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Abstract11

Regional weather variability and extremes over Europe are strongly linked to variations12

in the North Atlantic jet stream, especially during the winter season. Projections of the13

evolution of the North Atlantic jet are essential for estimating the regional impacts of14

climate change. Therefore, separating forced trends in the North Atlantic jet from its15

natural variability is an extremely relevant task. Here, a deep learning based method,16

the Latent Linear Adjustment Autoencoder (LLAE), is used for this purpose on an en-17

semble of fully-coupled climate simulations. The LLAE is based on an autoencoder and18

an additional linear component. The model predicts the wind component affected by nat-19

ural variability by using detrended temperature and geopotential as inputs. The resid-20

ual between this prediction and the original wind field is interpreted as the forced com-21

ponent of the jet. The method is first tested for the geostrophic wind for which the forced22

trend can be obtained analytically from the difference between geostrophic wind com-23

puted from detrended and full geopotential. Despite the large variability of the original24

trends, the LLAE is shown to be effective in extracting the forced component of the trend25

for each individual ensemble member in both geostrophic and full wind fields. The LLAE-26

derived forced trend shows an increase in the upper-level zonal wind speed along a southwest-27

northeast oriented band over the ocean and a jet extension towards Europe. These are28

common characteristics over different periods and show some similarities to the upper-29

level zonal wind speed trend obtained from the ERA5 reanalysis.30

Plain Language Summary31

The North Atlantic jet stream, which is a narrow and strong air current flowing32

from west to east, has a substantial influence on daily weather variability and temper-33

ature and precipitation extremes in Europe. It is therefore essential to investigate how34

the North Atlantic jet is being modified under climate change. Trends in the North At-35

lantic jet are the combination of an external forcing produced by the increase in green-36

house gases and natural variability across multiple time scales. In this study, we use a37

data driven model called Latent Linear Adjustment Autoencoder (LLAE) to separate38

the jet trends related to the effect of the increase of greenhouse gases from the natural39

variability. The output of a set of climate simulations, namely zonal wind, temperature40

and geopotential, is used to adapt the adjustable parameters of the LLAE. After this step,41

the difference between the wind provided by the LLAE and the original field contains42

the effect of the external forcing. The method is successful in removing most effects as-43

sociated with natural variability and reveals an intensification increase of the North At-44

lantic jet along a southwest-northeast oriented band and an extension over Europe.45

1 Introduction46

Jet streams play an important role in driving regional weather variability and gen-47

erating extreme events. In particular, variations in the position and intensity of the North48

Atlantic jet stream have a strong impact on temperature and precipitation over Europe,49

especially during winter (Hurrell, 1995; Deser et al., 2017). Climate simulations provide50

an estimate of the changes in the position and intensity of the jet stream produced by51

an increase of greenhouse gases. However, there is a large uncertainty in these future pro-52

jections (Simpson et al., 2014; McKenna & Maycock, 2021) and generally they fail to cap-53

ture the observed strengthening of the North Atlantic jet (Blackport & Fyfe, 2022). The54

North Atlantic jet stream exhibits substantial variability on short time scales due to tran-55

sitions among different regimes (Novak et al., 2015), as well as on longer time scales, in-56

fluenced by tropical variability on sub-seasonal scales produced by the Madden-Julian57

Oscillation (Yadav & Straus, 2017) or on a decadal scale affected by El Niño-Southern58

Oscillation (Schemm et al., 2018).59
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In this context, disentangling forced trends in the North Atlantic jet, induced by,60

for example, higher concentrations of greenhouse gases, from natural variability consti-61

tutes a challenging task. The forced response can in principle be identified by averag-62

ing across a large ensemble of climate simulations with slightly different initial conditions63

(Deser et al., 2012; Bengtsson & Hodges, 2019; Dai & Bloecker, 2019). The large-ensemble64

approach is computationally demanding and is unfeasible when the objective is to iden-65

tify forced trends in observational data as in this case only one realization of the system66

