APPENDIX A. SUPPLEMENTARY DATA
Additional supporting information can be found online in the Supporting
Information section at the end of this article.
REFERENCES
(1) Pakdel S, Erfan-Niya H, Azamat J. Efficient separation of He/CH4
mixture by functionalized graphenylene membranes: A theoretical study.Journal of Molecular Graphics and Modelling . 2022; 115 :
108211.
(2) Sunarso J, Hashim SS, Lin YS, Liu SM. Membranes for helium recovery:
An overview on the context, materials and future directions.Separation and Purification Technology . 2017; 176 :
335-383.
(3) Nuttall WJ, Clarke RH, Glowacki BA. Stop squandering helium.Nature . 2012; 485 (7400): 573-575.
(4) Liu X, Chang X, Zhu L, Li X. High-efficiency helium separation
through g-C2O membrane: A theoretical study. Computational
Materials Science . 2019; 157 : 1-5.
(5) Esfandiarpoor S, Fazli M, Ganji MD. Reactive molecular dynamic
simulations on the gas separation performance of porous graphene
membrane. Scientific Reports . 2017; 7 (1): 16561.
(6) Zhu L, Xue Q, Li X, Wu T, Jin Y, Xing W. C2N: an excellent
two-dimensional monolayer membrane for He separation. Journal of
Materials Chemistry A . 2015; 3 (42): 21351-21356.
(7) Velioglu S, Keskin S. Simulation of H2/CH4 mixture permeation
through MOF membranes using non-equilibrium molecular dynamics.Journal of Materials Chemistry A . 2019; 7 (5): 2301-2314.
(8) Zhou S, Shekhah O, Ramírez A, Lyu P, Abou-Hamad E, Jia J, Li J,
Bhatt PM, Huang Z, Jiang H, Jin T, Maurin G, Gascon J, Eddaoudi M.
Asymmetric pore windows in MOF membranes for natural gas valorization.Nature . 2022; 606 (7915): 706-712.
(9) Geng C, Sun Y, Zhang Z, Qiao Z, Zhong C. Mixed matrix metal–organic
framework membranes for efficient CO2/N2 separation under humid
conditions. AIChE Journal . 2023; 69 (5): e18025.
(10) Li Y, Situ Y, Guan K, Guan Y, Huang X, Cai C, Li S, Liu Z, Liang H,
Wu Y, Yang Q, Qiao Z. High dynamic separation performance of
metal–organic frameworks for D2/H2: Independent or competitive
adsorption? AIChE Journal . 2023; n/a (n/a): e18283.
(11) Azizi B, Vessally E, Ahmadi S, Ebadi AG, Azamat J. Separation of
CH4/N2 gas mixture using MFI zeolite nanosheet: Insights from molecular
dynamics simulation. Colloids and Surfaces A: Physicochemical and
Engineering Aspects . 2022; 641 : 128527.
(12) Liu W, Jiang S-D, Yan Y, Wang W, Li J, Leng K, Japip S, Liu J, Xu
H, Liu Y, Park I-H, Bao Y, Yu W, Guiver MD, Zhang S, Loh KP. A
solution-processable and ultra-permeable conjugated microporous
thermoset for selective hydrogen separation. Nature
Communications . 2020; 11 (1): 1633.
(13) Azamat J, Khataee A. Separation of CH4/C2H6 Mixture Using
Functionalized Nanoporous Silicon Carbide Nanosheet. Energy &
Fuels . 2018; 32 (7): 7508-7518.
(14) Xu X, Han J, Li B, Yang Z, Dou Y, Han J. Precise control on
two-dimensional nanochannels at sub-nanometer level for customizable gas
separation. AIChE Journal . 2023; 69 (10): e18167.
(15) Aguilar N, Aparicio S. Theoretical Insights into CO2 Adsorption by
MoS2 Nanomaterials. The Journal of Physical Chemistry C . 2019;123 (43): 26338-26350.
(16) Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li
D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li
J, Fang H. Ion sieving in graphene oxide membranes via cationic control
of interlayer spacing. Nature . 2017; 550 (7676): 380-383.
(17) Liao S, Ke Q, Wei Y, Li L. Water’s motions in x-y and z directions
of 2D nanochannels: Entirely different but tightly coupled. Nano
Research . 2023; 16 (5): 6298-6307.
(18) Ran J, Zhang P, Chu C, Cui P, Ai X, Pan T, Wu Y, Xu T. Ultrathin
lamellar MoS2 membranes for organic solvent nanofiltration.Journal of Membrane Science . 2020; 602 : 117963.
(19) Wang D, Wang Z, Wang L, Hu L, Jin J. Ultrathin membranes of
single-layered MoS2 nanosheets for high-permeance hydrogen separation.Nanoscale . 2015; 7 (42): 17649-17652.
