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Key Points: 15 

 SFINCS reproduces observations of overland flooding from Hurricane Florence from 0-16 

80 m+NAVD88 with a peak error of 0.09 m. 17 

 The model predicts depths greater than 1.0 m at 96% of the locations where property-18 

level records of insured damage occurred.  19 

 Flood depths were 0.10 m higher at 23,251 buildings in the compound scenario than the 20 

maximum of either the coastal or runoff scenarios.  21 
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Abstract 22 

Estimates of flood inundation from tropical cyclones (TCs) are needed to better understand how 23 

exposure varies inland and at the coast. While reduced-complexity flood inundation models have 24 

been previously shown to efficiently simulate the drivers of TC flooding across large regions, a 25 

lack of detailed validation studies of these models, which are being applied globally, has led to 26 

uncertainty about the quality of the predictions of inundation depth and extent and how this 27 

translates to exposure. In this study, we complete a comprehensive validation of a reduced-28 

complexity hydrodynamic model (SFINCS) for simulating pluvial, fluvial, and coastal flooding. 29 

We hindcast Hurricane Florence (2018) flooding in North and South Carolina, USA using high-30 

resolution meteorologic data and coastal water level output from an ocean recirculation model 31 

(ADCIRC). We compare modeled water levels to traditional validation datasets (e.g., water level 32 

gages, high-water marks) as well as property-level records of insured damage to draw 33 

conclusions about the model’s performance. We demonstrate that SFINCS can accurately 34 

simulate coastal and runoff drivers of TC flooding at large scales with minimal computational 35 

requirements and limited calibration. We use the validated model to attribute flood extent and 36 

building exposure to the individual and compound flood drivers during Hurricane Florence. The 37 

results highlight the critical role runoff processes have in TC flood exposure and support the 38 

need for broader implementation of models that are capable of realistically representing the 39 

compound effects resulting from coastal and runoff processes.  40 

Plain Language Summary 41 

This study focuses on improving our understanding of flood risks caused by tropical cyclones 42 

(TCs). We use a flood inundation model to simulate flooding caused by Hurricane Florence 43 

(2018) in North and South Carolina, USA. The accuracy of the model is assessed by comparing 44 

modeled water levels to measurements taken in the field and records of property-level damage. 45 

We find that the model can accurately simulate TC flooding, including storm surge and rainfall, 46 

across large regions (e.g., watersheds) with minimal computational requirements and limited 47 

calibration. We also use the validated model to analyze flood extent and building exposure 48 

during Hurricane Florence, attributing them to storm surge or rainfall. The results emphasize the 49 

significant role that rainfall plays in TC flood exposure and the need for models capable of 50 

representing flooding from both coastal and runoff processes. 51 



manuscript submitted to Water Resources Research 

1 Introduction 52 

Tropical Cyclones (TCs) generate widespread flooding that can lead to damages on the 53 

order of billions of US dollars (NCEI, 2023). TC flooding is influenced by multiple coastal and 54 

runoff drivers including mean sea level (MSL), surge, wind, rainfall, and streamflow (Gori et al., 55 

2022; Lai et al., 2021). Evidence suggests that TC-related flood damages are increasing in 56 

response to changes in TC climatology and sea level rise (Meiler et al., 2022; Strauss et al., 57 

2021), as well as development in coastal areas (Hallegatte et al., 2013; Pörtner et al., 2023; 58 

Hoeppe, 2016; Klotzbach et al., 2018; Merkens et al., 2016). For example, global annual costs 59 

associated with TCs tripled between 1990-2021 (Klotzbach et al., 2022) where the frequency of 60 

the most damaging storms is increasing at a higher rate than the moderately damaging storms 61 

(Grinsted et al., 2019). Yet, despite the rising costs associated with TCs, comprehensive risk 62 

assessments are lacking, as most previous studies neglect to assess the full extent of flood 63 

inundation from TCs, instead focusing on modeling individual flood drivers (e.g., storm surge or 64 

rainfall-runoff) at large scales (Bakhtyar et al., 2020; Colle et al., 2008; Dietrich et al., 2011; Ray 65 

et al., 2011; Torres et al., 2015), or compound flood drivers at smaller scales (e.g., an individual 66 

tributary (Gori, Lin, & Xi, 2020; Loveland et al., 2021) or urban area where substantial damages 67 

have occurred (Liu et al., 2022; Sebastian et al., 2021; Xu et al., 2022).  68 

TC flooding can extend far beyond the coastline and landfall location as a result of 69 

rainfall-runoff and compound processes that drive flood inundation (Kunkel & Champion, 2019; 70 

Titley et al., 2021). However, many existing hydrodynamic models do not resolve the relevant 71 

physics (Santiago-Collazo et al., 2021) or are too computationally expensive to apply at large 72 

scales (Bates, 2021; Trigg et al., 2016; Wing et al., 2021). Increasingly, flood modelers are using 73 

reduced-physics solvers, subgrid options, and downscaling methods to overcome computational 74 

challenges associated with large scale (e.g., regional, continental, global) flood modeling 75 

(Leijnse et al., 2021; Neal et al., 2012, 2018; Sanders & Schubert, 2019). These methods are 76 

powerful because they balance computational speed and accuracy making them compatible with 77 

both deterministic and ensemble modeling approaches (Clare et al., 2022; Wing, Quinn, et al., 78 

2020). However, in part due to lack of high-quality flood hazard observations in overland areas 79 

(Bates, 2023; Ward et al., 2015), validation of flood models is often limited, and has instead 80 

focused only on select gages in coastal areas (e.g., >20 m elevation) (Liu et al., 2022; Ye et al., 81 

2021; Zhang et al., 2020) or riverine systems (Wing et al., 2017). As a result, there remains little 82 
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information about model performance in overland areas, especially as it relates to pluvial 83 

processes. Given growing public interest in utilizing these approaches in both planning and 84 

forecasting applications, there is a need for an in-depth validation of their performance to better 85 

understand the uncertainty in the outputs (Jafarzadegan et al., 2023). 86 

 In this study, we address this gap by undertaking a transparent and detailed validation of 87 

a loosely coupled modeling approach using the numerical model Super-Fast INundation of 88 

CoastS (SFINCS) to hindcast pluvial, fluvial, and coastal flooding generated by Hurricane 89 

Florence (2018) in North (NC) and South Carolina (SC). SFINCS was built using the best 90 

available topobathymetric data and was forced with high-resolution meteorologic data and output 91 

from the ADvanced CIRCulation (ADCIRC) model at the coastal boundary. While previous 92 

studies of Hurricane Florence have focused on assessing model performance at a single site 93 

(Gori, Lin, & Smith, 2020) or by comparing model outputs to observational data typically below 94 