(i.e., the observed time series) is available. In this regard, dynamical adjustment tech-67

niques aim at separating forced trends from natural variability (Guan et al., 2015; Lehner68

et al., 2017; Terray, 2021; Deser & Phillips, 2023). These methods are even applicable69

to small ensembles or observational records. Previous works based on these techniques70

use a circulation proxy to estimate the natural variability of a variable of interest, such71

as temperature or precipitation. Linear regression (Smoliak et al., 2015; de Vries et al.,72

2023) or analog methods (Deser et al., 2016) are further popular strategies, although their73

application is limited to large temporal and spatial scales where nonlinearities are less74

important.75

A new approach to disentangle forced trends from natural variability is the Latent76

Linear Adjustment Autoencoder (LLAE), which is based on deep learning (Heinze-Deml77

et al., 2021). The method combines a variational autoencoder (Kingma & Welling, 2021),78

consisting of an encoder and a decoder, whose architecture consists of multiple convo-79

lutional neural networks (LeCun et al., 2015), with a linear model. The encoder trans-80

lates the field of interest (e.g., precipitation) into a low-dimensional latent space, which81

is subsequently decoded for reconstruction of the original field. During the training pro-82

cess, the decoder is penalized if it does not adequately reconstruct the original field (e.g.,83

precipitation) from the latent space, based on the reconstruction loss. The linear model84

uses a proxy variable (e.g., detrended sea-level pressure), assumed to be independent from85

the external forcing – through detrending – as input and is trained to predict the latent86

space.87

In the original work of Heinze-Deml et al. (2021) both model components of the88

latent linear autoencoder are trained sequentially. Afterwards, the encoder part is re-89

moved and the latent space is predicted from the proxy variable with the external forc-90

ing removed (e.g., detrended sea-level pressure). The decoder reconstructs the associ-91

ated precipitation from the latent space and the result is the circulation-induced precip-92

itation free of the external forcing. The precipitation residual, which is the difference be-93

tween the reconstructed precipitation from detrended sea level pressure (SLP) and the94

simulated precipitation, is the part of the precipitation attributed to the external forc-95

ing. In other words, the LLAE is thus interpreted as a statistic model that reconstructs96

the precipitation field from detrended sea-level pressure. The advantages of this method97

over other dynamical adjustment strategies are the non-linearity introduced by the de-98

coder and the possibility to directly obtain the forced response over the whole area of99

interest instead of gridpoint-wise. Furthermore, as shown in Heinze-Deml et al. (2021),100

this technique can effectively detect forced trends at the regional scale even when the101

ensemble size is considerably reduced, providing similar results to the mean of a larger102

ensemble. However, a key problem remains related to whether the removal of the lin-103

ear trend is sufficient to assume that the input of the LLAE is independent of the ex-104

ternal forcing.105

Previous studies used dynamical adjustment techniques to detect forced trends in106

precipitation (Smoliak et al., 2015; Lehner et al., 2017; Guo et al., 2019; Sippel et al.,107

2019; Heinze-Deml et al., 2021). However, the main objective of this work is to identify108

the forced trend in the North Atlantic winter jet from a small ensemble of fully-coupled109

climate simulations. A related study investigated this problem using a deep learning ap-110

proach applied to idealized climate simulations performed with a dry dynamical core (Connolly111

et al., 2023). In our work, the data are provided by a small ensemble of fully-coupled cli-112
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mate simulations including all processes. Daily upper-level zonal wind speed is the vari-113

able of interest, and detrended upper-level temperature and geopotential height are used114

as input to the linear component of the model as the trend-free variables from which the115

decoder reconstructs a wind field.116

Apart from the scientific question of how to separate the forced trend from the nat-117

ural variability, the wind speed is ideal for testing the LLAE strategy, as the geostrophic118

wind can be directly computed based on (detrended) geopotential. In this case, the dif-119

ference between the geostrophic wind computed with the full geopotential and the geostrophic120

wind obtained from the detrended geopotential is interpreted as the component of the121

geostrophic wind that is related to the trend in geopotential. The LLAE results can then122

be compared to the analytical results. This is not possible for the relationship between123