(20) Pendse A, Cetindag S, Lin M-H, Rackovic A, Debbarma R, Almassi S,
Chaplin BP, Berry V, Shan JW, Kim S. Charged Layered Boron
Nitride-Nanoflake Membranes for Efficient Ion Separation and Water
Purification. Small . 2019; 15 (49): 1904590.
(21) Frohna K, Deshpande T, Harter J, Peng W, Barker BA, Neaton JB,
Louie SG, Bakr OM, Hsieh D, Bernardi M. Inversion symmetry and bulk
Rashba effect in methylammonium lead iodide perovskite single crystals.Nature Communications . 2018; 9 (1): 1829.
(22) Massoumılari Ş, Doğancı M, Velioğlu S. Unveiling the potential of
MXenes for H2 purification and CO2 capture as an emerging family of
nanomaterials. AIChE Journal . 2022; 68 (12): e17837.
(23) Luo M, Lu Z, Zhao Y, Wang Y, Wei Y, Wang H. Tubular MXene/SS
membranes for highly efficient H2/CO2 separation. AIChE Journal .
2023; 69 (8): e18105.
(24) Zhao J, He G, Huang S, Villalobos LF, Dakhchoune M, Bassas H,
Agrawal KV. Etching gas-sieving nanopores in single-layer graphene with
an angstrom precision for high-performance gas mixture separation.Science Advances . 2019; 5 (1): eaav1851.
(25) Huang S, Dakhchoune M, Luo W, Oveisi E, He G, Rezaei M, Zhao J,
Alexander DTL, Züttel A, Strano MS, Agrawal KV. Single-layer graphene
membranes by crack-free transfer for gas mixture separation.Nature Communications . 2018; 9 (1): 2632.
(26) Sun C, Bai B. Molecular sieving through a graphene nanopore:
non-equilibrium molecular dynamics simulation. Science Bulletin .
2017; 62 (8): 554-562.
(27) Sun C, Zhu S, Liu M, Shen S, Bai B. Selective Molecular Sieving
through a Large Graphene Nanopore with Surface Charges. The
Journal of Physical Chemistry Letters . 2019; 10 (22):
7188-7194.
(28) Sun C, Bai B. Improved CO2/CH4 Separation Performance in Negatively
Charged Nanoporous Graphene Membranes. The Journal of Physical
Chemistry C . 2018; 122 (11): 6178-6185.
(29) Sun C, Wen B, Bai B. Application of nanoporous graphene membranes
in natural gas processing: Molecular simulations of CH4/CO2, CH4/H2S and
CH4/N2 separation. Chemical Engineering Science . 2015;138 : 616-621.
(30) Wen B-Y, Sun C-Z, Bai B-F. Molecular Dynamics Simulation of the
Separation of CH4/CO2 by Nanoporous Graphene. ACTA PHYSICO-CHIMICA
SINICA . 2015; 31 (2): 261-267.
(31) Wen B, Sun C, Bai B. Inhibition effect of a non-permeating
component on gas permeability of nanoporous graphene membranes.Physical Chemistry Chemical Physics . 2015; 17 (36):
23619-23626.
(32) Yuan Z, Govind Rajan A, He G, Misra RP, Strano MS, Blankschtein D.
Predicting Gas Separation through Graphene Nanopore Ensembles with
Realistic Pore Size Distributions. ACS Nano . 2021;15 (1): 1727-1740.
(33) Yuan Z, Govind Rajan A, Misra RP, Drahushuk LW, Agrawal KV, Strano
MS, Blankschtein D. Mechanism and Prediction of Gas Permeation through
Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.ACS Nano . 2017; 11 (8): 7974-7987.
(34) Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L,
Gogotsi Y, Barsoum MW. Two-Dimensional Nanocrystals Produced by
Exfoliation of Ti3AlC2. Advanced Materials . 2011;23 (37): 4248-4253.
(35) Meidani K, Cao Z, Barati Farimani A. Titanium Carbide MXene for
Water Desalination: A Molecular Dynamics Study. ACS Applied Nano
Materials . 2021; 4 (6): 6145-6151.
(36) Ma X, Zhu X, Huang C, Fan J. Exploring the potential of MXene
nanoslit for water desalination through molecular dynamics simulations.Desalination . 2023; 556 : 116560.
(37) Jin Y, Fan Y, Meng X, Zhang W, Meng B, Yang N, Liu S. Theoretical
and Experimental Insights into the Mechanism for Gas Separation through
Nanochannels in 2D Laminar MXene Membranes. Processes . 2019;7 (10): 751.
(38) Yadav P, Cao Z, Barati Farimani A. DNA Detection with Single-Layer
Ti3C2 MXene Nanopore. ACS Nano . 2021; 15 (3): 4861-4869.
(39) Sun C, Luo K, Zhou R, Bai B. Theoretical description of molecular
permeation via surface diffusion through graphene nanopores.Physical Chemistry Chemical Physics . 2021; 23 (12):
7057-7065.
(40) Liu M, Song D, Wang X, Sun C, Jing D. Asymmetric Two-Layer Porous
Membrane for Gas Separation. The Journal of Physical Chemistry
Letters . 2020; 11 (15): 6359-6363.
