References
Affholder, A., Guyot, F., Sauterey, B., Ferrière, R., Mazevet, S., 2021. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nat. Astron. 5, 805–814.
Ash, J.L., Egger, M., Treude, T., Kohl, I., Cragg, B., Parkes, R.J., Slomp, C.P., Lollar, B.S., Young, E.D., 2018. Exchange catalysis during anaerobic methanotrophy revealed by 12CH2D2 & 13CH3D in methane. bioRxiv 377531.
Cao, X., Bao, H., Peng, Y., 2019. A kinetic model for isotopologue signatures of methane generated by biotic and abiotic CO2 methanation. Geochim. Cosmochim. Acta 249, 59–75.
Charlou, J.L., Donval, J.P., Konn, C., OndréAs, H., Fouquet, Y., Jean‐Baptiste, P., Fourré, E., 2010. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic‐hosted hydrothermal systems on the Mid‐Atlantic Ridge. Divers. hydrothermal Syst. slow spreading Ocean ridges 188, 265–296.
Etiope, G., 2017. Methane origin in the Samail Ophiolite: comment on “Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability”[Geochim. Cosmochim. Acta 179 (2016) 217–241]. Geochim. Cosmochim. Acta.
Etiope, G., Judas, J., Whiticar, M.J., 2015. Occurrence of abiotic methane in the eastern United Arab Emirates ophiolite aquifer. Arab. J. Geosci. 8, 11345–11348.
Fritz, P., Clark, I.D., Fontes, J.-C., Whiticar, M.J., Faber, E., 1992. Deuterium and 13C evidence for low temperature production of hydrogen and methane in a highly alkaline groundwater environment in Oman. Proc. - Int. Symp. Water-Rock Interact. 7, 793–796.
Früh-Green, G.L., Kelley, D.S., Lilley, M.D., Cannat, M., Chavagnac, V., Baross, J.A., 2022. Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges. Nat. Rev. Earth Environ. 1–20.
Fu, Q., Sherwood Lollar, B., Horita, J., Lacrampe-Couloume, G., Seyfried, J.W.E., 2007. Abiotic formation of hydrocarbons under hydrothermal conditions: Constraints from chemical and isotope data. Geochim. Cosmochim. Acta 71, 1982–1998.
Giunta, T., Young, E.D., Labidi, J., Sansjofre, P., Jézéquel, D., Donval, J.-P., Brandily, C., Ruffine, L., 2022. Extreme methane clumped isotopologue bio-signatures of aerobic and anaerobic methanotrophy: Insights from the Lake Pavin and the Black Sea sediments. Geochim. Cosmochim. Acta 338, 34–53.
Giunta, T., Young, E.D., Warr, O., Kohl, I., Ash, J.L., Martini, A., Mundle, S.O.C., Rumble, D., Pérez-Rodríguez, I., Wasley, M., Larowe, D.E., Gilbert, A., Sherwood Lollar, B., 2019. Methane sources and sinks in continental sedimentary systems: New insights from paired clumped isotopologues 13CH3D and 12CH2D2. Geochim. Cosmochim. Acta 245, 327–351.
Horibe, Y., Craig, H., 1995. DH fractionation in the system methane-hydrogen-water. Geochim. Cosmochim. Acta 59, 5209–5217. https://doi.org/http://dx.doi.org/10.1016/0016-7037(95)00391-6
House, C.H., Wong, G.M., Webster, C.R., Flesch, G.J., Franz, H.B., Stern, J.C., Pavlov, A., Atreya, S.K., Eigenbrode, J.L., Gilbert, A., 2022. Depleted carbon isotope compositions observed at Gale crater, Mars. Proc. Natl. Acad. Sci. 119, e2115651119.
Klein, F., Grozeva, N.G., Seewald, J.S., 2019. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl. Acad. Sci. 201907871.
Kueter, N., Schmidt, M.W., Lilley, M.D., Bernasconi, S.M., 2019. Experimental determination of equilibrium CH4–CO2–CO carbon isotope fractionation factors (300–1200 C). Earth Planet. Sci. Lett. 506, 64–75.
Labidi, J., Young, E.D., Giunta, T., Kohl, I.E., Seewald, J., Tang, H., Lilley, M.D., Früh-Green, G.L., 2020. Methane thermometry in deep-sea hydrothermal systems: evidence for re-ordering of doubly-substituted isotopologues during fluid cooling. Geochim. Cosmochim. Acta 288, 248–261.
Landwehr, J.M., Coplen, T.B., Stewart, D.W., 2014. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA. Hydrol. Process. 28, 5382–5422.
McCollom, T.M., 2016. Abiotic methane formation during experimental serpentinization of olivine. Proc Natl Acad Sci U S A 113, 13965–13970. https://doi.org/10.1073/pnas.1611843113
McCollom, T.M., 2013. Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Rev. Mineral. geochemistry 75, 467–494. https://doi.org/10.2138/rmg.2013.75.15
McCollom, T.M., Lollar, B.S., Lacrampe-Couloume, G., Seewald, J.S., 2010. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim. Cosmochim. Acta 74, 2717–2740. https://doi.org/http://dx.doi.org/10.1016/j.gca.2010.02.008
McCollom, T.M., Seewald, J.S., 2007. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401.
McCollom, T.M., Seewald, J.S., 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243, 74–84.