SLP and precipitation used in Heinze-Deml et al. (2021).124

The structure of the paper is as follows. Section 2 describes the LLAE and the cli-125

mate simulations. Section 3 discusses the forced trends produced by the LLAE for both126

geostrophic and full wind for different periods. Main conclusions are provided in section127

4.128

2 Data and Methods129

2.1 Latent Linear Adjustment Autoencoder130

The statistical method applied to identify forced trends in the jet stream follows131

the procedure of Sippel et al. (2019) and Heinze-Deml et al. (2021). Given a variable of132

interest Y , affected by both natural variability and external forcing, and an input X, which133

is assumed to be unaffected by the external forcing, the component of Y represented by134

X, ŶX can be generally described by:135

ŶX = f(X), (1)

where f is a nonlinear function. In this case, Y is a two-dimensional zonal wind field and136

X is a vector of input features containing detrended geopotential height and tempera-137

ture. Further details on the climate simulation data are provided in section 2.3. If the138

input X is unaffected by external forcing, the residual R̂ = Y − ŶX between the com-139

ponent explained by the input, ŶX and the original field Y contains the effect of the forc-140

ing on Y . However, any signal that is not explained by the input X is part of the resid-141

ual, which could mask the interpretation of the impact of external forcing if the choice142

of the input variables X is inappropriate, so that a large part of the output is unexplained143

by the input. The incorporation of geopotential height in the input features in combi-144

nation with temperature in our application is intended to minimize this issue. In order145

to remove the effects of the external forcing on the input X, these variables are linearly146

detrended.147

The function f is approximated trough the LLAE developed in Heinze-Deml et al.148

(2021). Figure 1 provides a schematic of the full method. The model combines an au-149

toencoder with a linear model to estimate ŶX . The autoencoder (upper row in Fig. 1a)150

consists of an encoder (e) that maps the original field Y into a low-dimensional latent151

space. Then, the decoder (d) maps the latent space to a reconstruction of the original152

field, Ŷ . Following the original work, the dimension of the latent space is set to 400. The153

architecture of both the encoder and the decoder consists of three convolutional neural154

networks with a kernel size of 3 and filter sizes of 16, 32 and 64, and a residual layer. In155

addition to the autoencoder, a linear component (l) is included to predict the latent space156

from the input X (lower row in Fig. 1). The autoencoder and the linear component are157

alternately trained. First, the autoencoder parameters are updated, keeping the param-158

eters of the linear component fixed. The loss function contains two terms, one for the159
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autoencoder and another one for the linear model.160

L1 = LAE + λLl (2)

Following Heinze-Deml et al. (2021), the first term, LAE , measures the difference between161

the reconstruction and the input and the Kullback–Leibler divergence between the dis-162

tribution of the encoded inputs and the prior distribution of the latent space, which is163

chosen to be a standard multivariate Gaussian distribution. The second term, Ll, includes164

the difference between the original field, Y and the decoded outputs based on the latent165

space obtained from X, YX :166

Ll = ||Y − d(l(X))||2 (3)

For the experiments presented here, λ = 1, so that both terms contribute equally to167

the loss function.168

In the second step, the parameters of the linear model are adjusted, keeping the169

autoencoder parameters fixed, by using a loss function that measures the difference be-170

tween the latent spaces obtained from the encoder and from the linear model.171

L2 = ||e(Y )− l(X)||2 (4)

This procedure links the parameters of the autoencoder, which provides the prediction172

