APPENDIX A. SUPPLEMENTARY DATA
Additional supporting information can be found online in the Supporting Information section at the end of this article.
REFERENCES
(1) Pakdel S, Erfan-Niya H, Azamat J. Efficient separation of He/CH4 mixture by functionalized graphenylene membranes: A theoretical study.Journal of Molecular Graphics and Modelling . 2022; 115 : 108211.
(2) Sunarso J, Hashim SS, Lin YS, Liu SM. Membranes for helium recovery: An overview on the context, materials and future directions.Separation and Purification Technology . 2017; 176 : 335-383.
(3) Nuttall WJ, Clarke RH, Glowacki BA. Stop squandering helium.Nature . 2012; 485 (7400): 573-575.
(4) Liu X, Chang X, Zhu L, Li X. High-efficiency helium separation through g-C2O membrane: A theoretical study. Computational Materials Science . 2019; 157 : 1-5.
(5) Esfandiarpoor S, Fazli M, Ganji MD. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane. Scientific Reports . 2017; 7 (1): 16561.
(6) Zhu L, Xue Q, Li X, Wu T, Jin Y, Xing W. C2N: an excellent two-dimensional monolayer membrane for He separation. Journal of Materials Chemistry A . 2015; 3 (42): 21351-21356.
(7) Velioglu S, Keskin S. Simulation of H2/CH4 mixture permeation through MOF membranes using non-equilibrium molecular dynamics.Journal of Materials Chemistry A . 2019; 7 (5): 2301-2314.
(8) Zhou S, Shekhah O, Ramírez A, Lyu P, Abou-Hamad E, Jia J, Li J, Bhatt PM, Huang Z, Jiang H, Jin T, Maurin G, Gascon J, Eddaoudi M. Asymmetric pore windows in MOF membranes for natural gas valorization.Nature . 2022; 606 (7915): 706-712.
(9) Geng C, Sun Y, Zhang Z, Qiao Z, Zhong C. Mixed matrix metal–organic framework membranes for efficient CO2/N2 separation under humid conditions. AIChE Journal . 2023; 69 (5): e18025.
(10) Li Y, Situ Y, Guan K, Guan Y, Huang X, Cai C, Li S, Liu Z, Liang H, Wu Y, Yang Q, Qiao Z. High dynamic separation performance of metal–organic frameworks for D2/H2: Independent or competitive adsorption? AIChE Journal . 2023; n/a (n/a): e18283.
(11) Azizi B, Vessally E, Ahmadi S, Ebadi AG, Azamat J. Separation of CH4/N2 gas mixture using MFI zeolite nanosheet: Insights from molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects . 2022; 641 : 128527.
(12) Liu W, Jiang S-D, Yan Y, Wang W, Li J, Leng K, Japip S, Liu J, Xu H, Liu Y, Park I-H, Bao Y, Yu W, Guiver MD, Zhang S, Loh KP. A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications . 2020; 11 (1): 1633.
(13) Azamat J, Khataee A. Separation of CH4/C2H6 Mixture Using Functionalized Nanoporous Silicon Carbide Nanosheet. Energy & Fuels . 2018; 32 (7): 7508-7518.
(14) Xu X, Han J, Li B, Yang Z, Dou Y, Han J. Precise control on two-dimensional nanochannels at sub-nanometer level for customizable gas separation. AIChE Journal . 2023; 69 (10): e18167.
(15) Aguilar N, Aparicio S. Theoretical Insights into CO2 Adsorption by MoS2 Nanomaterials. The Journal of Physical Chemistry C . 2019;123 (43): 26338-26350.
(16) Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature . 2017; 550 (7676): 380-383.
(17) Liao S, Ke Q, Wei Y, Li L. Water’s motions in x-y and z directions of 2D nanochannels: Entirely different but tightly coupled. Nano Research . 2023; 16 (5): 6298-6307.
(18) Ran J, Zhang P, Chu C, Cui P, Ai X, Pan T, Wu Y, Xu T. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration.Journal of Membrane Science . 2020; 602 : 117963.
(19) Wang D, Wang Z, Wang L, Hu L, Jin J. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation.Nanoscale . 2015; 7 (42): 17649-17652.