20 m+NAVD88 (Nederhoff, Leijnse, et al., 2023; Ratcliff, 2022; Ye et al., 2021), we complete a 95 

comprehensive assessment of the full extent of flooding from inland (up to 200 m+NAVD88) to 96 

the coast across a large portion of the Carolinas. Modeled water levels were validated against 97 

point-level observations of flood inundation, including water level measurements at gages, high-98 

water marks (HWMs), and property-level records of flood exposure. The validated model was 99 

then used to attribute building exposure to runoff (rainfall, discharge), coastal (wind, coastal 100 

water level) and compound flood drivers across the model domain. We demonstrate that our 101 

rapid modeling approach provides an accurate assessment of TC flooding both inland and at the 102 

coast making it useful for future planning and forecasting applications. 103 

2 Background 104 

 The study area (77,655 sq.km.) encompasses portions of five USGS Hydrologic Unit 105 

Code (HUC) 6-digit watersheds spanning North and South Carolina including the Lower Pee 106 

Dee (LPD), Cape Fear (CF), Onslow Bay (OB), Neuse (N), and Pamlico (P) watersheds (Figure 107 

1. This area experiences TC landfall on average every 5-8 years (NOAA & NHC, 2023). Notable 108 

historical hurricanes include Fran (1996), Floyd (1999), Matthew (2016), Florence (2018), and 109 

Dorian (2019). Of these, Hurricane Florence provides a uniquely large dataset against which to 110 

validate inundation models. Florence made landfall as a Category 1 storm near Wilmington, NC 111 

on September 14, 2018, and generated record-setting flooding across the two States (Hall & 112 
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Kossin, 2019; Kunkel & Champion, 2019). The highest land-based sustained winds averaged 79 113 

kt (40.6 m/s), maximum storm surge heights across the Carolinas ranged between 0.9 and 3.4 m 114 

above MSL and rainfall totals ranged from 254 to 913 mm (Stewart & Berg, 2019). After 115 

landfall, Florence weakened and slowly moved farther inland across SC generating heavy 116 

precipitation over 2-4 days. Damages exceeded 2 billion USD (FEMA, 2020).  117 

 118 

Figure 1. The study area includes five USGS HUC6 watersheds in North and South Carolina 119 

including the Lower Pee Dee (LPD), Cape Fear (CF), Neuse (N), Onslow Bay (OB), and 120 

Pamlico (P) which are outlined in black. The relative size of the Upper Pee Dee (UPD) basin 121 

which drains into the LPD is shown. Elevations in meters above the North American Vertical 122 

Datum of 1988 (NAVD88) are shown for the area included in the SFINCS model domain. The 123 

upstream boundary of the model was generally located downstream of large reservoirs (triangles) 124 

where river discharge is controlled. For context, the location of Wilmington and Raleigh, NC as 125 

well as Myrtle Beach, SC are shown in black dots. Hurricane Florence’s storm track is a solid 126 

red line, Interstate 95 (I-95) is a dashed black line, and major levees are solid orange lines. 127 

3 Methods 128 

3.1 Hydrodynamic Model 129 

We used the Super-Fast INundation of CoastS (SFINCS) hydrodynamic model to 130 

simulate multiple drivers of flooding at the river-coastal interface (van Ormondt et al., 2023). 131 

SFINCS is an open-source, open-access two-dimensional flood inundation model that uses a 132 

structured grid and accounts for spatially varying precipitation, infiltration, overland roughness, 133 

wind and atmospheric pressure (Leijnse et al., 2021). An advantage of SFINCS over other 134 
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models is that it runs ‘super-fast’ because it computes overland flow using simplified equations 135 

of mass and momentum, uses an adaptive timestep, and supports OpenMP. SFINCS models can 136 

be created using an open-source Python package Hydro Model Tools (HydroMT) (Eilander, 137 

Boisgontier, et al., 2023) and the HydroMT-SFINCS plugin (Eilander, Leijnse, et al., 2022) 138 

making it easily replicated in new areas. These tools have successfully been used for model 139 

building in previous studies (Dullaart & van Manen, 2022; Eilander, Couasnon, Leijnse, et al., 140 

2023). 141 

SFINCS solves the Local Inertial Equations (i.e., SFINCS-LIE), based on the numerical 142 

solution used in the LISFLOOD-FP model (Bates et al., 2010) a wind drag term to account for 143 

wind stress. This is important especially for coastal applications where wind impact water levels. 144 

SFINCS also has the option to solve the Simplified Shallow Water Equations (i.e., SFINCS-145 

SSWE) which includes an advection term, thus enabling it to predict super-critical flow 146 

conditions such as the propagation of locally generated surge and wave runup (Gaido et al., 147 

2020). By default, SFINCS neglects the effect of atmospheric pressure gradients and the Coriolis 148 

force which is typically modeled in large-scale numerical ocean circulation models (Fringer et 149 

al., 2019). To account for offshore and ocean processes, SFINCS can be loosely coupled to 150 

ocean circulation models (e.g., the ADvanced CIRCulation model (ADCIRC) (Luettich & 151 

Westerink, 2004) or the Finite Volume Community Ocean Model (FVCOM) (Chen et al., 2003)) 152 

because it uses a 1D weakly reflective boundary condition. SFINCS generates coastal water 153 

levels accurately with reduced computation speeds when compared to other coastal 154 

hydrodynamic models (e.g., XBeach (Bertoncelj et al., 2021) and Delft3D FM (Röbke et al., 155 

2021)).  156 

To account for hydrologic processes, SFINCS can include a uniform constant infiltration 157 

value, spatially varying infiltration value, or apply the Soil Conservation Services (SCS) Curve 158 

Number (CN) Loss Model. The CN method calculates infiltration using the cumulative 159 

precipitation, antecedent moisture, and soil and land use type. Like most hydrodynamic models 160 

that use an explicit numerical scheme, SFINCS is restricted computationally by the spatial 161 

resolution of the structured grid but maintains speed and accuracy with an adaptive time step and 162 

subgrid method. The subgrid method is based on the principle that the bed level can vary 163 

substantially over short distances, but water levels vary over larger scales. Similar approaches 164 

have been tested and developed by Casulli (2009) and Volp et al. (2013). Coarse grid simulations 165 
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which use cell averaged depth and velocities can overestimate the effects of friction leading to an 166 

underestimation of conveyance (this is traditionally corrected for through the calibration 167 

process). The SFINCS subgrid method accounts for bed level and roughness variations on a 168 

smaller scale than the native model grid (e.g., computation cell) in the computation of water 169 

fluxes by querying property tables. Results show that the subgrid feature in SFINCS enables 170 

increased computational speed without sacrificing model accuracy (Leijnse et al., 2020).  171 

SFINCS has been shown to accurately capture total water levels from compound flooding 172 

in urban, coastal environments (Sebastian et al., 2021) and large watersheds (Eilander, 173 

Couasnon, et al., 2022), as well as tsunami offshore propagation and related flooding (Röbke et 174 

al., 2021). Because of its speed, SFINCS has been used to run large ensembles of storms 175 

(Eilander, Couasnon, Sperna Weiland, et al., 2023; Nederhoff, Leijnse, et al., 2023). It has also 176 

been previously applied to model flooding from Hurricane Florence on the U.S. Atlantic coast 177 

(Nederhoff, Leijnse, et al., 2023) however previous studies have predominantly focused on 178 

validating SFINCS output against water level gages and HWMs located below 20m +NAVD88. 179 

