REFERENCES
Agostinetto, R., Rossi, M., Dawson, J., Lim, A., Simoneau, M.H., Boucher, C., Valldorf, B., Ross-Gillespie, A., Jardine, J.G., Sok, D., et al. (2022). Rapid cGMP manufacturing of COVID-19 monoclonal antibody using stable CHO cell pools. Biotechnol. Bioeng. 119 , 663–666.
Al’abri, I.S., Haller, D.J., Li, Z., and Crook, N. (2022). Inducible directed evolution of complex phenotypes in bacteria. Nucleic Acids Res.50 , E58.
Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A., Rouphael, N., Creech, C.B., et al. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 384 , 403–416.
Badran, A.H., and Liu, D.R. (2015). In vivo continuous directed evolution. Curr. Opin. Chem. Biol. 24 , 1–10.
Bae, D., Hyeon, H., Shin, E., Yeom, J.H., and Lee, K. (2023). Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I. J. Microbiol. 61 , 211–220.
Bai, Y., Liu, D., He, Q., Liu, J., Mao, Q., and Liang, Z. (2023). Research progress on circular RNA vaccines. Front. Immunol. 13 , 1–12.
Bernstein, J.A., Khodursky, A.B., Lin, P.H., Lin-Chao, S., and Cohen, S.N. (2002). Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. U. S. A. 99 , 9697–9702.
Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H., and Falkow, S. (1977). Construction and characterization of new cloning vehicle. II. A multipurpose cloning system. Gene 2 , 95–113.
Börner, J., Friedrich, T., Bartkuhn, M., and Klug, G. (2023). Ribonuclease E strongly impacts bacterial adaptation to different growth conditions. RNA Biol. 20 , 120–135.
Breda, L., Papp, T.E., Triebwasser, M.P., Yadegari, A., Fedorky, M.T., Tanaka, N., Abdulmalik, O., Pavani, G., Wang, Y., Grupp, S.A., et al. (2023). In vivo hematopoietic stem cell modification by mRNA delivery. Science 381 , 436–443.
Brown, A.J., Gibson, S.J., Hatton, D., Arnall, C.L., and James, D.C. (2019). Whole synthetic pathway engineering of recombinant protein production. Biotechnol. Bioeng. 116 , 375–387.
Callaghan, A.J., Marcaida, M.J., Stead, J.A., McDowall, K.J., Scott, W.G., and Luisi, B.F. (2005). Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437 , 1187–1191.
Carlile, T.M., Martinez, N.M., Schaening, C., Su, A., Bell, T.A., Zinshteyn, B., and Gilbert, W. V. (2019). mRNA structure determines modification by pseudouridine synthase 1. Nat. Chem. Biol. 15 , 966.
Carter, A.D., Morris, C.E., and McAllister, W.T. (1981). Revised transcription map of the late region of bacteriophage T7 DNA. J. Virol.37 , 636–642.
Delgado-Martín, J., and Velasco, L. (2021). An efficient dsRNA constitutive expression system in Escherichia coli. Appl. Microbiol. Biotechnol. 105 , 6381–6393.
Deviatkin, A.A., Simonov, R.A., Trutneva, K.A., Maznina, A.A., Soroka, A.B., Kogan, A.A., Feoktistova, S.G., Khavina, E.M., Mityaeva, O.N., and Volchkov, P.Y. (2023). Cap-Independent Circular mRNA Translation Efficiency. Vaccines 11 , 1–12.
Esquerré, T., Moisan, A., Chiapello, H., Arike, L., Vilu, R., Gaspin, C., Cocaign-Bousquet, M., and Girbal, L. (2015). Genome-wide investigation of mRNA lifetime determinants in Escherichia coli cells cultured at different growth rates. BMC Genomics 16 , 1–13.
Esvelt, K.M., Carlson, J.C., and Liu, D.R. (2011). A system for the continuous directed evolution of biomolecules. Nature 472 , 499–503.
Fan, J., Sripada, S.A., Pham, D.N., Linova, M.Y., Woodley, J.M., Menegatti, S., Boi, C., and Carbonell, R.G. (2023). Purification of a monoclonal antibody using a novel high-capacity multimodal cation exchange nonwoven membrane. Sep. Purif. Technol. 317 , 123920.
Gan, L.M., Lagerström-Fermér, M., Carlsson, L.G., Arfvidsson, C., Egnell, A.C., Rudvik, A., Kjaer, M., Collén, A., Thompson, J.D., Joyal, J., et al. (2019). Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat. Commun. 10 , 1–9.
Gholamalipour, Y., Karunanayake Mudiyanselage, A., and Martin, C.T. (2018). NAR breakthrough article 3 end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character—-RNA-Seq analyses. Nucleic Acids Res. 46 , 9253–9263.