(20) Pendse A, Cetindag S, Lin M-H, Rackovic A, Debbarma R, Almassi S, Chaplin BP, Berry V, Shan JW, Kim S. Charged Layered Boron Nitride-Nanoflake Membranes for Efficient Ion Separation and Water Purification. Small . 2019; 15 (49): 1904590.
(21) Frohna K, Deshpande T, Harter J, Peng W, Barker BA, Neaton JB, Louie SG, Bakr OM, Hsieh D, Bernardi M. Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals.Nature Communications . 2018; 9 (1): 1829.
(22) Massoumılari Ş, Doğancı M, Velioğlu S. Unveiling the potential of MXenes for H2 purification and CO2 capture as an emerging family of nanomaterials. AIChE Journal . 2022; 68 (12): e17837.
(23) Luo M, Lu Z, Zhao Y, Wang Y, Wei Y, Wang H. Tubular MXene/SS membranes for highly efficient H2/CO2 separation. AIChE Journal . 2023; 69 (8): e18105.
(24) Zhao J, He G, Huang S, Villalobos LF, Dakhchoune M, Bassas H, Agrawal KV. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation.Science Advances . 2019; 5 (1): eaav1851.
(25) Huang S, Dakhchoune M, Luo W, Oveisi E, He G, Rezaei M, Zhao J, Alexander DTL, Züttel A, Strano MS, Agrawal KV. Single-layer graphene membranes by crack-free transfer for gas mixture separation.Nature Communications . 2018; 9 (1): 2632.
(26) Sun C, Bai B. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation. Science Bulletin . 2017; 62 (8): 554-562.
(27) Sun C, Zhu S, Liu M, Shen S, Bai B. Selective Molecular Sieving through a Large Graphene Nanopore with Surface Charges. The Journal of Physical Chemistry Letters . 2019; 10 (22): 7188-7194.
(28) Sun C, Bai B. Improved CO2/CH4 Separation Performance in Negatively Charged Nanoporous Graphene Membranes. The Journal of Physical Chemistry C . 2018; 122 (11): 6178-6185.
(29) Sun C, Wen B, Bai B. Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chemical Engineering Science . 2015;138 : 616-621.
(30) Wen B-Y, Sun C-Z, Bai B-F. Molecular Dynamics Simulation of the Separation of CH4/CO2 by Nanoporous Graphene. ACTA PHYSICO-CHIMICA SINICA . 2015; 31 (2): 261-267.
(31) Wen B, Sun C, Bai B. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.Physical Chemistry Chemical Physics . 2015; 17 (36): 23619-23626.
(32) Yuan Z, Govind Rajan A, He G, Misra RP, Strano MS, Blankschtein D. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions. ACS Nano . 2021;15 (1): 1727-1740.
(33) Yuan Z, Govind Rajan A, Misra RP, Drahushuk LW, Agrawal KV, Strano MS, Blankschtein D. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.ACS Nano . 2017; 11 (8): 7974-7987.
(34) Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials . 2011;23 (37): 4248-4253.
(35) Meidani K, Cao Z, Barati Farimani A. Titanium Carbide MXene for Water Desalination: A Molecular Dynamics Study. ACS Applied Nano Materials . 2021; 4 (6): 6145-6151.
(36) Ma X, Zhu X, Huang C, Fan J. Exploring the potential of MXene nanoslit for water desalination through molecular dynamics simulations.Desalination . 2023; 556 : 116560.
(37) Jin Y, Fan Y, Meng X, Zhang W, Meng B, Yang N, Liu S. Theoretical and Experimental Insights into the Mechanism for Gas Separation through Nanochannels in 2D Laminar MXene Membranes. Processes . 2019;7 (10): 751.
(38) Yadav P, Cao Z, Barati Farimani A. DNA Detection with Single-Layer Ti3C2 MXene Nanopore. ACS Nano . 2021; 15 (3): 4861-4869.
(39) Sun C, Luo K, Zhou R, Bai B. Theoretical description of molecular permeation via surface diffusion through graphene nanopores.Physical Chemistry Chemical Physics . 2021; 23 (12): 7057-7065.