In this study, we evaluate SFINCS performance for simulating total water levels generated by 180 

Hurricane Florence, validating against water level observations that include elevations 80 181 

m+NAVD88. 182 

3.2 Model Setup 183 

3.2.1 Model Inputs 184 

The SFINCS model grid was generated with a spatial resolution of 200 m and active grid 185 

cells were designated using a modified shapefile of the NHD HUC6 boundaries as a mask 186 

(Figure 1). Cells outside of the mask were considered inactive. SFINCS cannot directly represent 187 

reservoir management, so the upstream boundary of the model was placed downstream of two 188 

large reservoirs in SC and five in NC (ranging between 150-200 m+NAVD88). Water level cells 189 

along the coastal boundary are on average at the -15 m+NAVD88 contour, specified using a 190 

modified shapefile of the National Hydrography Dataset (NHD) Area which delineates the extent 191 

of rivers and water bodies (see Figure S1 in Supplementary Materials). Where inter-basin flow 192 

might occur, outflow boundary cells – cells that allow water to drain from the model where it 193 

might otherwise unrealistically pool at the boundary – were designated (see Figure S2 in 194 

Supplementary Materials). Outflow can occur when extreme water levels flow between 195 
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watershed boundaries, especially in low-gradient areas at the coast. The final model contains 196 

over 1.95 million active grid cells across the model domain which has an approximate area of 197 

77,655 square kilometers (Figure 1).  198 

Elevation and land cover data were interpolated to create a continuous raster at the 199 

resolution of the model grid and subgrid. Topographic and bathymetric DEMs are relative to the 200 

North American Vertical Datum of 1988 (NAVD88) including a 1.0 m USGS Coastal National 201 

Elevation Dataset (CoNED) for NC and SC, 1.0 m USGS National Elevation Dataset (NED) for 202 

SC, and a 0.3 m (1.0 ft) LiDAR-derived DEM for NC. Each raster was resampled to a 2.0 m 203 

spatial resolution using the Geospatial Data Abstraction Library (GDAL) and tiles of these 2.0 m 204 

DEMs were created using HydroMT so that they could be quickly read into python with the 205 

HydroMT-SFINCS plugin at an appropriate resolution before being interpolated to either the 206 

model grid or subgrid. After the model grid was generated, the 2.0 m DEMs were then used to 207 

populate subgrid derived tables for each grid cell. The subgrid file was generated at 5.0 m 208 

resolution as a pre-processing step such that property tables were built based on a specified 209 

refinement factor relative to the grid (here, 1/40
th

 of the computational grid resolution). As the 210 

model grid and subgrid files are being written, HydroMT-SFINCS also generates elevation 211 

rasters at both resolutions which are used for downscaling the modeled water surface elevations. 212 

River bathymetry was incorporated using over 100 interpolated triangular irregular 213 

networks (TINs) from HEC-RAS models maintained by North Carolina Department of 214 

Emergency Management (NCEM) (NCEM, 2020). For other rivers in NC, the maximum channel 215 

depth was extracted from the HEC-RAS cross-sections and interpolated to a 2.0 m raster 216 

corresponding to areas covered by the NHD Area polygon. For rivers that are not delineated by 217 

the NHD Area polygon, a constant channel width of 10.0 m was used to burn the maximum 218 

HEC-RAS cross-sectional depth as a rectangular channel into the DEM. Similar HEC-RAS data 219 

were not publicly accessible for water bodies in SC. Instead, 2.0 m was subtracted from the 220 

CoNED and NED datasets in the major channels and estuaries using the NHD Area polygon 221 

shapefile as a mask. A map identifying the locations and type of the channel bathymetry included 222 

in the model is shown in Supplementary Materials Figure S3.  223 

Overland roughness coefficients were applied to the grid by assigning spatially varying 224 

Manning’s coefficients to the land use/land cover (LULC) classes designated in the National 225 
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Land Cover Data (NLCD) 2019 Land Cover Product which classifies 16 land cover types at a 226 

30-meter resolution for the nation (MRLC, 2022). Average values were used for the Manning’s n 227 

friction coefficients that are within the range of plausible values (Arcement & Schneider, 1989; 228 

Chow et al., 1998; Savage et al., 2016) (see Supplementary Materials Table S1). In the NLCD 229 

LULC, there are locations where rivers might not be classified as open water because of their 230 

small size (less than 30m) or because they were assigned a developed land cover type due to 231 

bridge crossings. The raster of Manning’s n values was updated for coastal water bodies using a 232 

modified shapefile of the NHD Area, for large rivers using the NHD Area, and for all other 233 

streams using the FRIS stream centerlines. Manning’s n values were interpolated to a continuous 234 

raster at the subgrid resolution, and this was used to generate the subgrid property tables for each 235 

grid cell. CNs were specified at the grid resolution using the GCN250 dataset which has a spatial 236 

resolution of 250 m and was generated using global land cover and soils data (Jaafar et al., 237 

2019). The CNs were used to compute spatial and temporally varying infiltration across the 238 

domain. Levees available from the National Levee Database (NLD) were incorporated into the 239 

model as weirs (weir coefficient of 0.6) (USACE, 2023). We assumed a crest of 1.0 m above the 240 

ground elevation. 241 

3.2.2 Initial and Boundary Conditions 242 

For the hindcast of Hurricane Florence, we used SFINCS-SSWE to simulate multi-243 

mechanistic flooding over a 23-day simulation (September 7, 2018, 00:00 to September 30, 244 

2018, 00:00). We also tested the sensitivity of the model results using SFINCS-LIE (i.e., no 245 

advection) and found that the recession (falling limb) of the hydrographs were better captured 246 

with advection. The difference in run time with and without advection was negligible.  247 

Runoff processes were simulated by forcing the model using rainfall and streamflow 248 

observations. We applied NOAA’s Multi-Radar Multi-Sensor (MRMS) Quantitative 249 

Precipitation Estimate (QPE) gridded rain-gage adjusted, radar-rainfall data directly to the model 250 

grid. We downloaded the MRMS data from the Iowa Environmental Mesonet archive (Iowa 251 

Environmental Mesonet, 2023). MRMS has a spatial resolution of 1.0 km and temporal 252 

resolution of 1-hour (the total precipitation for the entire simulation is shown in Figure S4 in the 253 

Supplementary Materials). At the upstream boundary of the model, we applied eight discharge 254 

time series from USGS gages (six reservoirs and two stream gages downstream of reservoirs) 255 
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with a 15-minute temporal resolution (Supplementary Materials Figure S2). We do not include 256 

baseflow in our model. 257 

Coastal processes were simulated by forcing the model using winds and coastal water 258 

levels (storm tide) modeled using a previously validated ADCIRC model for Hurricane Florence 259 

(Ratcliff, 2022). The ADCIRC model has a mean absolute error of 0.13 m and a root mean 260 

square error of 0.15 m when compared to peak water levels across NC. ADCIRC was forced 261 

with re-analyzed wind fields that are a modified version of the proprietary Ocean Weather Inc. 262 

(OWI) product that is shown to better replicate the strength and direction of winds during 263 

