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Abstract18

Surface wave methods, commonly applied in diverse fields, encounter challenges in com-19

plex subsurface environments due to limitations inherent in traditional inversion tech-20

niques. Conventional one-dimensional inversion (1DI), with its reliance on fixed grids21

and deterministic linear approaches, often introduces biases, diminishing lateral resolu-22

tion. Laterally constrained inversion (LCI) improves robustness by addressing lateral co-23

herency but falls short in delineating arbitrary interfaces due to its dependency on fixed24

grid models. The advent of Distributed Acoustic Sensing (DAS) technology offers ex-25

tensive seismic data, yet its potential for high-resolution imaging remains underutilized.26

We introduce a Multigrid Spatially Constrained Dispersion Curve Inversion (MCI) method27

to overcome these challenges, aiming to harness high-resolution DAS surface wave imag-28

ing capabilities. This paper details the MCI scheme, evaluates its efficacy through syn-29

thetic tests, and applies it to a DAS field study in Imperial Valley, California. Our find-30

ings demonstrate a refined, higher-resolution S-wave velocity model, offering new insights31

into the region’s fault system and emphasizing the necessity of improved spatial reso-32

lution in large-scale geophysical studies.33

Plain Language Summary34

Studying what is beneath the Earth’s surface can be tricky because of how com-35

plex it is. One common method involves analyzing surface waves, but this has its own36

challenges. The usual way to interpret the data, called one-dimensional inversion (1DI),37

can introduce errors and not give a clear picture. Recently proposed alternatives like lat-38

erally constrained inversion (LCI) also have limitations, especially when dealing with a39

new type of seismic data called distributed acoustic sensing (DAS). To overcome these40

limitations, we present a promising solution called Multigrid Spatially Constrained Dis-41

persion Curve Inversion (MCI). This method enhances our ability to visualize what lies42

beneath the surface with greater clarity and detail. We have conducted tests using syn-43

thetic data and applied MCI in a public DAS dataset collected from a ∼28-km-long ex-44

isting unused telecommunication fiber in Imperial Valley, CA. The results give us a bet-45

ter understanding of the underground faults in the region and show that improving how46

we see things below ground is crucial for large-scale studies.47

1 Introduction48

Shear-wave velocity (Vs) is an important indicator to assess the physical and me-49

chanical parameters of the subsurface material (Ayres & Theilen, 1999; Abd Rahman50

et al., 2023; Sawayama et al., 2022). Seismic surface waves, which contain rich informa-51

tion on the material considered, are widely used in estimating structures at different scales52

from the near surface to upper mantle (Xia et al., 1999; Shapiro & Ritzwoller, 2002). The53

classical surface wave method, by performing dispersion analysis and inversion on either54

active-source or passive-source seismic data, is able to predict the local depth-dependent55

profile (Xia et al., 1999; Park & Miller, 2008). With the benefits of noninvasiveness, ef-56

fectiveness, and robustness, this method is increasingly utilized in near-surface geophysics,57

geotechnical engineering, and exploration geophysics, as well as environmental geology58

and hydrogeology. Surface wave approaches have been widely applied to study problems59

as diverse as urban subsurface space investigation (Kühn et al., 2011; Wang et al., 2023),60

site effect estimation (Foti et al., 2009; Kanbur et al., 2020; Cheng, Ajo-Franklin, & Trib-61

aldos, 2023), archaeology (Mecking et al., 2021; Guan et al., 2022), resource exploration62

(Ajo-Franklin et al., 2022; Cheng, Ajo-Franklin, Nayak, et al., 2023), environmental and63

groundwater monitoring (Sens-Schönfelder & Wegler, 2006; Bergamo et al., 2016; Mi et64

al., 2020), geological hazards early warning (Bazin et al., 2010; Foti et al., 2011; Bottelin65

et al., 2013; Salas-Romero et al., 2021).66
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The commonly employed surface wave inversion method typically involves two steps.67

Initially, utilizing a series of fixed vertical discrete grids, a deterministic linear inversion68

algorithm is applied to individually invert the measured dispersion curves and produce69

1D layered Vs profiles at respective locations. Subsequently, the neighboring 1D profiles70

are assembled through horizontal interpolation to create the final pseudo-2D/3D veloc-71

ity structure. However, dispersion curve inversion is typically an ill-posed optimization72

problem with non-unique solutions. Furthermore, taking into account the inevitable ir-73

regular spatial sampling during data acquisition and possible lateral variations of the un-74

derground structure, this two-step procedure has the drawback of generating a biased75

velocity model by introducing artifacts and obscuring the lateral resolution (Strobbia &76

Foti, 2006; Lin & Lin, 2007; Mi et al., 2017). These limitations impede the progress of77

the surface wave method in scenarios involving complex underground structures, such78

as geotechnical characterization and active fault identification.79

Regularization techniques are capable of improving the robustness of determinis-80

tic inversion and constraining the suitability and uniqueness of the solution (Tikhonov,81

1963; Zhdanov, 2002). For example, constrained inversion methods based on regulariza-82

tion of the minimum gradient norm have been developed to minimize the roughness of83

the model and alleviate the effect of lateral ambiguities (Xia et al., 1999; Herrmann &84

Ammon, 2002; Wisén & Christiansen, 2005; Cercato, 2007, 2009; Socco et al., 2009; Haney85

& Qu, 2010; Vignoli et al., 2012, 2021; Bergamo et al., 2016; Dokht Dolatabadi Esfahani86

et al., 2020; Hu et al., 2021; Guillemoteau et al., 2022; Cruz-Hernández et al., 2022). In-87

spired by the laterally constrained inversion (LCI) approach to analyze resistivity data,88

(Auken & Christiansen, 2004), Wisén and Christiansen (2005) and Socco et al. (2009),89

proposed to apply the LCI scheme for surface wave dispersion curve inversion based on90

