estimates. Therefore, the ensemble power variability across the ensemble
is significant, highlighting the importance of further constraining multiscale LES calculations to have a highly accurate and
reliable simulation tool for realistic applications. During the daytime and late afternoon time periods, as well as for averages
over the whole four-day period, discrepancies between ensemble members are halved if compared to other periods. However,
they are still significant and not negligible. It is also worth noting that during the first and last daytime periods, some simulations
indicate very low wind speeds (below 2 m s7!), resulting in zero power generation, as per the power curve. Similarly, wind
speeds exceeding 13 m s™! that are simulated during most nighttime periods fall within the rated power of 2000 kW for the
installed turbine. Consequently, the bias between the observed and simulated power levels off during these periods.

Here we present results from the ANOVA decomposition of variance performed over different time averages of power
production estimated from the simulated winds at the turbine site. Figure [ displays similar patterns to the ones of wind speeds
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FIGURE 9 Time-averaged wind power at the turbine height and location for each sub-period of interest and for the whole
simulated period. Each whisker extends to the furthest data point that is within 1.5 times the IQR. The red cross shows wind
power computed from the observed wind speeds.

(Section B, Figure B). When the whole time series and late afternoon are analyzed, topography resolution still appears to be
a dominant factor in explaining the variability in power production across runs, with a contribution of around 70%. During
synoptic transition, as it was in the previous analysis, the model is most sensitive to LBCs, whose different characterizations
account for 44 % of total variance. Yet, in other sub-periods some discrepancies in sensitivity patterns compered to wind speed
analyses can be noted. Given the characteristic power production curve (detailed in Section Z3), whenever the input wind
speeds are either below 2 m s™! or exceed 13 m s™', the power production saturates, as depicted in Figure B. Therefore, when all
simulations exhibit wind speeds either below 2 m s7! or above 13 m s~!, an increase in wind speed does not result in an increase
in power generation, and the spread among the simulated wind speeds leads to equal power production estimates, pushing
variance to zero, and making it insensitive to all factors. Similarly, when only certain runs of the ensemble simulate wind speeds
above or below these thresholds, the relative importance of each factor may vary as well compered to previous sensitivity
analysis on wind speeds. This is the case of nighttime and daytime sub-periods. As captured in Figure B, indeed, during the
first two nights certain runs simulate winds that blow faster than 13 m s~!, while during May 19 and daytime hours of May
22 wind speed occasionally drops below 2 m s~!. Consequently, main explaining factors of total variance differ from previous
wind speed ones. In particular, in both nocturnal and diurnal hours, the effect of topography is reduced, in favor of LBCs (52
%) and GZ treatment (45 %), respectively for daytime and nighttime. In conclusion, it should be taken in consideration that,
under specific wind conditions (wind speeds of about 2 or 13 m s™!), improvements of those input features highlighted by wind
speed sensitivity analyses may not necessarily enhance power production estimates, and vice versa.

Same conclusions can be drawn for sensitivity analysis performed on five-minutes power production simulations, whose
decomposition of variance is presented in Figure [Il. Generally, similar sensitivity patterns of wind speed analysis can be
seen. However, ’deformations’ due to the characteristic power curve of wind turbine are still visible. An illustrative case is set
by May 21. On the one hand, during the early hours when wind speed are consistently above 13 m s~! in some simulations,
decomposition of variance of wind power returns an altered sensitivity pattern if compared to previous results on wind speed,
characterized by the absence of predominance of any factor. On the other hand, after 12 UTC, when wind speed starts dropping
and the simulated wind direction begins to shift from ENE to SSW starting synoptic transition, the same pattern of the wind
speed analysis can be detected, characterized by the dominance of LBCs effects, overtaken by the gray zone treatment as the
sun sets. The only difference is the magnitude of the curves, here amplified by the characteristic cubic shape of power curve
when wind speeds are well between the range 2-13 m s™'.
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FIGURE 10 Decomposition of total variance (in gray) of time-averaged power productions, among factor variables. Wind
speeds have been simulated at the turbine site and at 78 m above ground. On top of the gray bars, the coefficient of variation
(i.e., standard deviation divided by the mean) is shown, while at the bottom of each colored bar, the percentage of explained
and residual variance is displayed.