(41) Gjerding MN, Taghizadeh A, Rasmussen A, Ali S, Bertoldo F, Deilmann
T, Knøsgaard NR, Kruse M, Larsen AH, Manti S, Pedersen TG, Petralanda U,
Skovhus T, Svendsen MK, Mortensen JJ, Olsen T, Thygesen KS. Recent
progress of the Computational 2D Materials Database (C2DB). 2D
Materials . 2021; 8 (4): 044002.
(42) Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S,
Gunter D, Skinner D, Ceder G, Persson KA. Commentary: The Materials
Project: A materials genome approach to accelerating materials
innovation. APL Materials . 2013; 1 (1).
(43) Rappe AK, Casewit CJ, Colwell KS, Goddard WA, III, Skiff WM. UFF, a
full periodic table force field for molecular mechanics and molecular
dynamics simulations. Journal of the American Chemical Society .
1992; 114 (25): 10024-10035.
(44) Skoulidas AI, Sholl DS. Transport Diffusivities of CH4, CF4, He,
Ne, Ar, Xe, and SF6 in Silicalite from Atomistic Simulations. The
Journal of Physical Chemistry B . 2002; 106 (19): 5058-5067.
(45) Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, Qiao Z, Wang H.
Selective gas diffusion in two-dimensional MXene lamellar membranes:
insights from molecular dynamics simulations. Journal of Materials
Chemistry A . 2018; 6 (25): 11734-11742.
(46) Kadantsev ES, Boyd PG, Daff TD, Woo TK. Fast and Accurate
Electrostatics in Metal Organic Frameworks with a Robust Charge
Equilibration Parameterization for High-Throughput Virtual Screening of
Gas Adsorption. The Journal of Physical Chemistry Letters . 2013;4 (18): 3056-3061.
(47) Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, Ding L-X, Wang S, Caro
J, Gogotsi Y. MXene molecular sieving membranes for highly efficient gas
separation. Nature Communications . 2018; 9 (1): 155.
(48) Ke Q, Gong X, Liao S, Duan C, Li L. Effects of
thermostats/barostats on physical properties of liquids by molecular
dynamics simulations. Journal of Molecular Liquids . 2022;365 : 120116.
(49) Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl
E. GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers. SoftwareX . 2015;1-2 : 19-25.
(50) Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics.Journal of Molecular Graphics . 1996; 14 (1): 33-38.
(51) Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A
toolkit for the analysis of molecular dynamics simulations.Journal of Computational Chemistry . 2011; 32 (10):
2319-2327.
(52) Liu Q, Chen M, Chen G, Yao X, Liu G, Xu R, Jin W. Molecular design
of two-dimensional graphdiyne membrane for selective transport of CO2
and H2 over CH4, N2, and CO. Journal of Membrane Science . 2023;675 : 121557.
(53) Sun C, Zheng X, Bai B. Hydrogen purification using nanoporous
graphene membranes and its economic analysis. Chemical Engineering
Science . 2019; 208 : 115141.
(54) Sun C, Zhou R, Bai B, Lin Y, Li B. Multilayer Graphene Sheet with
Conical Nanopores as a Membrane for High-Permeance Molecular Separation.The Journal of Physical Chemistry C . 2021; 125 (5):
3047-3054.
(55) Liu H, Dai S, Jiang D-e. Insights into CO2/N2 separation through
nanoporous graphene from molecular dynamics. Nanoscale . 2013;5 (20): 9984-9987.
(56) Li W, Zheng X, Dong Z, Li C, Wang W, Yan Y, Zhang J. Molecular
Dynamics Simulations of CO2/N2 Separation through Two-Dimensional
Graphene Oxide Membranes. The Journal of Physical Chemistry C .
2016; 120 (45): 26061-26066.
(57) Zheng H, Zhu L, He D, Guo T, Li X, Chang X, Xue Q. Two-dimensional
graphene oxide membrane for H2/CH4 separation: Insights from molecular
dynamics simulations. International Journal of Hydrogen Energy .
2017; 42 (52): 30653-30660.
(58) Azizi K, Vaez Allaei SM, Fathizadeh A, Sadeghi A, Sahimi M.
Graphyne-3: a highly efficient candidate for separation of small gas
molecules from gaseous mixtures. Scientific Reports . 2021;11 (1): 16325.
(59) Zhao Y, Wei Y, Lyu L, Hou Q, Caro J, Wang H. Flexible
Polypropylene-Supported ZIF-8 Membranes for Highly Efficient
Propene/Propane Separation. Journal of the American Chemical
Society . 2020; 142 (50): 20915-20919.
(60) Yuan Z, He G, Li SX, Misra RP, Strano MS, Blankschtein D. Gas
Separations using Nanoporous Atomically Thin Membranes: Recent
Theoretical, Simulation, and Experimental Advances. Advanced
Materials . 2022; 34 (32): 2201472.