L2-norm regularization. Taking into account lateral coherency, this class of methods si-91

multaneously inverts multiple dispersion curves and updates all of the corresponding 1D92

models to directly construct a pseudo-2D/3D model. Haney and Qu (2010) compared93

the inversion results from L2 and L1 norm regularization and concluded that the latter94

better recovers layered structures due to its weaker penalty on sharp contrasts, which95

allows a wider distribution of target parameters. Guillemoteau et al. (2022) introduced96

the minimum gradient-supported stabilizer into the LCI method and discussed the fea-97

sibility of controlling the sharpness of the interfaces by tuning a focusing factor. How-98

ever, two major problems still exist: first, the LCI method tends to delineate target struc-99

tures with blocky boundaries (i.e., either vertical or horizontal), rather than the true ar-100

bitrary interface; second, the LCI method is still based on a fixed grid model, the same101

as the 1D inversion method, and the accuracy of the depth inversion relies on the prior102

model parameterization, which highly depends on the experience of the interpreter. In-103

stead of utilizing fixed grids, stochastic algorithms have been developed, for example, clas-104

sical genetic algorithms (Shi & Jin, 1995), simulated annealing (Beaty et al., 2002), and105

particle swarms (X. Song et al., 2012), to expand the model parameter space with a se-106

ries of variable grid models. However, it is impractical to apply lateral constraints on thou-107

sands of possible models simultaneously, especially for large-scale surveys with hundreds108

or thousands of dispersion curves to be inverted.109

Distributed Acoustic Sensing (DAS) is an innovative technique for high resolution110

seismic data acquisition, involving the demodulation of optical signals transmitted through111

a fiber optic cable (Posey Jr et al., 2000; Parker et al., 2014). DAS can efficiently col-112

lect ultra-large-scale datasets, covering tens of kilometers spatially with meter to sub-113

meter spatial resolution. This makes DAS increasingly relevant to geophysical field ob-114

servations and monitoring, particularly in complex conditions (Lindsey et al., 2017; Ajo-115

Franklin et al., 2019, 2022; Lindsey et al., 2019; Walter et al., 2020; Rodŕıguez Tribal-116

dos & Ajo-Franklin, 2021; Cheng et al., 2021a, 2021b, 2022). Despite the widespread use117

of DAS in near-surface seismic imaging, the majority of applications still rely on clas-118

sical 1D surface wave inversion schemes (Ajo-Franklin et al., 2019; Cheng et al., 2021a,119

2021b; Spica et al., 2020; Cheng, Ajo-Franklin, & Tribaldos, 2023; Yan et al., 2023; Z. Song120
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et al., 2020). This approach falls short of fully leveraging the high-resolution capabili-121

ties of DAS. Consequently, there is a pressing demand for a new generation DAS seis-122

mic imaging technique that can provide fine-scale spatial resolution across large-scale spa-123

tial coverage.124

In this study, we develop a multigrid spatially constrained dispersion curve inver-125

sion (MCI) scheme to address the pressing need for high-resolution DAS surface wave126

imaging. The basic framework of dispersion curve inversion is first reviewed, followed127

by a detailed explanation of the key aspects and implementation process of MCI. The128

effectiveness of MCI is then evaluated through both synthetic testing and a real case in-129

volving basin-scale near-surface 2D imaging using an existing DAS dataset. Addition-130

ally, this study explores the impact of grid grouping on MCI, examines the imaging spa-131

tial resolution of the surface wave method, and discusses the potential extension of MCI132

to 3D imaging.133

2 Methodology134

2.1 Framework of dispersion curve inversion135

According to Xia et al. (1999), surface wave dispersion curves are more sensitive136

to S-wave velocity (Vs) than P-wave velocity ((Vp)) and density (ρ). A deterministic in-137

version method, e.g., the Gauss-Newton algorithm, is employed to invert the dispersion138

curve for the 1D Vs model. The model is parameterised by discretizing the subsurface139

profile into a series of 1D fixed grids. To improve the convexity of the inversion, we trans-140

form model parameters and observed data into logarithmic space (Auken & Christiansen,141

2004) (see Fig. S1 in Supporting Information for the comparison of sensitivity kernel with142

and without logarithmic parametrization). Here, observed data d is defined as143

d = log(c) = [log(c1), . . . , log(cp)]
T . (1)144

where, c is the measured phase velocity vector; p is the length of vector c. We assume145

the Poisson’s ratio and density of the parameterized model m are homogeneous (Xia et146

al., 1999), and only the Vs is of interest in the inversion147

m = log(Vs) = [log(Vs1), . . . , log(Vsq)]
T . (2)148

where, q are the lengths of vectors Vs.149

In order to find the optimal model, the objective function (Φ(m)), containing the150

observed data reproducibility as well as the regularization term, is defined and minimised151

Φ(m) = ϕ(m) + λR(Dm)

= ∥Wd(d−𭟋(m))∥22 + λR(Dm);
(3)152

where, ϕ(m) is the data residual; ∥ ∥2 represents the L2-norm calculation; 𭟋 is the for-153

ward kernel of the surface wave dispersion curve based on 1D elastic layered model (Haskell,154

1953); Wd is a diagonal matrix, which is the product of the reciprocal of data uncertain-155

ties and frequency/wavelength weights (Socco et al., 2009; Hu et al., 2021); λ is the trade-156

off coefficient that balances the contribution weights between the data residual term and157

the model regularization term, and is adaptively determined during the inversion (Zhdanov,158

2002); D is the spatial gradient matrix, which consists of the differential coefficients be-159

tween each cell of the grid and its surrounding ones. R is an updated L2-norm regular-160

ization in Occam-type (Portniaguine & Zhdanov, 1999). Instead of focusing on the amount161

of parameter variation, here R tends to minimize the distribution of parameter discon-162

tinuities163

R(Dm) =
∥Dm∥22

∥Dm∥22 + ν2
, (4)164

where ν is the focusing factor to avoid singularities when the numerator term is approach-165

ing zero (Porcella, 1984). Generally, a small ν would sharpen the interface, but there is166
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a risk that overfitting would occur and the solution could be unrealistic. After some trial167

and error, we realized that there will be a good balance between sharpness and reason-168

ableness of the solution when ν is around 0.01. In the following synthetic and field tests,169