Hurricane Florence. We refer to this edited wind input as FLRA and it has a spatial resolution of 264 

0.05-degree (~5.0 km) and a 15-minute temporal resolution (maximum FLRA wind speeds are 265 

shown in Figure S4 in the Supplementary Materials). FLRA wind data was applied to the 266 

SFINCS grid and wind drag coefficients from the Garratt linear drag law were used (Garratt, 267 

1977). The wind drag coefficient varies linearly from 0.001-0.0025 between wind speeds of 0-28 268 

m/s and then remains constant at 0.0025 for wind speeds greater than 28 m/s. The FLRA wind 269 

files were only available for the first 11 days of the simulation period from September 7, 2018 to 270 

September 18, 2018. After this, no wind was applied to the grid for the last 12 days of the 271 

simulation period. Storm tide was extracted at over 5,500 points in ADCIRC with an average 272 

grid spacing of 2.0 km in the estuary, sounds, and along the coastline and a 5.0 km spacing in the 273 

ocean. Points within 2.0 km distance from the water level boundary were interpolated to the 274 

SFINCS cell faces. ADCIRC time series with a 20-minute temporal resolution at 341 locations 275 

were interpolated to the cells along the coastal boundary in SFINCS (Supplementary Materials 276 

Figure S2). ADCIRC outputs are relative to MSL, and they were converted to NAVD88 using a 277 

correction-raster generated using NOAA’s Vertical Datum Transformation Tool (NOAA, 2022). 278 

Initial soil moisture conditions were dry at the start of the simulation and the initial water 279 

level at the coast was set to 0.25 m+NAVD88. The model uses a 24-hour startup period allowing 280 

the coastal water level to stabilize, filling the bays and estuaries with water. Discharge, coastal 281 

water level, precipitation, and wind inputs are applied to the model starting seven days prior to 282 

Hurricane Florence landfall (September 14, 2018) allowing river channels to fill and the 283 

antecedent soil moisture conditions to be set. 284 
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 We conducted sensitivity analysis as a form of calibration of the model where we 285 

compared performance metrics for varying grid resolution (e.g., 100 vs 200 m), Manning’s n 286 

(e.g., average vs. high values), and presence/absence of channels. This information is reported in 287 

Tables S2 and S3 in the Supplementary Materials. We did not do any quality control of the input 288 

datasets or detailed calibration of model parameters because we are looking at a single event and 289 

do not want to overfit the model. Water levels across the entire domain are output every hour. 290 

The model computational time was 1.2 hours using a machine with 48 CPUs and an average 291 

timestep of six seconds. 292 

4 Results 293 

4.1 Model Validation 294 

We performed a detailed validation of the model across the study area comparing 295 

modeled timeseries at 89 water level gages, peak water levels at 512 USGS HWMs, and flood 296 

depths to property-level records of insured damage.  297 

4.1.1 Water Levels 298 

We compared the modeled water levels at 89 water level gages (76 USGS, five NOAA, 299 

seven USGS Rapid Deployment, one NCEM) across the entire simulation. We show results for 300 

all stations that had at least 50 measurements during the simulation period, even if they had gaps 301 

or missed the peak. The timing of peak water levels from coastal and runoff processes varied by 302 

HUC6 basins. In some cases, the hydrographs in major rivers and estuaries did not recede for 303 

many days. Calculating the stats for the flood hydrograph, which often had double peaks in the 304 

coastal zone, at each gage would have required uniquely specifying the time window at each 305 

gage. We calculated the stats using all observational data that was available at each gage for the 306 

entire 23-day simulation including normal flow conditions. 307 

At each gage, we calculated the Peak Error (PE), Bias (also known as the Mean Error), 308 

Root-Mean-Square-Error (RMSE), and the Coefficient of Determination (R-squared). The PE is 309 

a useful indicator of peak flood extent which is important for estimating exposure and damage. 310 

We calculated the Bias to quantify whether the model tends to under or overpredict the observed 311 

water levels across the simulation. We used the RMSE to quantify the absolute deviations 312 

between modeled and observed water levels (i.e., the spread) noting that the RMSE highlights 313 

large errors. Lastly, we calculated the R-squared which is a commonly applied measure in 314 
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hydrology to measure the ‘goodness-of-fit’ between model simulations and observations (Krause 315 

et al., 2005). R-squared estimates the combined dispersion to the individual dispersion of the 316 

modeled and observed data where a value of zero indicates poor model performance and a higher 317 

value is associated with good model performance. The R-squared metric is not a perfect measure 318 

and does not indicate whether there is a systematic bias meaning it can be low for an accurate 319 

model or high for an inaccurate model. However, these metrics are widely used for estimating 320 

the predictive ability of the model to replicate measured water levels (Jackson et al., 2019).  321 

We calculated these statistics at each gage (see Table S4 in the Supplementary Materials) 322 

which are shown in 323 

 324 

Figure 2. At water level gages, the model has an average peak error of 0.33 m and tends 325 

to overpredict the peak, especially in the Lower Pee Dee watershed. The model has an average 326 

bias of -0.29 m, an RMSE of 1.17 m and an R-squared of 0.56. We calculated the average 327 

statistic for each HUC6 basin which is provided in Table 1. The model tends to overpredict water 328 

levels in the Pamlico and Lower Pee Dee watersheds where bathymetry data was limited. In the 329 

Neuse, Cape Fear, and Onslow Bay basins where higher detailed information on channel 330 
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bathymetry was available, the peak error tends to be smaller, but the mean error indicates the 331 

model tends to underpredict water levels across the model domain. The higher R-squared values 332 

in NC watersheds indicate the model’s predictive skill is slightly better in this area of the domain 333 

where channel bathymetry is specified than in the Lower Pee Dee. 334 

 335 

Figure 2. Peak Error (m), Bias (m), Root-Mean-Square-Error (RMSE) (m), and Coefficient of 336 

Determination (R-squared) statistics were calculated for Hurricane Florence at 89 gages.  337 

Table 1. Modeled water levels were compared to gage observations using statistics of the Peak 338 

Error, Bias, Root-Mean-Square-Error (RMSE), and Coefficient of Determination (R-squared) 339 

which were calculated across the 23-day simulation. These metrics were averaged across the 340 

gages for each HUC6 watershed and for the entire domain. 341 

HUC6 Watershed Peak Error 

(m) 

Bias  

(m) 

RMSE  

(m) 

R-squared 

Cape Fear 0.15 -1.24 2.07 0.66 

Lower Pee Dee 0.43 0.06 1.24 0.48 

Neuse 0.04 -1.08 1.60 0.59 

Onslow Bay -0.21 -0.32 0.56 0.65 

Pamlico 1.07 0.77 1.11 0.70 

Domain 0.33 -0.29 1.35 0.56 
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4.1.2 Peak Water Levels 342 

To further assess how well the model predicts flooding during Hurricane Florence, we 343 

compared the peak modeled water levels against USGS observed HWMs. We downloaded 344 