ŶX , to those of the linear model, which computes the latent space used by the decoder173

from the input X. The model is trained with the Adam optimizer (Kingma & Ba, 2015)174

with a learning rate of 10−3 for 65 epochs. After training, the encoder is no longer needed175

and only the input data X is used to obtain the latent space variables through the lin-176

ear component. Then, the decoder produces a prediction of the field Y , which is assumed177

be unaffected by external forcing, ŶX .178

Predictions ŶX are evaluated by means of the R2, which indicates the proportion179

of explained variance by the predictions, and the mean squared error (MSE) for one test180

member. In addition, reconstructions (Ŷ ) and predictions are shown for various values181

of the distribution of R2 to provide insight on the performance of the LLAE and discuss182

the errors on poor predictions in terms of explained variance.183

The residual R̂ is used to estimate forced trends. In particular, a linear trend of184

R̂ is computed for different periods, the full period included in the dataset (1980–2100)185

and a present-day period (1980–2022). Note that the residual includes all effects on Y186

(zonal wind) that are not explained by the input X (detrended geopotential height and187

temperature). Therefore, a fraction of the trend obtained from the residual could be at-188

tributed to additional processes, not exclusively to external forcing. Detrended inputs189

are used for both training and inference. The method is applied to both geostrophic and190

full wind. If both trends are similar, it can be interpreted that changes in the pressure191

gradient force are the main factor driving forced trends in the full wind. Otherwise, other192

terms contributing to the ageostrophic component of the wind would be relevant to pro-193

duce forced changes. In addition, the application of the LLAE to geostrophic wind al-194

lows us to prove the efficiency of the method on a field for which there is a simple alter-195

native to compute forced trends.196

2.2 Forced trends in the geostrophic wind197

Before using the LLAE to estimate the forced trends in the full zonal wind speed198

at 250 hPa, we compute the forced trends in the geostrophic wind by analyzing the dif-199

ference between the geostrophic wind computed from non-detrended and detrended geopo-200

tential at the same pressure level. Here, it is assumed that the detrending procedure is201

effective in removing the forced trend and that the detrended geopotential contains only202
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Figure 1: Schematic of the Latent Linear Adjustment Autoencoder. a) The autoen-
coder component of the model, which consists of multiple convolutional layers for both
the encoder and the decoder (see text for details), encodes the field of interest Y into a
low-dimensional latent space. The decoder transforms this intermediate output back to
the original space to obtain a reconstruction Ŷ . The linear component uses an input X,
which is assumed to be independent of the external forcing, to predict the latent space
and obtain the reconstruction ŶX from it. During training, the parameters of the au-
toencoder and those of the linear model are updated in alternative steps with the goal of
reducing the difference between Ŷ and Y and between the latent spaces computed from
the encoder and the linear model. b) Once the training is completed, the encoder is no
longer needed and the latent space is predicted from the input X. The residual between
the reconstruction obtained from X, ŶX and the original field Y is interpreted as the part
of Y that is independent of the external forcing.
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the natural variability1. This gives an indication of changes in the zonal wind due to forced203

changes in the pressure gradient force and provides a baseline to analyze the performance204

of the LLAE.205

2.3 Climate simulation data206

We apply the LLAE to an ensemble of 5 climate simulations performed with the207

Community Earth System Model (CESM), version 2.1.2, labeled 0900, 1000, 1100, 1200208

and 1300. The model is run in fully coupled mode including the Community Atmosphere209

Model (CAM6) (Bogenschutz et al., 2018; Danabasoglu et al., 2020) with 32 vertical lev-210

els), the Community Land Model (CLM5) (Lawrence et al., 2019), the Parallel Ocean211

Program version 2 (POP2, 60 vertical levels), the Los Alamos National Laboratory Sea212

Ice model (CICE5) (Hunke et al., 2015), and the hydrological routing model Model for213

Scale Adaptive River Transport (MOSART) (Li et al., 2013). The period with prescribed214

forcing covers from 1850 to 2014, and from 2015 to 2100 the runs are forced with the SSP3-215