ν is set to 0.01.170

To minimize the objective function (Φ(m)), an iterative update strategy is applied,171

and the update direction (δm) of the current iteration is determined by using the con-172

jugate gradient least squares method (Golub & Van Loan, 2013),173

[JTWT
d WdJ+ λDTWmD]δm = JTWT

d Wd[d−𭟋(m′)]−DTWmDm′, (5)174

where, m′ is the previously updated model, and the current updated model can be pre-175

sented as m = m′ + δm; J is the Jacobin matrix in logarithmic space; Wm is a diag-176

onal matrix used to ensure the stability of the linear system (Farquharson, 2008). The177

iteration will terminate when the defined threshold of data residual or the maximum num-178

ber of iterations is exceeded.179

Based on the above framework, the classic 1D inversion scheme (1DI) and LCI scheme180

of dispersion curve inversion can be simply implemented. For example, in the 1DI case,181

d and m represent the measured dispersion curve and the inverted 1D model for a sin-182

gle site, respectively; while in the LCI case, they represent the measured dispersion curves183

and the corresponding 1D models for all sites, respectively. In addition, in the 1DI case,184

only variations between vertical layers (Dz) are constrained185

D = Dz; (6)186

while in the LCI case, the lateral coherency between neighboring 1D models (Dx) is also187

taken into account188

D = [Dz, γxDx]
T (7)189

where, γx represents the weight of constraint in the x direction and can be determined190

using the strategy described in Guillemoteau et al. (2022).191

2.2 Multigrid spatially constrained inversion192

While the existing framework for dispersion curve inversion has been widely uti-193

lized to image subsurface Vs structures across various scales, it encounters significant chal-194

lenges in meeting the high-resolution demands of modern dense nodal and DAS arrays.195

The primary issue lies in the reliance of the framework on predefined models with fixed196

grids. The inverted Vs at each grid cell is actually an average of the corresponding ve-197

locity units around the cell. This can obscure the target discontinuity interface and limit198

the vertical resolution. Furthermore, the rigidity of fixed grid models complicates efforts199

to address the inherent non-uniqueness in 2D/3D dispersion curve inversion solutions.200

Another limitation is spatial constraints of the existing framework, which are typ-201

ically limited to vertical and/or horizontal directions. This constraint system tends to202

exaggerate anomalies that align vertically or horizontally but fails to adequately repre-203

sent anomalies with irregularly shaped boundaries.204

To address these challenges, we propose a multigrid spatially constrained inversion205

(MCI) framework tailored for 2D dispersion curve inversion, with a particular focus on206

DAS surface wave inversion. This innovative framework is also adaptable for 3D surface207

wave inversion challenges, which will be further discussed in section 5.3. It’s important208

to note that while our proposed MCI approach builds upon the classical dispersion curve209

forward kernel (e.g., Haskell, 1953; Knopoff, 1964; Chen, 1993), which assumes horizon-210

tal stratification, it also holds the potential for integration with other forward kernels211

(e.g., Hu et al., 2021; Y. Liu et al., 2023).212
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2.2.1 Multigrid parameterization strategy213

Inspired by the multigrid scheme applied in the seismic tomography community214

(Thurber, 1983; Vesnaver & Böhm, 2000; Arato et al., 2014; Tong et al., 2019; Luo et215

al., 2021), we adopt a multigrid model parameterization strategy to deal with the afore-216

mentioned problems associated with the fixed grid model.217

In our 2D dispersion curve inversion approach, we discretize the subsurface struc-218

ture into a series of vertically oriented 1D grids, all of a uniform scale. Following the method-219

ology outlined by Tong et al. (2019), we define a set of multigrid models that include a220

base grid and several collocated grids (Fig. 2). The base grid is composed of uniformly221

sized cells, as small as practicable to meet our desired resolution requirements. In con-222

trast, the collocated grids feature cells of varying sizes. This variation in cell scales across223

the collocated grids enables more effective spatial boundary constraints through multi-224

ple samplings of target units and helps reduce solution non-uniqueness by expanding the225

model space. The cell sizes in these collocated grids are larger than those in the base grid226

and increase progressively with depth to accommodate the diminishing resolution of sur-227

face waves and to optimize computational efficiency.228

Our inversion process involves several steps in each iteration. Initially, the model229

is projected from the base grid to each collocated grid. Then, the model for each collo-230

cated grid is updated and backprojected onto the base grid independently. After this,231

all updated models are averaged to update the base grid model and assess the optimiza-232

tion process (Fig. 2). Consequently, the inversion is executed on each collocated grid,233

while the solution evaluation occurs on the base grid.234

To ensure that the high-quality models from the collocated grids are adequately235

represented, the base grid model m is updated through a weighted averaging process.236

This weighting is based on the data residual of each collocated grid model, thus adap-237

tively increasing the contribution from models with lower residuals.238

m =

G∑
i=1

αi ∗mi

=

G∑
i=1

ϕ(mi)
−1∑

ϕ(mi)−1
∗mi,

(8)239

where, G is the number of collocated grids, mi is the i-th collocated-grid model, αi =240

ϕ(mi)
−1/

∑
ϕ(mi)

−1 represents the data residual weight of the i-th collocated-grid model.241

Equation 8 plays a pivotal role in the multigrid model by guiding the update di-242

rection and preventing convergence to local extremes. This approach, when contrasted243

with the single grid model, endows the multigrid model with reduced uncertainty and244

enhanced robustness during the inversion process. Theoretically, the variance inherent245

in the multigrid model is estimated to be approximately 1/G times that of a single grid246

model (Tong et al., 2019; Luo et al., 2021), which indicates that the solution of the multi-247

grid model is likely to be closer to the true model, providing a more accurate represen-248

tation.249

Moreover, the multigrid strategy offers an effective method for quantifying the un-250

certainty of inversion results related to parameterization of the 2D dispersion curve in-251

version process. This is achieved by computing the standard deviation (σ) between the252

models derived from the collocated grids and the base grid,253

σ =

√∑G
i=1(mi −m)2

G
. (9)254

The ability to accurately gauge uncertainty is a significant advantage of the multigrid255

approach, particularly in complex inversion scenarios where precision is paramount. Such256
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a quantitative assessment of uncertainty is crucial for evaluating the reliability of the in-257

version outcomes. It is important to note that the effectiveness of this uncertainty as-258

sessment is closely linked to how the collocated grids are defined, as discussed by (Luo259

et al., 2021). The number of grids and the degree of their randomization play a signif-260

icant role in this context. Typically, employing a greater number of grids with higher lev-261

els of randomization introduces a broader range of perspectives in the model, thereby262

providing a more comprehensive evaluation of potential variability and uncertainty. Con-263

sequently, the strategic configuration of collocated grids is a crucial factor in leveraging264

the full potential of the multigrid model for reliable uncertainty assessment.265

