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Abstract13

Climate projections suggest an increase in drought frequency and intensity in various14

places over the globe, one of them being Southern Europe, expected to become a hotspot.15

However, 2018 presented an anomaly with the emergence of a rare ”water seesaw” phe-16

nomenon, leading to severe drought in Central and Northern Europe while Southern Eu-17

rope experienced high humidity. This unexpected event resulted in significant agricul-18

tural disparities, emphasizing the influence of interannual variability. The commentary19

underscores the danger of overlooking short-term climate variability, vital for accurate20

adaptation planning, especially for vulnerable regions, when focusing solely on long-term21

trends. This case serves as a motivation for exploration of global atmospheric circula-22

tion changes, emphasizing the need for nuanced modeling approaches to grasp subtle com-23

plexities in climate predictions and considering short-term climate variability alongside24

long-term trends.25

Plain Language Summary26

In 2018, Europe experienced an unusual weather pattern known as the ”water see-27

saw.” While Southern Europe was humid, Central and Northern Europe faced severe drought.28

This unexpected event had significant consequences, especially on agriculture. The study29

highlights that short-term climate variations, like this seesaw effect, can profoundly im-30

pact regions differently, challenging long-term climate predictions. The commentary shows31

the rarity of such event as well as its effect on European agriculture and urges for a closer32

look at global weather patterns and improved interpretations of modeling outcomes. Rec-33

ognizing these complexities is crucial for adapting to climate change, especially in vul-34

nerable areas, and ensuring food security in the face of unpredictable weather events.35

1 Introduction36

The assessment of climate change concludes that during recent decades mean precipi-37

tation has increased over Northern, Western and Central Europe, while the magnitude38

and sign of observed precipitation trends depend substantially on the time period and39

study region in the Mediterranean (Arias et al., 2021; Douville et al., 2022; Gutiérrez40

et al., 2021; Ranasinghe et al., 2021) and agricultural production in Southern Europe41

experiences increasing heat stress (Fontana et al., 2015; Ceglar et al., 2019). Moreover,42

climate projections also show that reductions in agricultural yields will be higher in the43

south, with lower losses or gains in the north (Trnka et al., 2014; Webber et al., 2016;44

Szewczyk et al., 2020). The Mediterranean is at the same time identified as one of the45

hotspots of future drought risk, while the majority of climate projections suggest a wet-46

ting trend over Central to Northern Europe (Arias et al., 2021; Gutiérrez & Yoon, 2021).47

While some of the exceptional agricultural production losses in recent years (2012,48

2016, 2018; (Ben-Ari et al., 2018; Van der Velde et al., 2018; Zscheischler et al., 2018))49

followed this north-south pattern, the year 2018 revealed a very different picture. The50

agricultural productivity in Central and Northern Europe was harmed while it was en-51

hanced over the south, showing that natural variability can manifest in unusual spatial52

patterns that can be neglected when focusing solely on long-term trends. In the present53

commentary, we report this strong deviation from the expected future conditions as a54

warning against disregarding the impacts of interannual variability and its effect on crops55

(X. Zhao et al., 2021) leaving agriculture vulnerable to hydroclimatic fluctuations. Since56

both yield stability and yield increasing rate are important to ensure global food secu-57

rity (Ray et al., 2013; Tigchelaar et al., 2018), the unexpected socioeconomic disruption58

observed in 2018 is yet again worth highlighting.59
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2 What happened in Europe 2018: Climate60

During the year 2018, a particular atmospheric mode dominated Europe: the “wa-61

ter seesaw” phenomenon (Toreti et al., 2019). Its main driver was atmospheric block-62

ing (known for modulating the precipitation regime in different parts of the world (Hoerling63

et al., 2014)) over Central Europe (Figure 1a), which impeded the movement of frontal64

systems coming from the Atlantic Ocean or the Mediterranean Sea to Central and North-65

ern Europe. Central and Northern Europe experienced an exceptionally hot and dry sum-66

mer, while rather humid conditions prevailed in Southern Europe /Mediterranean (Fig-67

ure 1b). A very similar spatial pattern could be seen on accumulated Evaporative Stress68

Index (ESI) map (Figure 1c). The ESI can capture early signals of “flash drought,” a69

condition brought on by extended periods of hot, dry, and windy conditions leading to70

rapid soil moisture depletion (Otkin et al., 2018). As 2018 was globally the fourth warmest71

year in the instrumental records (Blunden & Arndt, 2019), we cannot dismiss the pos-72

sibility that this behaviour could be a characteristic event of a warmer climate.73