(40) Liu M, Song D, Wang X, Sun C, Jing D. Asymmetric Two-Layer Porous Membrane for Gas Separation. The Journal of Physical Chemistry Letters . 2020; 11 (15): 6359-6363.
(41) Gjerding MN, Taghizadeh A, Rasmussen A, Ali S, Bertoldo F, Deilmann T, Knøsgaard NR, Kruse M, Larsen AH, Manti S, Pedersen TG, Petralanda U, Skovhus T, Svendsen MK, Mortensen JJ, Olsen T, Thygesen KS. Recent progress of the Computational 2D Materials Database (C2DB). 2D Materials . 2021; 8 (4): 044002.
(42) Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials . 2013; 1 (1).
(43) Rappe AK, Casewit CJ, Colwell KS, Goddard WA, III, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society . 1992; 114 (25): 10024-10035.
(44) Skoulidas AI, Sholl DS. Transport Diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in Silicalite from Atomistic Simulations. The Journal of Physical Chemistry B . 2002; 106 (19): 5058-5067.
(45) Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, Qiao Z, Wang H. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry A . 2018; 6 (25): 11734-11742.
(46) Kadantsev ES, Boyd PG, Daff TD, Woo TK. Fast and Accurate Electrostatics in Metal Organic Frameworks with a Robust Charge Equilibration Parameterization for High-Throughput Virtual Screening of Gas Adsorption. The Journal of Physical Chemistry Letters . 2013;4 (18): 3056-3061.
(47) Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L-X, Wang S, Caro J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications . 2018; 9 (1): 155.
(48) Ke Q, Gong X, Liao S, Duan C, Li L. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. Journal of Molecular Liquids . 2022;365 : 120116.
(49) Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX . 2015;1-2 : 19-25.
(50) Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics.Journal of Molecular Graphics . 1996; 14 (1): 33-38.
(51) Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations.Journal of Computational Chemistry . 2011; 32 (10): 2319-2327.
(52) Liu Q, Chen M, Chen G, Yao X, Liu G, Xu R, Jin W. Molecular design of two-dimensional graphdiyne membrane for selective transport of CO2 and H2 over CH4, N2, and CO. Journal of Membrane Science . 2023;675 : 121557.
(53) Sun C, Zheng X, Bai B. Hydrogen purification using nanoporous graphene membranes and its economic analysis. Chemical Engineering Science . 2019; 208 : 115141.
(54) Sun C, Zhou R, Bai B, Lin Y, Li B. Multilayer Graphene Sheet with Conical Nanopores as a Membrane for High-Permeance Molecular Separation.The Journal of Physical Chemistry C . 2021; 125 (5): 3047-3054.
(55) Liu H, Dai S, Jiang D-e. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics. Nanoscale . 2013;5 (20): 9984-9987.
(56) Li W, Zheng X, Dong Z, Li C, Wang W, Yan Y, Zhang J. Molecular Dynamics Simulations of CO2/N2 Separation through Two-Dimensional Graphene Oxide Membranes. The Journal of Physical Chemistry C . 2016; 120 (45): 26061-26066.
(57) Zheng H, Zhu L, He D, Guo T, Li X, Chang X, Xue Q. Two-dimensional graphene oxide membrane for H2/CH4 separation: Insights from molecular dynamics simulations. International Journal of Hydrogen Energy . 2017; 42 (52): 30653-30660.
(58) Azizi K, Vaez Allaei SM, Fathizadeh A, Sadeghi A, Sahimi M. Graphyne-3: a highly efficient candidate for separation of small gas molecules from gaseous mixtures. Scientific Reports . 2021;11 (1): 16325.
(59) Zhao Y, Wei Y, Lyu L, Hou Q, Caro J, Wang H. Flexible Polypropylene-Supported ZIF-8 Membranes for Highly Efficient Propene/Propane Separation. Journal of the American Chemical Society . 2020; 142 (50): 20915-20919.
(60) Yuan Z, He G, Li SX, Misra RP, Strano MS, Blankschtein D. Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances. Advanced Materials . 2022; 34 (32): 2201472.