HWMs from the USGS Flood Event Viewer (USGS, 2023b) and filtered them to select those that 345 

had a quality of ’Fair: +/−0.12 m’, ’Good: +/−0.03 m’, or ’Excellent: +/−0.015 m’. The subset of 346 

HWMs included 512 locations across the domain including elevations up to 80 m+NAVD88 347 

(358 locations in NC and 154 locations in SC). When compared against all HWMs, the model 348 

has an average bias of 0.05 m and RMSE of 0.93 m. The model tends to underpredict in NC but 349 

overpredict in SC as shown in Figure 3. This pattern is also reflected in the comparison to water 350 

level time series at gages.  351 

 352 

Figure 3. Modeled peak water levels for Hurricane Florence were compared to observations at 353 

512 USGS high-water marks (HWMs) with a quality of ‘fair’ or better. The bias (m) is shown at 354 

each location. The model tends to overpredict (positive values in red) in SC with more 355 

underprediction (negative values in blue) in NC.  356 

To enable easy comparison with other flood modeling studies of Hurricane Florence, we 357 

compare the modeled and observed water levels at HWM locations across the entire domain, the 358 

coastal zone, and a subset of the inland (Figure . The model consistently overpredicts peak water 359 

levels in the Lower Pee Dee watershed but underpredicts across the HUC6 watersheds in NC. A 360 
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histogram of the model error (m) for the coastal and inland zone is shown in Figure S4 in the 361 

Supplementary Materials and the average bias and RMSE for each HUC6 are listed in Table S4. 362 

 363 

Figure 4. Observed and modeled peak water levels were compared at 512 USGS High Water 364 

Mark (HWM) locations across the five HUC6 watersheds: Lower Pee Dee (LPD), Neuse (N), 365 

Cape Fear (CF), Pamlico (P), and Onslow Bay (OB). The three QQ-plots (1:1 plots) show this 366 

comparison for all the HWM locations (left), coastal zone <= 15 m+NAVD88 (middle), and a 367 

subset of the inland areas between 15 and 45 m+NAVD88 (right). Note: the scale of the axis 368 

changes for each subplot and the model bias and RMSE for the data shown is listed in the bottom 369 

right corner.  370 

4.1.3 Property-level Building Exposure 371 

While flood hazard outputs are often used to estimate infrastructure exposure, reports of 372 

building damage have not been widely used to assess flood hazard model performance. Due to 373 

privacy concerns, this data is typically only available aggregated to administrative units (e.g., 374 

census tracts, zip codes, counties), making it difficult to use for model validation (Bates, 2023; 375 

Wing, Pinter, et al., 2020). For example, the NOAA Storm Events Database provides storm and 376 

damage data for flash floods by county, whereas floods and tropical weather are reported by the 377 

National Weather Service (NWS) Forecast zone (NWS, 2023). As part of a study of Hurricane 378 

Florence and its impacts commissioned by the NC Legislature (NC Policy Collaboratory, 2021), 379 

we obtained property-level records of National Flood Insurance Program (NFIP) policies and 380 
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claims data from FEMA Region IV for the State of NC. NFIP claims and policies were geocoded 381 

and joined to a dataset of building footprints (North Carolina Floodplain Mapping Program, 382 

2022). We then selected policies and claims that were dated between September 6 and 30, 2018 383 

(as in Thomson et al. (2023)). This resulted in 11,073 buildings with a NFIP claim and 11,739 384 

buildings associated with a NFIP policy but no claim. These 22,812 buildings were 1.5% of the 385 

total buildings within the NC portion of the model domain (n=1,488,229). 386 

We used this property-level dataset to generate a contingency matrix to assess how well 387 

the model predicts building exposure (i.e., where reported damage or no damage serves as a 388 

proxy). The contingency matrix includes true positives (X), false positives (Y), true negatives 389 

(Z), and false negatives (W) calculated using a flood depth threshold. The number of events is 390 

equal to the total number of locations that reported damage (i.e., E=X+Y) and the total number 391 

of cases is equal to the events and the total number of locations that reported no damage (i.e., 392 

C=E+Z+W). When the model predicts flooding above a specified depth threshold at a structure 393 

that is associated with a claim, it was considered a true positive. Conversely, a false positive 394 

occurs when the model does not predict flooding at a structure where a claim was filed. A 395 

building might also be associated with a policy but not a claim which we assumed means the 396 

household did not experience flooding. A false negative occurs when the model predicts flooding 397 

at a building that had a policy but was not associated with a claim. A true negative occurs when 398 

the model did not predict flooding at a building that had a policy but not claim. 399 

To calculate the contingency matrix, we used bilinear interpolation to downscale the 400 

modeled peak water level at the grid resolution (i.e., 200 m) to the subgrid resolution (i.e., 5 m) 401 

to generate a flood depth raster. Water depths below 0.05 m were excluded. The water depth at 402 

each structure is extracted from this modeled inundation raster at the building centroid. We used 403 

depth thresholds of 0.05, 0.25, 0.5, and 1.0 m to classify buildings as flooded or not flooded. 404 

Using the information from the contingency matrix, we calculated forecast verification metrics. 405 

These metrics were first employed to indicate the value of flood warning (Schaefer, 1990) and 406 

more recently for modeled flood extent to other model output (Bates et al., 2021) or remotely 407 

sensed flood extents (Courty et al., 2017; Eilander, Couasnon, Leijnse, et al., 2023). We 408 

calculated the following metrics for each flood threshold which are reported in Table 3:  409 
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 Accuracy is the fraction of the modeled flooded and non-flooded locations that were 410 

correctly predicted where Accuracy = (X+Z) / C.  411 

 Bias measures the ratio of the frequency of modeled flooded locations to the frequency of 412 

observed damaged locations where Bias = ((X+Z) / E) - 1. A tendency to underpredict is 413 

BIAS < 0 while a tendency to overpredict is BIAS > 0.  414 

 Probability of Detection (POD), also known as hit rate, is the fraction of modeled flooded 415 

locations (e.g., true positives) that were correctly predicted where POD = X / E. This 416 

score does not penalize for false negatives.  417 

 False Alarm Ratio (FAR) is the fraction of modeled flooded locations that were not 418 

correctly predicted (e.g., no damage reported) where FAR = X / (X+Z).  419 

 Success Ratio (SR) is the fraction of the modeled flooded locations that were observed 420 

where SR = X / (X+Z).  421 

 The Critical Success Index (CSI) measures the ratio of the modeled flooded locations to 422 

the observed where CSI = X / (E+Z). The CSI is sensitive to the number of true positives 423 

and penalizes both the false positives and false negatives. 424 

The highest accuracy occurs using the 1.0 m depth where the model correctly predicts 425 

84% of the cases (n=22,812) of damage or and no damage. At this depth threshold the model has 426 

the lowest FAR of 4% but the largest bias of -0.28. Across all depth thresholds, the model 427 

correctly predicts flooding at 69% (POD) of the total locations that reported damage (n=11,073) 428 

which matches the tendency of the model to underpredict the number of flooded locations (bias 429 

<0). The fraction of the modeled flooded locations that were correctly observed ranges between 430 