2.2.2 Multidirectional spatial regularization266

Equation 7 illustrates that the spatial gradient matrices in current regularization267

terms predominantly incorporate difference coefficients in the vertical (z) and/or hor-268

izontal (x) directions, as noted in prior studies (e.g., Wisén & Christiansen, 2005; Socco269

et al., 2009; Hu et al., 2021; Guillemoteau et al., 2022). However, this approach has its270

drawbacks, particularly in terms of exaggerating interfaces that are either horizontal or271

vertical. This can lead to the formation of unrealistic, blocky anomalies in the final in-272

verted Vs structure, a concern highlighted in (Auken & Christiansen, 2004). This issue273

becomes especially critical in scenarios where sloping boundaries are anticipated, poten-274

tially leading to significant inaccuracies.275

To address this challenge and effectively constrain anomalies with boundaries of276

arbitrary shapes, we introduce a novel approach involving multidirectional spatial reg-277

ularization. This includes incorporating difference coefficients in diagonal directions, pro-278

viding a more nuanced and accurate representation of subsurface structures (see Fig. S2279

in Supporting Information for the schematic comparison between single and multidirec-280

tional regularization). For the 2D case, we can represent the spatial gradient matrix as281

D = [Dz, γxDx, γzxDzx, γxzDxz], (10)282

where, Dzx and Dxz represent the difference coefficients in upper diagonal (zx) and lower283

diagonal (xz) directions, respectively; γzx and γxz represent the weight of constraint in284

two diagonal directions. Multidirectional spatial regularization significantly enhances the285

depiction of interfaces, particularly those at diagonal orientations, leading to a more ac-286

curate representation of complex subsurface structures.287

2.2.3 Workflow of multigrid spatially constrained inversion288

We have integrated a multigrid parameterization strategy and multidirectional spa-289

tial regularization into the established dispersion curve inversion framework, culminat-290

ing in the multigrid spatially constrained inversion (MCI) scheme for 2D surface wave291

imaging. The essence of MCI is simultaneously updating multiple collocated-grid mod-292

els using multidirectional spatial regularization and adaptively averaging solutions for293

this family of collocated-grid models. The flowchart in Fig.2 illustrates the basic MCI294

workflow, which contains the following steps:295

1. design a set of multigrid network, including one 2D base grid and several 2D col-296

located grids, for all investigation sites;297

2. parameterize the base grid to establish an initial model;298

3. project parameters of the initial model from the base grid to each collocated grid;299

4. update each collocated-grid model using multidirectional spatial regularization (3300

);301

5. backproject the updated model from each collocated grid to the base grid;302

6. average all the backprojected models to update the inverted model at base grid;303

7. repeat steps 3-6 until the termination criteria is satisfied;304
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8. output the last inverted model at the base grid as the final result;305

9. evaluate uncertainties related to parameterization of the 2D dispersion curve in-306

version process by estimating the standard deviation between the final inverted307

model and all backprojected models at the base grid.308

It is worth mentioning that it is relatively subjective to determine the number and309

the cell size of the collocated grids. In general, it is usually a safe option to employ a suf-310

ficient number of collocated grids with cells of various scales, although it comes with the311

cost of an increasing computation burden. This part will be discussed in section 5.1.312

3 Synthetic test313

To evaluate the performance of the multigrid spatially constrained inversion (MCI)314

method, we conducted synthetic tests on a pseudo-2D earth model. This model features315

three non-horizontal layers separated by two distinct interfaces and is represented by 61316

1D models, each with identical velocity parameters but varying interlayer depths (Fig.317

3a). From these models, we generated 61 phase-velocity dispersion curves as our observed318

data using a 1D forward kernel (Haskell, 1953). To simulate natural randomness, we in-319

troduced 4% Gaussian white noise to this data. These dispersion curves, displaying fluc-320

tuating interfaces similar to the earth model (Fig. 3b), serve as the basis for our tests.321

The objective is to accurately estimate the true Vs values and delineate the sharp in-322

terlayer interfaces from these noise-affected dispersion curves using the MCI method. It323

is worth mentioning that our synthetic tests are designed to evaluate the performance324

of various dispersion curve inversion algorithms, which inherently assume horizontal strat-325

ification (1D). Consequently, we have not incorporated the more ambiguous 2D forward326

modeling, which could introduce data uncertainties in the measurement of dispersion curves327

(e.g., Hu et al., 2021; Y. Liu et al., 2023).328

In our synthetic tests, we first established one base grid (Grid s0) with a consis-329

tent layer thickness of 1 m. Additionally, we defined four collocated grids (Grid s1-s4),330

where the layer thickness varies, progressively increasing from 1 m to 2 m as the depth331

increases. Both the base grid and the collocated grids share the same total depth of 50332

m. For ease of calculation, the layer thicknesses in the collocated grids can be set as an333

arithmetic series. Given the thicknesses of the first and last layers (h1 and hn) and the334

total depth (d), we can determine the thickness of each individual layer (hi) by apply-335

ing the following formula,336

n∑
i=1

hi =
(h1 + hn) ∗ n

2
= d

hi = h1 +
hn − h1

n− 1
∗ (i− 1).