Heyde, S.A.H., and Nørholm, M.H.H. (2021). Tailoring the evolution of BL21(DE3) uncovers a key role for RNA stability in gene expression toxicity. Nat. Commun. 21 , 1–9.
Jiang, Z., and Dalby, P.A. (2023). Challenges in scaling up AAV-based gene therapy manufacturing. Trends Biotechnol. 41 , 1268–1281.
Joshi, S.H.N., Yong, C., and Gyorgy, A. (2022). Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains. Nat. Commun. 13 .
Kime, L., Vincent, H.A., Gendoo, D.M.A., Jourdan, S.S., Fishwick, C.W.G., Callaghan, A.J., and McDowall, K.J. (2015). The first small-molecule inhibitors of members of the ribonuclease E family. Sci. Rep. 5 , 8028.
Kis, Z., Kontoravdi, C., Shattock, R., and Shah, N. (2021). Resources, production scales and time required for producing RNA vaccines for the global pandemic demand. Vaccines 9 , 1–14.
Kram, K.E., and Finkel, S.E. (2015). Rich medium composition affects Escherichia coli survival, glycation, and mutation frequency during long-term batch culture. Appl. Environ. Microbiol. 81 , 4442–4450.
Laalami, S., Zig, L., and Putzer, H. (2014). Initiation of mRNA decay in bacteria. Cell. Mol. Life Sci. 71 , 1799–1828.
Lee, C., Kim, J., Shin, S.G., and Hwang, S. (2006). Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123 , 273–280.
Leppek, K., Byeon, G.W., Kladwang, W., Wayment-Steele, H.K., Kerr, C.H., Xu, A.F., Kim, D.S., Topkar, V. V., Choe, C., Rothschild, D., et al. (2022). Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 13 .
Lin‐Chao, S., Chen, W. ‐T, and Wong, T. ‐T (1992). High copy number of the pUC plasmid results from a Rom/Rop‐suppressible point mutation in RNA II. Mol. Microbiol. 6 , 3385–3393.
Liu, X., Zhang, Y., Zhou, S., Dain, L., Mei, L., and Zhu, G. (2022). Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J. Control. Release 348 , 84–94.
Ma, Z.Z., Zhou, H., Wei, Y.L., Yan, S., and Shen, J. (2020). A novel plasmid–Escherichia coli system produces large batch dsRNAs for insect gene silencing. Pest Manag. Sci. 76 , 2505–2512.
Mairhofer, J., Wittwer, A., Cserjan-Puschmann, M., and Striedner, G. (2015). Preventing T7 RNA polymerase read-through transcription-A synthetic termination signal capable of improving bioprocess stability. ACS Synth. Biol. 4 , 265–273.
Mardle, C.E., Goddard, L.R., Spelman, B.C., Atkins, H.S., Butt, L.E., Cox, P.A., Gowers, D.M., Vincent, H.A., and Callaghan, A.J. (2020). Identification and analysis of novel small molecule inhibitors of RNase E: Implications for antibacterial targeting and regulation of RNase E. Biochem. Biophys. Reports 23 .
Mauger, D.M., Joseph Cabral, B., Presnyak, V., Su, S. V., Reid, D.W., Goodman, B., Link, K., Khatwani, N., Reynders, J., Moore, M.J., et al. (2019). mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl. Acad. Sci. U. S. A. 116 , 24075–24083.
McElwain, L., Phair, K., Kealey, C., and Brady, D. (2022). Current trends in biopharmaceuticals production in Escherichia coli. Biotechnol. Lett. 44 , 917–931.
Miroux, B., and Walker, J.E. (1996). Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260 , 289–298.
Mohanty, B.K., and Kushner, S.R. (2019). New Insights into the Relationship between tRNA Processing and Polyadenylation in Escherichia coli. Trends Genet. 35 , 434–445.
Mohanty, B.K., and Kushner, S.R. (2022). Regulation of mRNA decay in E. coli. Crit. Rev. Biochem. Mol. Biol. 57 , 48–72.
Nelissen, F.H.T., Leunissen, E.H.P., Van De Laar, L., Tessari, M., Heus, H.A., and Wijmenga, S.S. (2012). Fast production of homogeneous recombinant RNA-towards large-scale production of RNA. Nucleic Acids Res. 40 .
Nwokeoji, A.O., Kilby, P.M., Portwood, D.E., and Dickman, M.J. (2016). RNASwift: A rapid, versatile RNA extraction method free from phenol and chloroform. Anal. Biochem. 512 , 36–46.
Ouranidis, A., Vavilis, T., Mandala, E., Davidopoulou, C., Stamoula, E., Markopoulou, C.K., Karagianni, A., and Kachrimanis, K. (2022). Manufacturing under Pharma 4 . 0 Principles. 1–31.
Pertzev, A. V., and Nicholson, A.W. (2006). Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res. 34 , 3708–3721.
