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Fig. S1: Spatial distribution of the percentage of permafrost extent in the Northern Hemisphere.  



 

Fig. S2: Spatial distribution of the percentage of soil N2O emissions from croplands.  

 

Fig. S3: Temporal variations in mean temperature (a) and precipitation (b) of the northern high 

latitudes during 1901-2016. 

 



 

Fig. S4: Decadal variations in the contributions of different driving factors to soil N2O emissions 

from the entire northern high latitudes estimated by individual NMIP model.  

 

Fig. S5: Decadal variations in the contributions of different driving factors to soil N2O emissions 

from permafrost regions estimated by individual NMIP model.  

 



 

Fig. S6: Decadal variations in the contributions of different driving factors to soil N2O emissions 

from non-permafrost regions estimated by individual NMIP model.  

 

Fig. S7: Path analysis results. Numbers adjacent to arrows in the path diagrams are standardized 

path coefficients indicating the magnitude of the influence between factors, and the significance 

level is indicated by * (p < 0.01). 

 



 

Fig. S8: Spatial distributions of the partial correlation coefficients between modelled annual soil 

N2O emissions and temperature (a) and precipitation (b) during 1901-1980; (c) and (d) show trends 

in temperature and precipitation during 1901-1980, respectively. The black lines in (a)-(d) show 

the extent of the permafrost region. 



 

Fig. S9: Spatial distributions of the partial correlation coefficients between modelled annual soil 

N2O emissions and temperature (a) and precipitation (b) during 1980-2016; (c) and (d) show trends 

in temperature and precipitation during 1980-2016, respectively. The black lines in (a)-(d) show 

the extent of the permafrost region. 

 

 

 



 

Fig. S10: Trends in temperature and precipitation and their partial correlation coefficients with soil 

N2O emissions. a and b show spatial distributions of the partial correlation coefficients for 

modelled annual soil N2O emissions versus temperature and precipitation during 1901-2016; grids 

with non-significant correlation (p>=0.05) were excluded. c and d show trends in temperature and 

precipitation during 1901-2016, respectively; grids with non-significant trends (p>=0.05) were 

excluded. The black lines in (a)-(d) show the extent of the permafrost region. 



 

 

 

 

Fig. S11: Climate effects on reactive N flows of the northern high latitudes. (a)-(d) show the effects 

of climate change on regional biological N fixation, net N mineralization, denitrification, and 

nitrification, respectively, the lines represent the ensemble means of NMIP model estimates and 

the shaded areas indicate one standard deviation of model estimates. 



 

Fig. S12: Temporal variations in the total biological nitrogen fixation in the northern high latitudes 

during 1861-2016. The line represents the ensemble means of NMIP model estimates and the 

shaded area indicates one standard deviation of model estimates. 

 

 

 

 



 

Fig. S13: Temporal variations in the total N inputs in entire northern high latitudes (a), non-

permafrost region (b) and permafrost region (c). 



 

Fig. S14: Spatial patterns of the effects of different driving factors during the period 1980-2016. 

(a)-(d) show the effects of climate, CO2, nitrogen enrichment and LULCC, respectively. Grids 

with non-significant trends (p>=0.05) were excluded. 

 

 



 

Fig. S15: The effects of increasing CO2 concentration on ecosystem GPP and plant nitrogen uptake. 

(a) and (b) show spatial distributions of modelled average CO2 effects on GPP and nitrogen uptake 

during 1980-2016, respectively; black lines show the extent of the permafrost region. (c) and (d) 

show the temporal variations in CO2 effects on regional GPP and nitrogen uptake, respectively; 

the lines represent the ensemble means of all NMIP model estimates and the shaded areas show 

minimum and maximum estimates.  

 



 

 

Fig. S16: Interannual variations in N2O emissions from non-soil anthropogenic sources (a) and 

biomass burning (b). 

 

 

 

Fig. S17. Uncertainty in soil N2O emissions estimated by NMIP models (a) and in total N2O 

emissions estimated by top-down models (b). Here, one standard deviation of all model estimates 

was used to indicate uncertainty.  



 

Fig. S18. Comparison of intra-annual fluctuations of N2O emissions estimated by TD and BU 

approaches.  

 

Fig. S19: Future variations in temperature and precipitation of the northern high latitudes under 

different SSP scenarios. Future temperature and precipitation data were from Inter-Sectoral Impact 

Model Intercomparison Project (ISIMIP) phase 3b, which were supplied based on Climate Model 

Intercomparison Project Phase 6 (CMIP6) output of five climate models: GFDL-ESM4, IPSL-

CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL. 



 

Fig. S20: Future variations in atmospheric CO2 concentration under different SSP scenarios.  

 

 

 

 

 

 

 

 

 



 

Table S1: Model simulation design 

Historical Climate CO2 LULCC N deposition N fertilizer Manure N 

S0 1901-1920 1860 1860 1860 1860 1860 

S1 • • • • • • 

S2 • • • • • 1860 

S3 • • • • 1860 1860 

S4 • • • 1860 1860 1860 

S5 • • 1860 1860 1860 1860 

S6 • 1860 1860 1860 1860 1860 

Note: “•” indicates the forcing during 1860-2016 is included in the simulation, “1901-1920” 

indicates the 20-year mean climate condition during 1901-1920 was used over the entire simulation 

period, and “1860” indicates the forcing was fixed in 1860 level over the entire period. Climate 

data was only available from 1901, we used the 20-yr average value between 1901 and 1920 for 

years 1860-1900.  

 

 

 

 

 

 

 

 

 



Table S2: Spatial and temporal resolution of bottom-up and top-down models used in this study. 

Bottom-up estimates 

Name Sector Spatial resolution Temporal 

coverage 

References 

DLEM Soil 0.5°×0.5° 1860-2016 Tian et al. (2015) 

LPJ-GUESS Soil 0.5°×0.5° 1860-2016 Olin et al. (2015) 

LPX-Bern Soil 0.5°×0.5° 1860-2016 Stocker et al. 

(2013) 

O-CN Soil 1°×1° 1860-2016 Zaehle et al. (2011) 

ORCHIDEE-

CNP 

Soil 2°×2° 1860-2016 Goll et al. (2017) 

VISIT Soil 0.5°×0.5° 1860-2016 Inatomi et al. 

(2010) 

EDGARv6.0 Multiple sources 

(see method) 

0.1°×0.1° 1970-2018 Crippa et al. (2019) 

GFED4.1s Biomass burning 0.25°×0.25° 1997-2021 Van Der Werf et al. 

(2017) 

Top-down estimates 

Name         

(ACTM) 

Resolution of 

state vector 

ACTM horizontal 

resolution 

Temporal 

coverage 

References 

GEOSChem  5°×4° 5°×4° 1998-2016 Wells et al. (2018) 

INVICAT  5.625°×5.625° 5.625°×5.625° 1998-2014 Wilson et al. (2014) 

MIROC4-ACTM 84 regions 2.8°×2.8° 1998-2016 Patra et al. (2018) 
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