Miller, H.M., Matter, J.M., Kelemen, P., Ellison, E.T., Conrad, M.E., Fierer, N., Ruchala, T., Tominaga, M., Templeton, A.S., 2016. Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. Geochim. Cosmochim. Acta 179, 217–241. https://doi.org/http://dx.doi.org/10.1016/j.gca.2016.01.033
NASEM, 2022. Origins, worlds, and life: a decadal strategy for planetary science and astrobiology 2023-2032.
Nothaft, D.B., Templeton, A.S., Boyd, E.S., Matter, J.M., Stute, M., Paukert Vankeuren, A.N., Team, O.D.P.S., 2021. Aqueous geochemical and microbial variation across discrete depth intervals in a peridotite aquifer assessed using a packer system in the Samail Ophiolite, Oman. J. Geophys. Res. Biogeosciences 126, e2021JG006319.
Proskurowski, G., Lilley, M.D., Kelley, D.S., Olson, E.J., 2006. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229, 331–343.
Röckmann, T., Popa, M.E., Krol, M.C., Hofmann, M.E.G., 2016. Statistical clumped isotope signatures. Sci. Rep. 6, 1–14.
Rolston, J.H., Den Hartog, J., Butler, J.P., 1976. The deuterium isotope separation factor between hydrogen and liquid water. J. Phys. Chem. 80, 1064–1067.
Seyfried Jr, W.E., Janecky, D.R., Berndt, M.E., 1987. Rocking autoclaves for hydrothermal experiments II. The flexible reaction-cell system. Hydrothermal Exp. Tech. 23, 216–239.
Sherwood Lollar, B., Frape, S.K., Weise, S.M., Fritz, P., Macko, S.A., Welhan, J.A., 1993. Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 57, 5087–5097.
Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., Onstott, T.C., Pratt, L.M., Slater, G.F., 2008. Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: a model for abiogenic polymerization of hydrocarbons. Geochim. Cosmochim. Acta 72, 4778–4795.
Sherwood Lollar, B., Westgate, T.D., Ward, J.A., Slater, G.F., Lacrampe-Couloume, G., 2002. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522.
Stolper, D.A., Lawson, M., Davis, C.L., Ferreira, A.A., Neto, E.V.S., Ellis, G.S., Lewan, M.D., Martini, A.M., Tang, Y., Schoell, M., 2014. Formation temperatures of thermogenic and biogenic methane. Science (80-. ). 344, 1500–1503.
Taenzer, L., Labidi, J., Masterson, A.L., Feng, X., Rumble III, D., Young, E.D., Leavitt, W.D., 2020. Low Δ12CH2D2 values in microbialgenic methane result from combinatorial isotope effects. Geochim. Cosmochim. Acta 285, 225–236.
Taran, Y.A., Kliger, G.A., Cienfuegos, E., Shuykin, A.N., 2010. Carbon and hydrogen isotopic compositions of products of open-system catalytic hydrogenation of CO2: Implications for abiogenic hydrocarbons in Earth’s crust. Geochim. Cosmochim. Acta 74, 6112–6125. https://doi.org/DOI: 10.1016/j.gca.2010.08.012
Waite, J.H., Glein, C.R., Perryman, R.S., Teolis, B.D., Magee, B.A., Miller, G., Grimes, J., Perry, M.E., Miller, K.E., Bouquet, A., 2017. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science (80-. ). 356, 155–159.
Wang, D.T., Gruen, D.S., Lollar, B.S., Hinrichs, K.-U., Stewart, L.C., Holden, J.F., Hristov, A.N., Pohlman, J.W., Morrill, P.L., Könneke, M., 2015. Nonequilibrium clumped isotope signals in microbial methane. Science (80-. ). 348, 428–431.
Wang, W., Wang, S., Ma, X., Gong, J., 2011. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727.
Warr, O., Young, E.D., Giunta, T., Kohl, I.E., Ash, J.L., Lollar, B.S., 2021. High-resolution, long-term isotopic and isotopologue variation identifies the sources and sinks of methane in a deep subsurface carbon cycle. Geochim. Cosmochim. Acta 294, 315–334.
Webster, C.R., Mahaffy, P.R., Atreya, S.K., Flesch, G.J., Mischna, M.A., Meslin, P.-Y., Farley, K.A., Conrad, P.G., Christensen, L.E., Pavlov, A.A., 2015. Mars methane detection and variability at Gale crater. Science (80-. ). 347, 415–417.
Welhan, J.A., Craig, H., 1979. Methane and hydrogen in East Pacific Rise hydrothermal fluids. Geophys. Res. Lett. 6, 829–831. https://doi.org/10.1029/GL006i011p00829
Yeung, L.Y., 2016. Combinatorial effects on clumped isotopes and their significance in biogeochemistry. Geochim. Cosmochim. Acta 172, 22–38.
Young, E.D., 2019. A two-dimensional perspective on CH4 isotope clumping: distinguishing process from source. Deep Carbon 388414.
Young, E.D., Kohl, I.E., Lollar, B.S., Etiope, G., Rumble Iii, D., Li, S., Haghnegahdar, M.A., Schauble, E.A., McCain, K.A., Foustoukos, D.I., 2017. The relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. Geochim. Cosmochim. Acta 203, 235–264.
Young, E.D., Rumble III, D., Freedman, P., Mills, M., 2016. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int. J. Mass Spectrom. 401, 1–10.