83% and 96% (SR). The best CSI score of 0.68 is obtained when using the depth threshold of 1.0 431 

m but the difference between depth thresholds is minimal. 432 

Table 2. We used the contingency matrix of true positives, false positives, true negatives, and 433 

false negatives computed using the 22,812 property-level records of insured damage from 434 

Hurricane Florence for NC buildings to calculate forecast verification metrics using multiple 435 

depth thresholds.  436 

Forecast Verification Metric Perfect 

Score 

Flood Depth Threshold (m) 

0.05 0.25 0.50 1.0 

Accuracy 1 0.78 0.80 0.82 0.84 

Bias 0 -0.17 -0.21 -0.24 -0.28 

Probability of Detection (POD) 1 0.69 0.69 0.69 0.69 

False Alarm Rate (FAR) 0 0.17 0.13 0.09 0.04 
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Success Ratio (SR) 1 0.83 0.87 0.91 0.96 

Critical Success Index (CSI) 1 0.61 0.63 0.65 0.68 

4.2 Flood Driver Attribution 437 

Using the validated SFINCS model, we simulated multiple scenarios applying various 438 

combinations of the individual forcings for Hurricane Florence including river discharge (Q), 439 

precipitation (P), coastal water level (C), and wind (W). Using the outputs, we explored how the 440 

different forcings alter flood patterns across the study area. Pluvial and fluvial flooding is 441 

difficult to disentangle when modeling rainfall-runoff across large watersheds for extreme 442 

rainfall events. Therefore, we grouped pluvial and fluvial flooding as runoff processes. The 443 

runoff scenario included Q and P forcings with a constant coastal water level (C=0 m+NAVD88) 444 

and no wind. The coastal scenario included C and W forcings with no rainfall or discharge 445 

inputs. Our analysis focused on comparing the compound scenario to the coastal and runoff.  446 

We computed the difference in peak water level between the compound scenario 447 

(C+W+Q+P) and the largest depth from the coastal (C+W) and runoff (Q+P) model scenarios as 448 

shown in Figure 6. Areas that experienced the greatest increase in water level due to the 449 

combination of all drivers were primarily in the coastal transition zone (e.g., below 15 m). In 450 

Figure 6, we show the dominant drivers (i.e., coastal and runoff). Darker colors indicate areas 451 

where the compound scenario amplified total water levels by at least 0.05 m. The combination of 452 

all forcings exacerbates peak water levels especially in areas adjacent to the floodplain and major 453 

estuaries.  454 
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 455 

Figure 5.  The top panel shows the difference in peak water level between the compound 456 

scenario which includes the coastal water level (C), wind (W), discharge (Q), and precipitation 457 

(P) forcings and the largest depth from the coastal (C+W) and runoff (Q+P) model scenarios. 458 

The bottom panel shows the dominant drivers (i.e., coastal and runoff) which are darker for areas 459 

where the compound scenario increased total water levels by at least 0.05 m. 460 

We used the downscaled flood depth maps for the compound, coastal, and runoff 461 

scenarios to calculate peak flood extents and estimate building exposure. To calculate the 462 

flooded area, we summed the area of all the cells that had flood depths greater than 0.05 m. The 463 

flooded area is greater for the runoff than the coastal scenario, however, the compound scenario 464 

inundated the largest area (Table 4). We used the National Structure Inventory (NSI) maintained 465 
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by the USACE to estimate building exposure in SC and a more recently updated dataset of 466 

building footprints available from NCEM for NC. Within the model domain, there are an 467 

estimated 1,488,229 buildings in NC and 428,051 in SC. We extracted the flood depth at each 468 

building centroid for each of the three scenarios. The mean depth of water at buildings for all 469 

three scenarios is reported in Table 4. The number of structures exposed to flooding for the 470 

compound scenario is greater than the sum of the runoff and coastal scenarios. Compound 471 

flooding increased water levels by 0.10 m (+/- 0.06 m) at 23,251 buildings (28.7% of total 472 

exposed) considering locations where depth differences were greater than 0.05 m between the 473 

compound scenario and the maximum of any individual driver. In the compound scenario, an 474 

additional 4,347 buildings (5.4 % of total exposed) were exposed to flooding that were not 475 

exposed to flooding in the individual runoff or coastal scenarios. At these locations, the average 476 

depth was 0.14 m (+/- 0.15 m) (see Figure S7). 477 

Table 3. The flood extent and mean depth at buildings for the coastal, runoff, and compound 478 

scenarios were determined using flood maps at the subgrid resolution.  479 

Model 

Scenario 

Total Area Flooded 

(sq.km.) 

No. of Buildings w/ 

Flood Depth > 0.05 m 

Mean Flood 

Depth at 

Buildings (m) 

Coastal  

(C+W) 

11,717 (15.1% of domain) 32,563 (1.7% of total) 0.62 (+/- 0.51) 

Runoff  

(Q+P) 

23,809 (30.7% of domain) 47,055 (2.5% of total) 0.90 (+/- 0.95) 

Compound 

(C+W+Q+P) 

25,604 (33.0% of domain) 81,121 (4.2% of total) 0.80 (+/- 0.82) 

We show descriptive statistics for the depth at buildings for each watershed in Figure 7. 480 

We calculated the fraction of buildings exposed to runoff and coastal processes for each HUC6 481 

basin. For each building exposed to flooding from coastal processes in the Pamlico, Neuse, and 482 

Onslow Bay there were 13, 2, and 5 buildings exposed to runoff processes, respectively (i.e., 483 

building exposure primarily to runoff processes). Conversely, for each building exposed to 484 

flooding from runoff processes in the Cape Fear and Lower Pee Dee there were 54 and 163 485 

exposed to flooding from coastal processes, respectively (i.e., building exposure primarily to 486 

coastal processes).   487 
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 488 

Figure 6. Flood depths at buildings for the runoff (Q+P), coastal (C+W) and compound 489 

(C+W+Q+P) scenarios grouped by HUC6 basin. Water depth is logged on the x-axis. The 490 

median is indicated by thick black line and the mean is noted by a grey diamond. The number of 491 

buildings (n) is listed below the scenario name.  492 

 493 

5 Discussion 494 

5.1 Simulating total water levels inland and at the coast 495 

We hindcasted flooding from Hurricane Florence across NC and SC using the 496 

hydrodynamic model SFINCS. We developed the model using the best available data but did not 497 

perform extensive calibration beyond a few sensitivity tests of the Manning’s values and grid 498 

resolution. Two-dimensional hydrodynamic models have the advantage of simulating the bi-499 

directional propagation of water, but their performance is restricted by the accuracy of the 500 

elevation data used (Bates, 2021). Having well-represented channels and water bodies is crucial 501 

for improving compound flood hazard estimates because the interaction between streamflow, 502 
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rainfall, and coastal water levels and coastal tides is heavily dictated by the shape of the channel 503 

(Cooper, 2002; Harrison et al., 2022; Leuven et al., 2018; Yankovsky et al., 2012). However, 504 

national scale digital elevation models do not include channels and there is a lack of readily 505 

accessible information on channel characteristics to incorporate into the model (Neal et al., 506 