(11)337

The four collocated grids (Grid s1-s4) are combined into various multigrid groups338

(Grid s5-s10) to assess the dependence of MCI method on collocated-grid group config-339

urations, as detailed in Section 5.1. The thickness parameters for these grids are out-340

lined in Table 1. Following the strategy of Xia (2014), we constructed the initial 2D Vs341

model (Fig. 3c) as a gradient model with horizontal layers defined by the base grid.342

We applied 1DI, LCI, and MCI to the same observed data (Fig. 3b) and the ini-343

tial model (Fig. 3c), ensuring meticulous grid parameterization and spatial regulariza-344

tion for each method. For 1DI and LCI, the initial models are projected from Grid s0345

(the base grid) to Grid s1 (a single collocated grid) to maintain inversion stability. In346

contrast, MCI utilizes Grid s5, comprising all four collocated grids, in alignment with347

the multigrid requirements specified in Section 2.2.1.348

–8–



manuscript submitted to JGR: Solid Earth

Regarding spatial regularization, 1DI exclusively incorporates vertical direction con-349

straints (eq.6). LCI extends this to include both vertical and lateral constraints (eq.7),350

while MCI further integrates two diagonal directions (eq.10). Following the approach rec-351

ommended by Guillemoteau et al. (2022), we typically set the constraint weights to con-352

stants—specifically, 2 for the lateral direction and 1 for all other directions in this sec-353

tion. The optimization process is terminated either when the number of iterations sur-354

passes 30 or when there is less than a 2% reduction in data residual between successive355

iterations.356

The reproducibility of the observed data serves as a crucial evaluation criterion to357

assess the acceptability of the inversion results. In general, all three methods produce358

relatively low data residual with visible differences related to lateral variations (Figs. 4a1-359

c1). These results are acceptable considering the fact that the data contain noise. To bet-360

ter understand the impact of lateral variation on inversion results, we further calculate361

the root-mean-square relative errors (rmsre) for all the investigation stations. In gen-362

eral, 1DI and LCI yield the highest (Figs. 4a1-a2) and the lowest (Figs. 4b1-b2) data363

residual, respectively; while MCI produces the intermediate results and the rmsre curve364

exhibits variations associated with structural features (Figs. 4c1-c2).365

Nonetheless, achieving higher reproducibility does not guarantee superior inversion366

results, given factors such as solution non-uniqueness, data errors, and the risk of over-367

fitting. The conventional 1D inversion method yields suboptimal models characterized368

by inconsistent interlayer boundaries (Fig. 5a1) and biased halfspace velocities (Fig. 5a2).369

This is primarily attributed to an inappropriate initial model, which causes 1DI to con-370

verge to local extremes. In contrast, the LCI method significantly enhances the results371

(Fig. 5b1) by incorporating lateral constraints during the inversion process, effectively372

rectifying the underestimation of halfspace velocities (Fig. 5b2). It is worth noting that373

the sharp interfaces cannot yet be accurately depicted, resulting in a blocky reconstructed374

structure. This is because the LCI method amplifies the anomaly boundaries in orthog-375

onal directions, and the predefined fixed grid limits the search space of the solution.376

Built upon the multigrid spatially constrained inversion framework, the MCI method377

produces an optimal model (Fig. 5c1) which is highly consistent with the true model.378

MCI demonstrates the capability to enhance inversion robustness, and suppress blocky379

artifacts around sharp boundaries. It is worth mentioning that the optimal model from380

MCI still exhibits model residuals (Fig. 5c2). These errors stem from facts like the av-381

eraging effect of the multiple collocated grids, and the inherent limitations of the sur-382

face wave method, which has relatively weak sensitivity to high-impedance interfaces.383

Moreover, these model errors are closely related to the estimated uncertainties (Fig. 6).384

This suggests the potential to assess the reliability of the inversion in the real world by385

considering uncertainties during MCI.386

For a fair comparison, we implement the multigrid strategy within the 1DI and LCI387

framework. This involves averaging the inverted models from multiple collocated grids388

(see Figs. S3 and S4 in Supporting Information) to generate the final model. Fig. 7 il-389

lustrates that this post-processing averaging does mitigate the blocky artifacts to some390

extent. However, these results are still not comparable to the outcomes of MCI. In con-391

trast to the simultaneous multigrid averaging inherent in the MCI update iterations, this392

posteriori averaging relies on the limited search space of each fixed grid and lacks sys-393

tematic constraints between various collocated grids.394

4 Field application395

4.1 Experiment and Data396

The Imperial Valley, situated at the southern tip of the San Andreas Fault system,397

is a tectonically active basin filled with thick Quaternary alluvium and lake sediments398

–9–



manuscript submitted to JGR: Solid Earth

(Jackson, 1981; Kaspereit et al., 2016). It has experienced regular earthquakes and seis-399

mic swarms for over two decades. Accurate delineation of the shallow velocity structure400

across the valley is crucial for understanding seismic activity, fault systems, and assess-401

ing earthquake hazards.402

The Salton Sea Seismic Imaging Project (SSIP) pioneered the first unified commu-403

nity velocity model for the Imperial Valley, utilizing Texan seismographs and explosive404

shots (Persaud et al., 2016; Ajala et al., 2019). However, the relatively sparse acquisi-405

tion system limits the spatial resolution of travel-time tomography, particularly for near-406

surface structures. Cheng, Ajo-Franklin, and Tribaldos (2023) introduced the first high-407

resolution V s30m model for the valley, utilizing an existing, unused telecommunication408

fiber spanning approximately 28 km (the black line in Fig. 8) and a DAS surface wave409

imaging framework. For more details on the experiment and the region, please refer to410

Ajo-Franklin et al. (2022); Cheng, Ajo-Franklin, and Tribaldos (2023).411

Nevertheless, the existing DAS surface wave imaging framework suffers from the412

limitation of employing spatial smoothing as spatial constraints, which can blur the fi-413

nal spatial resolution of the inverted Vs structure. In our efforts to enhance the near-surface414

Vs structure, we have adapted the imaging framework using our MCI method in this study.415

To maintain focus on the inversion algorithm itself, we have utilized the same DAS dataset416

as released by Cheng, Ajo-Franklin, and Tribaldos (2023). This dataset comprises 273417

high-quality fundamental-mode dispersion curves (Fig. 9) extracted from 2-day DAS am-418

bient noise data.419

4.2 DAS surface wave imaging using MCI420

To implement the multigrid strategy of the MCI method, we established one base421

grid (Grid f0) and four collocated grids (Grid f1 - f4). The maximum depth for all grids422

is set at 80 m. Layer thicknesses (Table . 2) are defined as suggested in the previous sec-423

tion. The initial Vs model featured linearly increasing velocities with depth (Fig. S5 in424

Supporting Information S1). Throughout the inversion process, constraint weights for425

all directions are uniformly set to 1. The iteration termination criteria matched those426

used in the synthetic test, and all three methods achieved reasonable results with data427

residuals (rmsre) generally remaining below 0.01 (see Fig. S6 in Supporting Infomation428