7.0 scenario, which constitutes a medium-to-high forcing pathway (O’Neill et al., 2016).216

The horizontal resolution is approximately 1◦ and output is available every 6 hours.217

The target variables are the geostrophic and full zonal wind speed at 250 hPa over218

the North Atlantic during the winter season (DJF). The chosen domain extends between219

20◦N and 80◦N and between 80◦ W and 35◦E and consists of 64 × 93 grid points. This220

choice ensures that the eddy-driven jet stream is well captured, while reducing the in-221

fluence of subtropical jet. The 6-hourly data are aggregated to daily means. The input222

data X consists of linearly detrended geopotential height and temperature at the same223

pressure level, obtained from the aforementioned CESM climate simulations. Therefore,224

the input vector has a length of 11904 (64 × 93 × 2). Fig. 2 shows 250 hPa tempera-225

ture and geopotential height time series averaged over the entire domain and the respec-226

tive detrended time series. The detrending procedure does not affect variability on shorter227

time scales, such as decadal variability.228

Data between 1980 and 2100 of three ensemble members are used as training data,229

while the remaining ensemble members are used as a test dataset. Given the relatively230

small ensemble size and thus the limited amount of available data for training, the model231

is trained independently on all possible combinations of three ensemble members. The232

results shown in the next section represent the average of the test members across the233

different combinations. To avoid stability problems during training, input and target data234

are normalized. Wind speed values are divided by the 99.9 percentile of the training data235

and input data are normalized using the 0.1 and 99.9 percentiles. Outputs are rescaled236

back to the original units to compute trends and error measures, such as the MSE.237

1 We acknowledge that this assumption is highly debated and various detrending methods exist. For the

purpose of this study linear detrending seems sufficient
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Figure 2: Time series of a) 250-hPa temperature and c) 250-hPa geopotential height for
the ensemble member 0900 averaged over the entire domain (20–80◦N, 80◦W–35◦E). The
black line represents the linear trend for the whole simulation period (1980-2100). Tem-
perature and geopotential height values are represented in red (blue) if they are above
(below) the linear trend. Panels b) and d) represent the time series of detrended 250-hPa
temperature and geopotential height centered around zero (gray line) and yearly running
mean (red line).
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3 Results238

3.1 Forced trends in the geostrophic wind: Analytic estimate239

In order to have a reference to analyze the forced trends obtained from the LLAE,240

we first examine the original and analytically computed forced trends in the geostrophic241

wind. A large spread characterizes the full trend in the zonal geostrophic wind, and there-242

fore the direction of the jet shift is not consistent across the ensemble (Fig. 3, left col-243

umn). The forced trend in the geostrophic wind, which is the trend in the residual be-244

tween the geostrophic wind computed from geopotential and detrended geopotential, for245

all ensemble members in the present-day period (1980–2022)2 shows an equatorward shift246

of the zonal wind over the western North Atlantic and a jet extension over Europe (Fig.247

3 right column). The estimated forced trend is fairly similar for all ensemble members248

with a positive trend along a southwest-northeast oriented band, despite the large en-249

semble spread that characterizes full trends in the geostrophic wind. This indicates that250

this approach is capable of removing a large part of the natural variability responsible251

for the high ensemble spread, although some differences between the members remain,252

especially over the northwestern sector of the domain.253

The variability among ensemble members in the full simulation period (1980–2100)254

is reduced compared with the present day period (1980–2022), in the original trends (Fig.255

4, left column). The trend patterns are now broadly consistent with an equatorward shift256

over the western North Atlantic and a downstream extension over Europe seen in all en-257

semble members. Forced trends for this period (Fig. 4, right column) are also charac-258

terized by an increase in geostrophic wind along a southwest-northeast oriented band.259