4 | DISCUSSION AND CONCLUSIONS

Multiscale modeling tools have the capability to simulate atmospheric motions across a broad range of spatio-temporal scales,
covering almost all turbulence energetic scales. By using a coupling technique that bridges meso- and micro-scales, high-
resolution nested Large-Eddy Simulations can be dynamically informed by large-scale numerical weather prediction models,
resulting in more accurate and reliable simulations of the planetary boundary layer. This approach has numerous beneficial
applications, including the wind energy sector. It is a promising approach in fully understanding, managing, and predicting
the performance of current and future wind farms, by advancing our understanding of atmospheric flow dynamics. Ultimately,
this would contribute to a widespread efficient and affordable deployment of wind energy, thereby reducing reliance on fossil
fuels and mitigating the impact of climate change. However, given the inherent complexity of expensive multiscale simulations,
numerous assumptions and fine tuning is required to produce accurate output that is of practical importance. One key aspect of
uncertainty is turbulence modeling across different resolutions, which is further complicated by the recently defined gray zone
problem™ For realistic problems, the selection of initial and boundary conditions and topography and land use datasets is also
a potential source of uncertainty. The relative importance of such assumptions for wind energy applications is the main focus
of the present study.

Specifically, we take advantage of a recent dataset of multiscale WRF simulations® to investigate the model sensitivity to
different input factors and assumptions over the innermost, microscale domain, both in the temporal and in the spatial domain.
Sensitivity analysis is used to identify key drivers of model behavior and guide future model development and improvement.
The goal of our work is to complement the analysis of Giani and Crippa®, by focusing on implications for wind energy.
Meso- to micro-scale coupling techniques are still in their early stage and their application for wind power estimates has hardly
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FIGURE 11 Decomposition of total variance [kW?] of wind power at 78 m above ground at the turbine site on each
simulated day. The total variance is reported in gray.

been explored and assessed, in particular in an area of complex terrain such as the Perdigdo. The present study works in this
direction, aiming to understand how different configurations of multiscale simulations impact wind energy predictions. To this
end, several input assumptions are investigated through a four-way ANOVA of an ensemble of simulations conducted over an
area of complex terrain in central Portugal during a four-day long, precipitation-free springtime period. Both time-averaged
estimates and time-resolved series were investigated, of both wind speed at hub height and power productions. It is important
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to acknowledge that our findings pertain specifically to our model setup at the Perdigéo field site, for the four days considered.
Nevertheless, they provide valuable insights into understanding the sensitivity of practical multiscale experiments conducted
in complex terrain and shed light on the underlying mechanisms driving this sensitivity. Expanding this study to different
geographical areas can be helpful in determining the applicability of our findings on a broader scale.

First, the analyses presented in this work show significant discrepancies in wind speed estimates with multiscale simulations,
that lead to even more considerable variations in wind power calculations. In particular, this variability is stronger over the
ridges and in the in-between valley. For a 2MW wind turbine located on the South-West ridge, we find that the ensemble
average power production predicted by multiscale simulations is 840 kW for a four-day time average (capacity factor of 0.42),
and that the interquartile range across the ensemble members is approximately 250 kW. In other words, the 75th percentile
estimate predicts that up to approximately 850 standard American households (1.2 kW/household) could be powered by one
single 2MW wind turbine, whereas the 25th percentile estimate predicts that about 625 households could be powered (assuming
to perfectly match the load). When scaling up these findings for an entire wind farm, the variations among simulations can
become significant for real-world wind energy challenges. While there is strong potential for multiscale simulations to fill in
gaps in estimating wind energy resources, there is a need of targeting this uncertainty to make multiscale tools fully operational
for wind energy purposes.

We further analyzed the main factors that explain such uncertainty in multiscale calculations, to inform future research
directions. First, we find that most of the ensemble discrepancies occur during day-to-night transitions and synoptic transitions.
Variance decomposition demonstrated that the resolution of topography and land use dataset are the primary factor of such
variability. However, under specific periods of time (i.e., synoptic and day-night transitions) simulations are also sensitive to
other factors, as mesoscale LBCs and modeling turbulence in the gray zone, which can locally overtake topography. The model
appears insensitive to how the sub-grid scale is modeled in the innermost domain, somewhat differently from what found in
idealized studies™. In other words, other factors relevant in realistic simulations appear to be more important than the SGS
model in predicting hub-height wind speed with multiscale simulations. Furthermore, in the deepest region of the valley, only
the topography factor drives differences within the ensemble, regardless of the sub-period analyzed.

Decomposition of variance performed on high-resolution temporal data (five-minutes) over the whole time series at the tur-
bine site indicates strong inter-daily variability, and a coherent and recurrent daily pattern is not found. Occasionally, individual
factors can persistently prevail over the others for certain time frames, in driving the overall ensemble spread. In summary,
when conducting a time-averaged analysis for applications such as optimal turbine placement and studying regional climatol-
ogy, special care should be taken in selecting appropriate topography and land use datasets, because they have a large effect on
the long-term fime-averaged wind speed. On the other hand, for short term forecasts of wind power, such as those one needed
for energy market applications, it appears that the way that turbulence is modeled across scales can have significant impacts on
the final wind power forecasts.
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