S1).429

For comparison, we also conducted 1DI and LCI using the same initial model with430

an appropriate grid (Grid f1). The 1DI model exhibits noticeable velocity oscillations431

in the lateral direction, resulting in complex and difficult-to-interpret ”spaghetti-like”432

structures (Fig. 10a). These oscillations were primarily attributed to the non-uniqueness433

problem stemming from an inadequate initial model and a lack of constraint informa-434

tion. This issue is a common challenge in surface wave imaging, and it is particularly pro-435

nounced in this study due to the high-resolution nature of DAS.436

To mitigate these ”spaghetti-like” features, one approach is to laterally smooth the437

1DI model to enhance interpretability, as demonstrated by Cheng, Ajo-Franklin, and Trib-438

aldos (2023). Figure 10b illustrates that this smoothing process effectively suppresses439

lateral velocity oscillations. However, the choice of smoothing length (0.3 km in this study,440

as in Cheng, Ajo-Franklin, and Tribaldos (2023)) is subjective and can potentially lead441

to the elimination of small-scale structures and blur the expected spatial resolution of442

DAS.443

Another approach is to replace 1DI with LCI for a more objective representation444

of laterally varying structures. Figure 10c shows that LCI delineates clearer stratigraphic445

interfaces and preserves finer-scale local anomalies, such as soft zones at approximately446

3 km and 21-22 km locations. However, a substantial proportion of the interfaces in the447

LCI model appears either horizontal or vertical, resulting in overly regular, ”block-like”448
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structures. It is important to recognize that the actual subsurface structure may not con-449

form to this rigid regularity.450

In contrast, MCI excels in precisely delineating more arbitrary interfaces, as ev-451

ident in the velocity contours in Figure 10c. The boundaries of the fine-scale anomalies452

at approximately 21-22 km locations in Figure 10c, appear more realistic. Moreover, MCI453

significantly reduces the abnormal jumps in data residuals of 1DI and LCI (see Fig. S6454

in Supporting Information). It emphasizes the higher credibility of MCI, further sup-455

ported by the generally low model uncertainties (Fig. 10e). It is worth mentioning that456

the notably high uncertainties around 25-26 km may be attributed to increased noise con-457

tamination in the data arising from weaker anthropogenic noise energy and stronger op-458

tical loss at greater distance. These collective observations demonstrate the remarkable459

robustness of the MCI method.460

To evaluate the reliability of the inversion, we compare the inverted Vs models with461

three nearby borehole profiles, represented by the colored sticks overlaid on the 2D pro-462

files (refer to Fig. S7 in Supporting Information for a detailed 1D comparisons). We no-463

tice a striking similarity, particularly in terms of the interfaces and average velocities.464

Taking account the spatial offset between observation sites, as well as the limited ver-465

tical resolution of the boreholes, we can reasonably assert the accuracy of the inverted466

Vs models.467

We also employ the common-offset profile to further validate the resolution of MCI468

on revealing lateral variations. Common-offset profiles have been widely used to infer469

lateral stratigraphic variations with different offsets referring to different depths (Li et470

al., 2017, 2018; H. Liu et al., 2022; Wang et al., 2023). We compare the common-offset471

profile with an offset of 84 m with the inverted Vs profiles at depth of 45 m, according472

to the thumb rule of half-wavelength approximation. Compared to results of 1DI and473

LCI, MCI shows higher consistency between the local variations of Vs and that of the474

common-offset profile, particularly at locations around 6, 11, 22 and 25 km (indicated475

by the blue arrows and rectangles on Fig. 11). It demonstrates the higher spatial res-476

olution of MCI on capturing the fine-scale local variations.477

4.3 New findings from the refined Vs structure478

Due to the limited resolution of the conventional 1DI, as demonstrated in Cheng,479

Ajo-Franklin, and Tribaldos (2023), the subsurface properties beneath 30 m exhibit a480

generally uniform sediment character with some concealed low-velocity zones (LVZs) near481

the surface. Fortunately, the high-resolution 2D Vs model, refined through the use of MCI,482

enhances our comprehension of the subsurface structure in Imperial Valley.483

For instance, the refined model unveils two previously unidentified LVZs, one lo-484

cated around 3 km and the other around 21 km (Fig.10d). The northern LVZ may sig-485

nify a soft paleo-depositional feature or a concealed fault located between Calipatria and486

Brawley, where localized discontinuities have been observed in other geophysical surveys487

(Meidav & Furgerson, 1972; Towse, 1975; Frith, 1978). The second LVZ, spanning ap-488

proximately 1.2 km around the 21-km mark, likely represents a previously unrecognized489

fault zone subordinate to the deeper Brawley fault system, as revealed in (Cheng, Ajo-490

Franklin, Nayak, et al., 2023). This finding is corroborated by the presence of discon-491

tinuities in the common-offset profile around the 21-km location (Fig. 11), where the ear-492

lier arrivals before 0.4 s may be associated with higher overtones or wavefield oscillations493

within the fault zone (Ben-Zion et al., 2015).494

To provide a more detailed view of this unmapped fault zone, a 5-km segment (from495

19 km to 24 km) of the 2D Vs model is presented. As mentioned earlier, the 1DI model496

exhibits ”spaghetti-like” features (Fig. 12a), hindering the interpretation of the hidden497

fault zone. Both the smoothed 1DI model (Fig. 12b) and the LCI model (Fig. 12c) dis-498
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play LVZ-like features, but they are blurred. In contrast, the MCI model distinctly pre-499

serves the boundaries of the fault zone (Fig. 12d). These new findings, relating to soft500

zones and potential fault systems, offer valuable insights for further research aimed at501

understanding seismic activity, assessing earthquake hazards, and developing sustain-502

able energy sources in the region.503

5 Discussion504

5.1 Impact of Grid Grouping on Deterministic Multigrid Parameter-505

ization506

The MCI framework, grounded in deterministic algorithms, entails the subjective507

definition of multiple collocated grids to establish a grid group for multigrid parameter-508

ization. We evaluate the influence of various grid groups (specifically, Grid s6-s10 as out-509

lined in Table 1) featuring diverse cell sizes on MCI performance. This assessment is con-510

ducted using dispersion data and an initial model, as illustrated in Fig. 3. Grids s6-s8511

each comprise two collocated grids, while Grids s9-s10 consist of three collocated grids.512