Differences between the ensemble members remain over the Labrador Sea region. While260

the member-to-member variability was still large during the present period, the estimated261

forced trend is as before remarkably similar between all members and both periods. The262

fact that the full trend converges to the forced trend computed over the entire simula-263

tion period lends credence to the method of estimating the forced trend based on even264

the present-day period.265

3.2 Evaluation of the LLAE266

Before we anaylze the North Atlantic winter jet, consideration is given to the global267

performance of the model through R2 and MSE. A large fraction of the variance, above268

70 %, is explained across most of the domain, except for an area southeast of Greenland269

(Fig. 5a). This indicates that the input used is adequate to obtain satisfactory predic-270

tions of the zonal wind affected by natural variability. In this case, the residual can be271

safely interpreted as the forced wind component. The MSE is generally low, below 0.5272

ms−1, except over some areas in the North Atlantic over the Gulf Stream, the south east-273

ern tip of Greenland and at the end of the storm track, where errors are slightly larger274

(Fig. 5b). These are regions where day-to-day variability is high, also due to frequent275

explosive cyclogenesis in these regions. In summary, these results show a general good276

performance of the LLAE to reconstruct the zonal wind from temperature and geopo-277

tential, which suggests a low likelihood of attributing forced signals to spurious effects.278

Next we look at individual cases of well- and poorly-reconstructed flow situations.279

Fig. 6 shows multiple reconstructions, obtained from the application of the autoen-280

coder to the original wind field, and predictions, obtained from the combination of the281

linear model and the decoder using detrended temperature and geopotential as input,282

for different values of R2. Poorly reconstructed (during training) and predicted (from283

temperature and geopotential) flow fields are situations with cut-off formation over the284

2 Here present-day period refers to years between the start of the simulations (1980) and 2022, although

the SSP3-7.0 emission scenario is applied from 2015.
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Figure 3: Left column: Linear trends of the geostrophic zonal wind speed at 250 hPa for
each ensemble member (shading) and climatological mean (black contours, between 10–40
m s−1) for the present-day period 1980–2022. Right column: Linear trend of the difference
between geostrophic zonal wind computed from non-detrended and detrended geopotential
(shading) and climatological mean of the geostrophic zonal wind (black contours, between
10 and 40 m s−1). Note that the range of the color scale for the original trends is the dou-
ble of the range of the forced trends.
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Figure 4: As in Fig. 3, but for the full simulation period 1980–2100.
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Figure 5: Evaluation metrics for 250-hPa zonal wind predictions obtained from the
LLAE: a) R2 (proportion of explained variance) and b) MSE.
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Figure 6: Left to right: Original zonal wind fields at 250 hPa, Y , reconstructions, Ŷ , pre-
dictions, ŶX , and difference between original fields and predictions, Y - ŶX for different
values of R2. Top to bottom: worst example, percentiles 25, 50, 75 of the R2 distribution
and best example.

North Atlantic. Poorer performance is also obtained for weaker jets, while the LLAE achieves285

better predictions in terms of R2 for stronger, less wavy jets with a more zonal orien-286

tation that dominate over the North Atlantic.287

3.3 Quantifying the forced trends288

The difference between the predictions obtained from the LLAE and the original289

geostrophic or full zonal wind speed are used to estimate forced trends. Consideration290

is given to the the present-day period (1980–2022) and full simulation period (1980–2100).291

Forced trend in geostrophic wind We start with the forced trends in the geostrophic292

wind using the LLAE. The forced trends (after dynamical adjustment) of the five en-293

semble members are characterized by an increase of the geostrophic wind along a southwest-294

northeast oriented band, an extension of the jet towards Europe and an equatorward shift295

over the western North Atlantic, which generates a reduction of the wind speed near the296

Gulf Stream region (Fig. 7). Forced trends show some variability at low latitudes over297

the eastern North Atlantic and north Africa and a considerable spread at high latitudes,298

especially over southern Greenland and the Labrador sea. Over these areas, some par-299
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Figure 7: Forced trend in the geostrophic wind obtained from the LLAE (shading) and
climatological mean (black contours, between 10 and 40 m s−1). Trends derived from the
LLAE are the average of multiple training experiments in which the data of the respective
ensemble member is not used in the training set. For example, panel a (member 0900) is
the average trend resulting from LLAE trained on all combinations of the three ensemble
members that do not include the member 0900.