Plank, T.D.M., Whitehurst, J.T., and Kieft, J.S. (2013). Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts. Nucleic Acids Res. 41 , 6698–6714.
Ponchon, L., and Dardel, F. (2011). Large scale expression and purification of recombinant RNA in Escherichia coli. Methods 54 , 267–273.
Ponchon, L., Beauvais, G., Nonin-Lecomte, S., and Dardel, F. (2009). A generic protocol for the expression and purification of recombinant RNA in Escherichia coli using a tRNA scaffold. Nat. Protoc. 4 , 947–959.
Ponchon, L., Catala, M., Seijo, B., El Khouri, M., Dardel, F., Nonin-Lecomte, S., and Tisné, C. (2013). Co-expression of RNA-protein complexes in Escherichia coli and applications to RNA biology. Nucleic Acids Res. 41 , e150.
Pontrelli, S., Chiu, T.Y., Lan, E.I., Chen, F.Y.H., Chang, P., and Liao, J.C. (2018). Escherichia coli as a host for metabolic engineering. Metab. Eng. 50 , 16–46.
Qin, C., Xiang, Y., Liu, J., Zhang, R., Liu, Z., Li, T., Sun, Z., Ouyang, X., Zong, Y., Zhang, H.M., et al. (2023). Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system. Nat. Commun. 2023 141 14 , 1–10.
Qin, S., Tang, X., Chen, Y., Chen, K., Fan, N., Xiao, W., Zheng, Q., Li, G., Teng, Y., Wu, M., et al. (2022). mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther.7 .
Qu, L., Yi, Z., Shen, Y., Lin, L., Chen, F., Xu, Y., Wu, Z., Tang, H., Zhang, X., Tian, F., et al. (2022). Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185 , 1728-1744.e16.
Radoš, D., Donati, S., Lempp, M., Rapp, J., and Link, H. (2022). Homeostasis of the biosynthetic E. coli metabolome. IScience 25 , 104503.
Richards, J., and Belasco, J.G. (2023). Graded impact of obstacle size on scanning by RNase E. Nucleic Acids Res. 51 , 1364–1374.
Rosa, S.S., Prazeres, D.M.F., Azevedo, A.M., and Marques, M.P.C. (2021). mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine39 , 2190–2200.
Rostain, W., Shen, S., Cordero, T., Rodrigo, G., and Jaramillo, A. (2020). Engineering a Circular Riboregulator in Escherichia coli. BioDesign Res. 2020 , 1–9.
Rouches, M. V., Xu, Y., Cortes, L.B.G., and Lambert, G. (2022). A plasmid system with tunable copy number. Nat. Commun. 13 , 1–12.
Roux, C., Etienne, T.A., Hajnsdorf, E., Ropers, D., Carpousis, A.J., Cocaign-Bousquet, M., and Girbal, L. (2022). The essential role of mRNA degradation in understanding and engineering E. coli metabolism. Biotechnol. Adv. 54 , 107805.
Sripada, S.A., Chu, W., Williams, T.I., Teten, M.A., Mosley, B.J., Carbonell, R.G., Lenhoff, A.M., Cramer, S.M., Bill, J., Yigzaw, Y., et al. (2022). Towards continuous mAb purification: Clearance of host cell proteins from CHO cell culture harvests via “flow-through affinity chromatography” using peptide-based adsorbents. Biotechnol. Bioeng.119 , 1873–1889.
Vavilis, T., Stamoula, E., Ainatzoglou, A., Sachinidis, A., Lamprinou, M., Dardalas, I., and Vizirianakis, I.S. (2023). mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 15 , 1–19.
Viegas, S.C., Apura, P., Martínez-García, E., De Lorenzo, V., and Arraiano, C.M. (2018). Modulating Heterologous Gene Expression with Portable mRNA-Stabilizing 5′-UTR Sequences. ACS Synth. Biol. 7 , 2177–2188.
Wesselhoeft, R.A., Kowalski, P.S., and Anderson, D.G. (2018). Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9 , 1–10.
Whitley, J., Zwolinski, C., Denis, C., Maughan, M., Hayles, L., Clarke, D., Snare, M., Liao, H., Chiou, S., Marmura, T., et al. (2022). Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Transl. Res. 242 , 38–55.
Yang, D., Pricilia, C., Prabowo, S., Eun, H., Park, S.Y., Cho, I.J., Jiao, S., and Lee, S.Y. (2021). Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem. 65 , 225–246.
Zhang, H., Zhang, L., Lin, A., Xu, C., Li, Z., Liu, K., Liu, B., Ma, X., Zhao, F., Jiang, H., et al. (2023). Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621 , 396–403.
Zhang, Q., Ma, D., Wu, F., Standage-Beier, K., Chen, X., Wu, K., Green, A.A., and Wang, X. (2021). Predictable control of RNA lifetime using engineered degradation-tuning RNAs. Nat. Chem. Biol. 17 , 828–836.