2021). While there is bathymetry available in the major coastal water bodies across the southeast 507 

Atlantic coast (e.g., CoNED and CUDEM), this data does not extend far upstream into the 508 

estuaries, and it is not clear where the information is “real” measurements or an artifact of 509 

geoprocessing (see, e.g., hydro-flattening in USGS (2023a)). When available, we took advantage 510 

of local datasets with channel information, enabling us to represent channels of widths less than 511 

<30m. However, we assumed a rectangular channel with a constant depth which may 512 

overestimate the cross-sectional area of flow which has been previously shown to be important 513 

for estimating conveyance and floodplain exchange (Dey et al., 2019; Slater, 2016).  514 

We addressed this for the major rivers in NC by manually including bathymetric 515 

information in our DEM obtained by extracting river channel characteristics from over 100 516 

HEC-RAS 1D models. This took a substantial amount of time because the data was not easy 517 

easily accessible from the model files. The model peak error is 0.09 m (n=601 including bias at 518 

512 HWMs, PE at 89 gages). The model peak error is smaller in the HUC6 watersheds where 519 

channel bathymetry was represented in the model for all inland rivers (Supplementary Materials 520 

Table S2 and S3). Specifically, the peak error of the model across the Pamlico, Neuse, Cape Fear 521 

and Onslow Bay watersheds was -0.19 m (n=324). Conversely, the peak error of the model was 522 

0.43 m (n=277) in the Lower Pee Dee watershed where we assumed a “burned in” channel with 523 

depths of 2.0 m for major river bodies that were identified in the NHD Area polygon. However, 524 

the model has a negative bias when considering the errors across the 23-day simulation 525 

particularly for inland rivers in NC where channels were included. During low or normal flow 526 

conditions, the in-channel water levels are low compared to observations skewing the overall 527 

bias to negative. This might be occurring in the model because of a lack of baseflow or the 528 

simplified rectangular channels over or underestimating channel conveyance. The model bias 529 

and peak error is smaller at the coast where improved bathymetry is available in national datasets 530 

(e.g., CUDEM, CoNED). We expect that incorporating channel bathymetry for all streams would 531 

improve channel routing and conveyance in the model.  532 
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In addition to channel bathymetry, there are other several other potential sources of 533 

uncertainty. First, we did not explicitly account for streamflow obstructions, such as small 534 

weirs/dams or bridge piers, in the DEM or Manning’s roughness. These structures can alter the 535 

propagation of streamflow and possibly slow down channel flow which could impact the shape 536 

of the hydrograph (Bates, 2021). There are ongoing efforts to create databases of infrastructure 537 

(Nienhuis et al., 2022) and corrected DEMs that can be incorporate into models (Schumann & 538 

Bates, 2018; Woodrow et al., 2016). We do not account for subsurface infrastructure (e.g., 539 

sewers) but we expect their influence on the extent of pluvial flooding to be small as they were 540 

likely completely inundated during this extreme event. Second, there is some uncertainty in the 541 

total volume of rainfall-runoff the model generates given the simplicity of the infiltration scheme 542 

used as well as the coarseness of the input soil information. Though the SCS Curve Number 543 

Method is widely used in hydrologic modeling, other infiltration schemes (such as Green-Ampt) 544 

can harness additional soil information for improved runoff estimation. Third, we did not 545 

investigate the uncertainty in the model forcings but used the best available products. The 546 

meteorological data (e.g., wind, rainfall) can contribute to model errors when hindcasting 547 

hydrodynamic processes resulting from TCs (Rahman et al., 2022; Ratcliff, 2022). For example, 548 

the temporal and spatial resolution of the data applied can impact the timing and volume of 549 

runoff computed by hydrologic models (Quintero et al., 2022). We used gage-corrected rainfall 550 

and wind products that have the finest spatial and temporal resolution available. However, the 551 

wind data was limited to the first 11 days of the 23-day simulation which could impact the 552 

performance of the model, especially at the coast.  553 

In general, the model performance is in line with other studies that use 2D reduced-554 

physics hydrodynamic models to simulate flooding (Saksena et al., 2020; Sebastian et al., 2021) 555 

and we see similar model performance for other storms (see S3 in the Supplementary Materials 556 

for validation results of Hurricane Matthew). We conclude that the model shows skill for 557 

simulating compound flooding at large spatial scales when compared to HWMs and water level 558 

gages making it useful tool for understanding how the different drivers contribute to changes in 559 

flood hazard and exposure.  560 
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5.2 Using property-level records of insured damage to further assess flood models 561 

We also used property-level records of insured damage in NC to better evaluate model 562 

performance in areas with limited gage data or HWMs (e.g., outside of floodplains). We 563 

calculated an average CSI of 0.64 which indicates adequate model performance. The CSI used 564 

alone can mask large differences between modeled and observations (Bates et al., 2021; 565 

Eilander, Couasnon, Leijnse, et al., 2023) so we report the additional scores to provide context. 566 

The fraction of the modeled flooded and non-flooded locations that are correctly predicted 567 

(Accuracy) is 84% using a depth threshold of 1.0 m. Across all depth thresholds, the model 568 

correctly predicts 69% of the damage locations (POD). However, the model tends to 569 

underpredict flooded locations with an average bias score of -0.23. When considering only the 570 

damaged locations (e.g., claim filed), the model correctly predicts flooding at 96% (SR) of these 571 

structures using a depth threshold of 1.0 m. These scores are similar to other studies that compare 572 

modeled flood extent to satellite images of flooding (Courty et al., 2017; Sosa et al., 2020; Wing 573 

et al., 2017, 2021). The skill scores indicate that the model is generally predicting flooding in 574 

areas where it likely occurred (a claim filed) across the entire domain (Error! Reference source 575 

not found.). A depth threshold of 1.0 m results in the best forecast scores overall, but this is 576 

likely because using smaller depth thresholds may lead to a conservative (high) estimate of the 577 

number of flooded buildings.  578 

Despite the promise of the above statistics, it is important to point out that our analysis 579 

does not consider first floor elevation because there is large uncertainty in the estimates since the 580 

data was only collected in 2010 for buildings inside the SFHA and buildings outside of the 581 

floodplain are assigned a single first floor elevation. We also did not average the water depths 582 

across each building footprint and only select a single depth at the centroid. When comparing 583 

this dataset to OpenFEMA which reports NFIP policies and claims at the census block group 584 

scale, we found that the total number of claims matched but the number of policies was 585 

significantly underrepresented in the property-level dataset (approximately 30% of the total 586 

reported in (FEMA, 2023). It is unclear how this introduces error into the skill metrics. The 587 

Accuracy, FAR, and CSI scores could improve or worsen depending on if the model predicts 588 

flooding at these locations where we are missing policy information. 589 

5.3 Delineating the drivers of total water levels and exposure 590 
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We used the SFINCS model to simulate Hurricane Florence flooding with different 591 

forcings applied to investigate how the flood extent and building exposure changes when 592 

considering the various drivers (e.g., coastal, runoff, and compound). The compound scenario 593 

results in a peak water level that is +/- 0.15 m compared to the model results with either coastal 594 

or runoff alone. These differences primarily occur in the coastal zone (e.g., below 15 595 

m+NAVD88). Figure 6 demonstrates that the water levels in the coastal zone of the Pamlico and 596 