These grids are labeled as the fine grid, intermediate grid, coarse grid, medium-fine grid,513

and medium-coarse grid, categorizing them based on the degree of coarseness of the av-514

erage grid cell size.515

Synthetic tests reveal that the coarse grid exhibits the highest data and model resid-516

uals (Fig. 14c1-c3), while the medium-fine grid attains the lowest model residuals (Fig.517

14d1-d3). The remaining grids produce comparable results. This observation implies that518

the grid group should include finer collocated grids to ensure the spatial resolution of519

MCI. However, caution is needed to avoid excessively fine collocated grids, which could520

lead to MCI converging to local extremes. Therefore, a thoughtful grouping of collocated521

grid cell scales is crucial to fully leverage the potential of MCI. We recommend deter-522

mining the optimal grid group through multiple numerical tests and judiciously employ-523

ing a sufficient number of collocated grids with varying scales. Typically, around 10 col-524

located grids are adequate to achieve a stable result.525

In contrast to the deterministic inversion framework employed in this study, the526

stochastic inversion framework, such as the neighborhood algorithm (Sambridge, 1999)527

utilized in Geopsy (Wathelet et al., 2004), involves numerous individual inversions of ran-528

dom 1D models. It has the capability to effectively expand the model parameter space529

and ensure vertical resolution without incorporating multigrid parameterization. How-530

ever, it is limited by its random sampling property, rendering them unable to implement531

multidirectional spatial regularization. Simultaneously considering spatial coherence for532

thousands of randomly sampled one-dimensional profiles is impractical, especially in large-533

scale surveys that involve the inversion of hundreds or thousands of dispersion curves.534

5.2 Lateral Resolution of Surface Wave Imaging535

By rolling the measured subarrays and aligning the inverted 1D Vs profiles, it is536

possible to reconstruct a pseudo-2D Vs structure. The horizontal resolution (δ) of sur-537

face wave imaging based on 1D forward kernel is typically associated with the geome-538

try configurations, such as the shifting or rolling distance (r) and the subarray spread539

length (l) (Mi et al., 2017; Cheng, Ajo-Franklin, & Tribaldos, 2023), as illustrated in Fig.540

13.541

Ideally, the rolling distance represents the finest achievable imaging resolution (i.e.,542

δ ≥ r), and the subarray spread length is commonly considered to be the coarsest imag-543

ing resolution (i.e., δ ≤ l). In practice, the primary goal for improving the resolution544

of the surface wave imaging algorithm is to push the lateral resolution towards the finest545

limitation represented by the rolling distance (r). In the case of 1DI, the lateral reso-546
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lution of 1DI should be close to the subarray spread length (δ ≈ l) due to the indepen-547

dence of each individual inversion. In contrast, LCI and MCI employ the spatial regu-548

larization to preserve the difference between two neighboring subarrays, resulting in their549

lateral resolutions being closer to the rolling distance (δ ≈ r). This suggests that LCI550

and MCI have the potential to refine the lateral resolution of surface wave imaging, given551

that the rolling distance is typically smaller than the subarray spread length (r < l).552

Unfortunately, the task of configuring appropriate spatial regularization presents553

a challenge, as the commonly employed strategies are inherently subjective (e.g., Guille-554

moteau et al., 2022). Given that the spatial variations in observed data are closely re-555

lated to those of the underground structure, it appears promising to regularize model556

constraints with spatial covariance matrix derived from data (e.g., Zhang et al., 2023).557

In our future work, we plan to explore the realm of joint model and data constrained in-558

version. This exploration aims to refine the regularization process within the MCI frame-559

work, enhancing its adaptability and effectiveness.560

5.3 Expansion of MCI for 3D Surface Wave Imaging561

Currently, approaches for constructing high-resolution 3D Vs models primarily rely562

on travel-time tomography (Fang et al., 2015; Cruz-Hernández et al., 2022; Xu et al., 2023)563

or waveform inversion (Sager et al., 2020; Pan et al., 2021). The developed MCI presents564

a promising alternative for 3D surface wave imaging. It can effectively address the chal-565

lenging issues related to computational efficiency, robustness, and uncertainty estima-566

tion while achieving the necessary resolution.567

Following the workflow outlined in Section 2.2.3 makes the realization of 3D MCI568

feasible. The key challenges in this expansion involve managing the collocated grid groups569

and addressing the additional intricacies of lateral variations. Although a similar multi-570

grid parameterization strategy as in the 2D case can be employed in the 3D case, it re-571

quires the definition of a 3D base grid and collocated grids. Of particular importance572

is the establishment of the spatial gradient matrix (D), which should encompass differ-573

ential coefficients for 13 directions: three axial directions, six diagonal directions within574

the three 2D planes, and four 3D spatial diagonal directions.575

6 Conclusions576

We have developed a multigrid spatially constrained inversion (MCI) scheme for577

holistic inversion of dispersion curves to keep up with the increasing demands for high-578

resolution surface wave imaging in the context of Distributed Acoustic Sensing (DAS).579

Synthetic tests and a basin-scale field DAS case have demonstrated that MCI ensures580

inversion efficiency and robustness while concurrently enhancing imaging accuracy and581

spatial resolution. This is particularly noteworthy when compared to established disper-582

sion curve inversion methods such as 1D Inversion (1DI) and Laterally Constrained In-583

version (LCI) based on a 1D forward kernel. Additionally, MCI introduces a mechanism584

to evaluate the uncertainty associated with inversion results, providing a valuable ref-585

erence for assessing the reliability of the constructed Vs model. Furthermore, MCI is rec-586

ognized for its user-friendliness and adaptability to varying conditions.587

We refined and constructed high spatial resolution Vs structures in Imperial Val-588

ley, by performing MCI on released open-source dispersion curves. Various methods for589

evaluating imaging quality consistently support the high reliability of the MCI inverted590

model. MCI provides improved constraints on the subsurface Vs structure in Imperial591

Valley, finely revealing potential shallow fault responses associated with deeper fault sys-592

tems. This highlights its capability, in collaboration with DAS, to achieve large-scale,593

high spatial resolution surface wave imaging. Although this paper focused on the 2D case,594

the MCI approach can be easily extended to 3D without compromising its superiority.595
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The developed MCI offers a more efficient, stable, and high-resolution alternative to sur-596

face wave imaging methods based on a 1D forward framework.597

Open Research598

The raw dispersion curves from the 28 km DAS array are available in the follow-599

ing OSF repository: https://osf.io/ckt9q (Cheng, Ajo-Franklin, & Tribaldos, 2023).600

The refined 2D Vs models obtained in the field application can be found at Zenodo repos-601

itory https://doi.org/10.5281/zenodo.10047087. All websites were last accessed in602

Nov 2023.603
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Table 1. Grid groups associated to synthetic tests.