ticular characteristics of individual trends are retained, for example the positive trend300

of member 0900 over the Labrador Sea, while the negative trend of member 1300 is re-301

moved. A possible explanation could be related to the selection of the domain, which302

is made to capture the main North Atlantic jet region and might not be optimal for other303

areas towards the vicinity of the boundaries in combination with low wind speed. The304

forced trend pattern however compares well to that obtained previously from the differ-305

ence between the directly computed geostrophic wind from detrended and non-detrended306

geopotential (Fig. 3), indicating a satisfactory performance of the LLAE. Next, consid-307

eration is given to the full simulation period.308

The forced trends in geostrophic wind for the whole simulation period (1980–2100,309

Fig. 8) also display a southwest-northeast band of increase in geostrophic wind, and a310

slight decrease over eastern North America and the Gulf Stream due to an equatorward311

shift of the jet in this sector. These trends are qualitative similar to those found for the312

present-day period but now much clearer and less nuanced, indicating that the long-term313

forced trend for the whole simulation period can be inferred already by the forced trend314

in the present-day period. The forced trend identified by the LLAE trained on geostrophic315
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Figure 8: As in Fig. 7 for the period 1980–2100.

wind is also remarkably close to that obtained with the analytical geostrophic wind so-316

lution.317

Forced trend in full wind Individual ensemble members display a large spread in318

the present-day wind trends, showing an intensification or an equatorward shift for some319

members while others indicate a poleward shift (Fig. 9 left column). This suggests that320

the different ensemble members may be sampling different modes of natural variability321

leading to a large ensemble spread. Nevertheless, a consistent trend pattern emerges based322

on the LLAE (Fig. 9 right column). The trends derived from the LLAE for the full wind323

show a similar pattern to the forced trends obtained using the geostrophic wind as tar-324

get (variable Y ) and are also similar to the forced trends obtained from direct compu-325

tation of the geostrophic wind. This implies that forced trends in the full wind are mainly326

driven by forced changes in the geostrophic wind and thus by a modification of the pres-327

sure gradient force due to the external forcing.328

The increase in zonal wind speed along a band with a southwest-northeast orien-329

tation is also a characteristic of the jet stream trend in ERA5 (not shown), which indi-330

cates that this change might result partly from external forcing. However, the positive331

trend in the reanalysis is located more poleward compared to the reanalysis. The fact332

that the LLAE is able to produce similar trends for the full wind for all ensemble mem-333

bers confirms that the method successfully removes the natural variability component334

that leads to different baroclinicity trends and consequently to contrasting jet stream335
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trends. However, a model bias with respect to ERA5 is still present and this cannot be336

removed with dynamical adjustment. The application of the LLAE to ERA5 data, al-337

though theoretically possible, is limited in practice by the lack of a sufficiently large dataset338

on which to train the model.339

Throughout the simulation period, changes in the pressure gradient force are rel-340

evant, as the forced trends for the full zonal wind (right columns in Fig. 10) are simi-341

lar to those obtained for the geostrophic wind and the present-day period. Another im-342

portant aspect is that the consistency of the LLAE-based estimation across both peri-343

ods. In the full simulation period the variability of the full trends among the ensemble344

members for the geostrophic wind is reduced (right column in Fig. 10), which suggests345

that the LLAE is capable of accurately quantifying the forced trend, even in the pres-346

ence of larger member-to-member variability, as observed in the present-day period. This347

finding underscores the robustness of the LLAE in capturing the forced trend, despite348

significant inter-member variability, thereby enhancing the credibility of its results.349