Neuse basins were dominated by coastal processes, especially wind (Figure S8 in the 597 

Supplementary Materials). Conversely, in the Lower Pee Dee the total water levels were 598 

primarily controlled by runoff processes. While we combined the pluvial and fluvial components 599 

into the runoff scenario, the watershed that experienced the largest contribution from streamflow 600 

was the Lower Pee Dee since another large HUC6 watershed (Upper Pee Dee) drains into it at 601 

the upstream boundary (Figure 1). This is evident when attributing the dominant forcing to water 602 

levels as shown in Figure S4 in the Supplementary Materials. In the Cape Fear and Onslow Bay 603 

watersheds we see that both coastal and runoff processes were important for determining water 604 

levels along the estuaries and floodplains.  605 

Using the peak flood depth maps at the subgrid resolution, we calculated the total area 606 

that was flooded at depths greater than 0.05 m across the three scenarios (Table 4). The coastal, 607 

runoff, and compound processes inundate 15.1%, 30.7%, and 33.0% of the model domain, 608 

respectively, and the corresponding mean flood depths at the exposed buildings were 0.62 m, 609 

0.90 m, and 0.80 m. In general, the flood depths modeled at exposed buildings tended to be 610 

greater for the runoff scenario compared to the coastal scenario, especially at locations in SC. 611 

Using the model and building footprint datasets, we estimated that more than 81,121 buildings 612 

were exposed to flooding from Hurricane Florence (i.e., 64,570 in NC (4.3% of total NC 613 

buildings in domain) and 16,551 in SC (3.7% of total SC building in domain)). In SC, the 614 

number that experienced actual flood damage could be smaller given that the model tends to 615 

overpredict the peak and many homes are elevated above ground level. We find that water levels 616 

and flood depths at buildings are exacerbated in the compound scenario, particularly in the 617 

coastal zone, highlighting the importance of process-based models for predicting compound 618 

flooding. These results highlight that the drivers of TC flood exposure for Hurricane Florence 619 

varies over a large area (e.g., five HUC6 watersheds) and the combination of runoff and coastal 620 

processes is important for a comprehensive assessment. 621 
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6 Conclusions 622 

Flood exposure from TCs can extend far beyond coastal areas as extreme rainfall can 623 

generate significant pluvial and fluvial flooding that can exacerbate flooding in coastal 624 

communities and further inland (Gori, Lin, & Xi, 2020; Pricope et al., 2022; Sebastian et al., 625 

2021). In this study, we complete an in-depth validation of the reduced-complexity 626 

hydrodynamic model (SFINCS) loosely coupled to an ocean circulation model (ADCIRC). We 627 

chose SFINCS because it represents processes important for simulating TC flooding (e.g., wind, 628 

sea level, rainfall, streamflow) and is fast, scalable, and easily applied in new areas using open-629 

source tools it. We loosely couple SFINCS to ADCIRC but it has also been previously coupled 630 

to Delft3D see e.g., (Nederhoff, Crosby, et al., 2023). We hindcast runoff and coastal processes 631 

from Hurricane Florence to predict water levels across five HUC6 watersheds in the Carolinas. 632 

We perform a detailed validation of the model comparing against observed water levels (89 633 

water level gages, 512 HWM locations) and property-level records of insured damage 634 

(n=22,812). Our study provides new insights into model performance in inland areas outside of 635 

the coastal zone (i.e., areas >20m +NAVD88). The model shows skill in simulating runoff and 636 

coastal processes with a bias of 0.05 m and RMSE of 0.93 m compared to observed HWMs 637 

ranging up to 80 m+NAVD88. In areas where channels are not included in the terrain (e.g., 638 

Lower Pee Dee watershed in SC), the model tends to overpredict water levels. The model 639 

correctly predicts flooding at 96% of the damage and non-damage locations using a depth 640 

threshold of 1.0 m. However, we also discuss that translating modeled inundation to estimates of 641 

building exposure is highly uncertain and can vary depending on the chosen depth threshold and 642 

the characteristics of the structure (e.g., first floor elevation). 643 

Community flood resilience can be facilitated by a better understanding of the flood 644 

drivers which are both controlled by the watershed and stream network characteristics as well as 645 

the temporal and spatial resolution of the storm (e.g., landfall location, wind speeds). We also 646 

completed a comprehensive assessment of the contribution of runoff and coastal drivers to flood 647 

extent across the model domain and building exposure in NC. We modeled three scenarios 648 

including coastal (wind, sea level), runoff (rainfall, streamflow) and compound. The compound 649 

scenario resulted in an additional 1,503 buildings (1.9% of total buildings exposed) exposed to 650 

flooding than the total of the individual runoff and coastal drivers, suggesting that the compound 651 

processes may increase water levels nonlinearly. However, the locations where compound 652 
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flooding exacerbates total water levels may also shift depending on the initial conditions of the 653 

system (e.g., mean sea level, streamflow) and the spatial variations in the meteorology (wind, 654 

rainfall) associated with a given TC, and as a result, is difficult to extrapolate observations of the 655 

compound processes observed during Hurricane Florence to other TCs which may impact the 656 

Carolinas. Future work should examine additional events to identify where compound flood 657 

hazards are possible. 658 

As TCs continue to pose a threat to many coastlines, it is important to accurately predict 659 

both the coastal and runoff processes to get a complete picture of risk. This study demonstrates 660 

that SFINCS is a suitable tool for TC flood hazard and exposure assessment because it can 661 

simulate multiple mechanisms of flooding (e.g., wind, sea level, rainfall, streamflow) with 662 

minimal computational requirements and limited calibration. The speed and flexibility of 663 

SFINCS makes it easy to quickly generate flood-related information across large spatial scales. 664 

Yet, similar to previous studies which employ large-scale flood models (see e.g., (Neal et al., 665 

2021; Saksena et al., 2020)) the accurate representation of channel bathymetry is important to 666 

model performance, but data availability continues to be a challenge (Bates, 2023; Dey et al., 667 

2019). 668 

The model can be further improved by testing the sensitivity of the results to higher 669 

spatial resolution dataset for soil infiltration (e.g., through finer resolution of soil data with the 670 

Soil Survey Geographic Database (SSURGO)), the explicit inclusion of levees (e.g., using levee 671 

data from the USACE National Levee Database (NLD)), large reservoirs (e.g., using 672 

levees/weirs in combination with culvert structure with specified rating curve), and bridge piers 673 

(e.g., through increased Manning’s n values). The uncertainty in the meteorologic forcing inputs 674 

could also be further explored by using an ensemble of wind and rainfall inputs (e.g., Stage IV 675 

radar-rainfall, ERA5 reanalysis) (Grimley et al., 2020). Lastly, this study could be expanded to 676 

include additional types of meteorologic events, tropical and non-tropical, to better delineate the 677 

areas that experience compound flooding. 678 

  679 
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