Grid Classification Layer thickness (m) Grid index Grid group

Base grid 1 s0 {s0}
Collocated grid 1 ∼ 2 s1 {s1}
Collocated grid 1.3 ∼ 2.6 s2 {s2}
Collocated grid 1.6 ∼ 2.9 s3 {s3}
Collocated grid 1.9 ∼ 3.8 s4 {s4}
Multiple grids − s5 {s1, s2, s3, s4}
Multiple grids − s6 {s1, s2}
Multiple grids − s7 {s2, s3}
Multiple grids − s8 {s3, s4}
Multiple grids − s9 {s1, s2, s3}
Multiple grids − s10 {s2, s3, s4}

Table 2. Grid groups associated to field application.

Grid Classification Layer thickness(m) Grid index Grid group

Base grid 1 f0 {f0}
Collocated grid 1 ∼ 3 f1 {f1}
Collocated grid 1 ∼ 4 f2 {f2}
Collocated grid 1 ∼ 5 f3 {f3}
Collocated grid 1 ∼ 6 f4 {f4}
Multiple grids − f5 {f1, f2, f3, f4}
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Figure 1. Multigrid strategy schematic.
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Figure 2. The workflow of multigrid spatially constrained inversion scheme.
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Figure 3. Models and dispersion data in synthetic test. (a) The true model is a pseudo-2D

model composed of 61 horizontally-aligned 1D models. (b) 2D phase velocity distribution synthe-

sized with the model shown in (a), but with 4% Gaussian white noise added. (c) The established

initial layered gradient model. The black dotted lines in (a) and (c) represent the layer interfaces.
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Figure 4. The data residual of 1DI (the left panels), LCI (the middle panels), and MCI

(the right panels) in the synthetic test. The top panels display the relative error of each dis-

persion data point (a1, b1, c1), and the bottom panels depict the root-mean-square relative

error of dispersion data for each station (a2, b2, c2). Here we define the relative data error with

|d−dpre|
d

∗ 100%, where d and dpre represents the observed and predicted data, respectively.

Figure 5. The inversion results of 1DI (the left panels), LCI (the middle panels), and MCI

(the right panels) in the synthetic test. The top panels display the inverted models (a1, b1, c1),

and the bottom panels depict the relative error of inverted Vs for each model cell (a2, b2, c2).

Here we define the relative model error with |mtrue−minv|
mtrue

∗ 100%, where mtrue and minv repre-

sent the true and inverted model, respectively.
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Figure 6. The estimated uncertainty of the inverted model by MCI in the synthetic test.

Figure 7. The averaged inversion results from four collocated grids (Grid s1 - Grid s4) us-

ing 1DI (the left panels) and LCI (the right panels), respectively. The top panels dispaly the

averaged inverted results (a1, b1), and the bottom panels depict the relative error of averaged in-

verted Vs for each model cell (a2, b2). The black dotted lines in (a1) and (b1) indicate the layer

interfaces.
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Figure 8. Overview of the DAS field experiment area. The black line traces the approxi-

mately 28 km of DAS cable utilized in the experiment. Green squares, evenly spaced between 5

and 25 km from north to south, mark key locations. Light blue inverted triangles pinpoint four

borehole survey sites. Noteworthy features include the representation of quaternary fault net-

works (red lines), two rivers (blue lines), and a surface rupture due to the 2012 Brawley swarm

(yellow line). The grey dashed line encircles the Brawley seismic zone. Historical seismic events

are depicted by depth-coded dots in shades of purple to light green.
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Figure 9. Presentation of 273 fundamental-mode dispersion curves in the frequency domain

(a) and wavelength domain (b), as employed in the field application. The black dashed box delin-

eates an area characterized by potentially strong lateral discontinuity, exceeding a length of 1 km.
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Figure 10. The near-surface 2D Vs structures in the Imperial Valley inverted by different

methods. Panels (a)-(b) show the inverted model of 1DI and its smoothed version. Panel (c)

displays the inverted model obtained through LCI. Panels (d)-(e) present the inverted model

of MCI and its corresponding model uncertainty. Results from both 1DI and LCI are based on

Grid f1. In panels (a)-(d), two gray lines depict the variation of depth along the DAS cable for

velocity contour lines of 200 m/s and 270 m/s. Colored sticks overlaid on the 2D inverted profiles

represent three nearby borehole profiles.
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Figure 11. Lateral variations in the underground structure beneath the DAS cable. Panel

(a) presents Vs profiles at a depth of 45 m, extracted from three inverted models in Fig. 10b-d.

Panel (b) displays the common offset profile at an offset of 84 m, filtered by the 1-9 Hz bandpass.

The deep blue arrows and boxes highlight the area where MCI demonstrates greater consistency

in the lateral changes between the Vs profile (orange curve) and the common offset profile.
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Figure 12. Segmented views (partitions: 19 km - 24 km) of different inverted models repre-

sented in Fig. 10a-d.
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Figure 13. Characterization of subsurface structure by means of multichannel analysis of sur-

face waves and the rolling-along data acquisition strategy. r and l represent the subarray rolling

distance and the subarray spread length. The colored sticks represent the 1D profiles unveiled by

different subarrays.
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Figure 14. MCI inversion results using various grid groups, Grid s6 (fine grid), Grid s7 (in-

termediate grid), Grid s8 (coarse grid), Grid s9 (Medium-fine grid), Grid s10 (medium-coarse

grid). Each panel includes, from top to bottom, the root-mean-square relative error of dispersion

data for each station (a1, b1, c1, d1, e1), the inverted 2D Vs model (a2, b2, c2, d2, e2), and the

relative model residual at each discrete grid point (a3, b3, c3, d3, e3). The black dotted lines in

a2, b2, c2, d2, e2 represent the layer interfaces.
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