4 Conclusions350

In this study, the Latent Linear Adjustment Autoencoder developed by Heinze-Deml351

et al. (2021) is used to disentangle trends in the winter North Atlantic jet forced by an352

increase in greenhouse gases from natural variability. Using detrended temperature and353

geopotential height, the model trained on data from an ensemble of five fully-coupled354

climate simulations can extract the forced trends in upper-level zonal wind. The efficacy355

of the model is particularly evident during the present-day period in which the original356

trends derived from each ensemble member display a large spread in the jet response.357

All ensemble members also share the main characteristics of the LLAE-derived trends358

for other periods with smaller ensemble spread, which highlights the robustness of the359

LLAE.360

The North Atlantic jet stream displays a positive trend along a southwest-northeast361

oriented band, representing an equatorward shift of the jet in the entrance region and362

an extension towards Europe. These central elements are common for the different an-363

alyzed periods and are also found when analyzing forced trends directly from the differ-364

ence between geostrophic wind computed from detrended3 and non-detrended geopoten-365

tial, which proves the adequate performance of the LLAE. Forced trends obtained from366

the LLAE using the full wind are similar to those resulting from geostrophic wind, sug-367

gesting that the main driver of the forced trend in the zonal wind speed is the change368

in the pressure gradient force, which determines the geostrophic component of the wind.369

The geostrophic wind is chosen to test the ability of the LLAE to learn how to predict370

the geostrophic wind because the geostrophic wind can be analytically compute from geopo-371

tential and an estimate of the forced trend for this field can be easily obtained.372

Despite the satisfactory results, there are a few issues concerning the application373

of the LLAE to this problem. Forced trends in the geostrophic wind derived from the374

application of the LLAE exhibit some areas with smaller positive trends compared to375

the direct computation, especially over the ocean. This pattern is also seen in the forced376

trends for the full wind. Although the general forced trends from the LLAE agree with377

the direct computation, some caution is required in interpreting the small-scale struc-378

tures produced by the LLAE, as these appear to be spurious. In addition, the perfor-379

mance of the model is strongly dependent on the variables used as input, and it is there-380

fore necessary to ensure that the variables used as inputs explain a substantial part of381

3 We acknowledge that there are numerous methods for detrending a time series, and the exact method

for removing the forcing trend is debated. For the purpose of this study, we assume that linear detrending

is sufficient to demonstrate the ability of the LLAE to reconstruct the forcing trend in the zonal wind.

–16–



manuscript submitted to JGR: Atmospheres

Figure 9: Left column: Linear trends of the zonal wind speed at 250 hPa for each en-
semble member (shading) and climatological mean (black contours, between 10–40 m s−1)
for the period 1980–2022. Right column: Linear trend of the residual between the zonal
wind predictions provided by the LLAE and the original fields (shading) and climato-
logical mean (black contours, between 10–40 m s−1). Trends derived from the LLAE are
the average of multiple training experiments in which the data of the respective ensemble
member is not used in the training set. Note that the range of the color scale for the orig-
inal trends is twice the range of the forced trends.
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Figure 10: As in Fig. 9, but for the period 1980–2100.

–18–



manuscript submitted to JGR: Atmospheres

the variance of the variable of interest in order to produce meaningful residuals that con-382

tain the part of the trend generated by external forcing and not additional terms related383

to an inadequate choice of input variables. Although the model can be applied in the-384

ory to a small ensemble or to observational data, it requires a sufficiently large dataset385

to avoid overfitting. This aspect limits in practice the use of the LLAE to a certain ap-386

plications, such as dynamical adjustment of observational or reanalysis data.387

5 Open Research388

The Latent Linear Adjustment Autoencoder model is free and open source. It is389

distributed under the MIT software license which allows unrestricted use. The source390

code is available at the following GitHub repository: https://github.com/christinaheinze/391

latent-linear-adjustment-autoencoders. CESM simulation data will be stored at392

the Institute of Atmospheric and Climate Science, ETH Zurich, for at least 10 years and393

are available on request.394
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