3 What happened in Europe 2018: Agriculture74

The extreme hydroclimatic conditions substantially affected ecosystem function-75

ing over various locations in Europe, whereas the impacts on agriculture presented re-76

markable spatial heterogeneity and contributed to crop yields differently based on given77

region (Beillouin et al., 2020). As expected, the consequences in the agricultural sector78

were similarly severe, since extremes in temperature and precipitation (either deficit or79

very heavy rainfall) are both associated with negative yield anomalies. Our investiga-80

tion shows that the spatial pattern of crop yield follows the ”water seesaw” pattern (Fig-81

ure 1d and 2). On one hand, in the Mediterranean and the Balkans, the combination of82

wetter-than-usual and warm conditions attributed to a positive crop yield anomaly. On83

the other hand, the arid and very warm conditions resulted to a negative crop yield anomaly84

in Central and Northern Europe. This is to be expected especially when drought is com-85

bined with unseasonably high temperatures. The relative timing of the drought / heat86

stress in relation to the sensitive stage of the crops contributed to different crop response87

over the Europe (e.g., crops in Norther Europe were more likely to be caught in their88

sensitive period compared to the Central Europe). Thus, it is important to consider the89

crop’s susceptibility to dry or wet conditions based on its region of origin (Shavrukov90

et al., 2017).91

4 European water seesaw in 2018 from long term perspective92

While the 2018 drought extremity falls amongst the most severe ones, especially93

in Central Europe, it does not reach the levels observed in the past, for example, in the94

first half of the 20th century. When 2018 is considered as part of the multi-year period95

2018–2019 (Hari et al., 2020) or 2014–2018 (Moravec et al., 2021), the extremity is un-96

precedented and presents possible future European climate (Rakovec et al., 2022).97

In addition, Toreti et al. (2019) pointed out that very few years in the past 500 years98

have shown a similarity in the spatial distribution of precipitation or temperature, im-99

plying that the water seesaw in 2018 was a rare occurrence. Interestingly, a few of them100

happened already during the Medieval Climate Anomaly between 1302 and 1307 (Bauch101

et al., 2020). Looking at the 500-year temperature (Luterbacher et al., 2004) and pre-102

cipitation (Pauling et al., 2006) reconstruction data, we found 10 years with water see-103

saw spatial pattern similar to 2018 (see Figure 3) assigning the empirical return period104

of about 50 years. Although all these years show a significant difference between aver-105

age precipitation over the Mediterranean and Central+Northern Europe (see Figure 4 (a)),106

there are other years with similar average differences, however, without consistent neg-107

ative (positive) anomalies over the whole regions.108
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5 Why the 2018 was unexpected?109

What is surprising is that the current hydroclimatic trends, as well as model pro-110

jections, are characterized by the opposite spatial pattern of climate conditions than those111

in 2018. High latitudes are getting wetter (Bhend & Von Storch, 2008), while the Mediter-112

ranean is facing aridification (Hoerling et al., 2012). These conditions are expected to113

be intensified in the next decades (Spinoni et al., 2018), making Mediterranean region114

one of the hotspots for future climatic-induced hazards (Tuel & Eltahir, 2020). The an-115

ticipated changes in the Mediterranean include a substantial increase in summer tem-116

peratures and a decline in winter precipitation (Lionello & Scarascia, 2018). However,117

in 2018 the reality was strikingly different confirming that short-term climate variabil-118

ity and long-term climate change need to be considered separately (Porter & Semenov,119

2005). This is related to a strong role of natural variability of precipitation dominating120

the trends even over multi-decadal time scales (Shepherd, 2014). This also implies much121

more considerable uncertainty when compared to temperature projections.122

This is also illustrated in Figure 4 (b) showing the differences in a number of see-123

saw events between historical and scenario runs of the Max Planck Institute Earth Sys-124

tem Model (MPI-ESM; (Maher et al., 2019)) from the single-model initial-condition large125

ensemble (SMILEs) consisting of 100 members for each of three Representative Concen-126

tration Pathways RCP2.6, RCP4.5 and RCP8.5. Obviously, there is a strong uncertainty127

related to the differences in the number of seesaw events spanning the range of ± 1 event128

per 30 years with only RCP8.5 showing more confidence in the projections, likely due129

to a strong intensification of the water cycle under RCP8.5. This shows that not only130

the year-to-year variability may demonstrate in unusual patterns but also the individ-131

ual ensemble members may show different sign of change in rare events such as seesaw132

pattern.133

6 Implications for water resource management134

This study shows an example of European climate conditions over the year 2018135

which completely contradict the climate projections for Europe showing a robust increase136

in annual mean precipitation in Northern and Central Europe, while leaving the Medit-137

terean without any significant trend (Arias et al., 2021; Gutiérrez & Yoon, 2021). The138

study highlights that individual years can have contrasting precipitation patterns which139

can consequently translate into agriculture failure. Modelling unique events like this with140

satisfactory confidence is a difficult task which was previously discussed in, for exam-141

ple, (Sutton, 2018) and summarized in (Arias et al., 2021). Here we show the probabil-142

ity of water seesaw events as well as the uncertainty in the estimation of future occur-143

rences (see Figure 4). With that being said, we highlight that ensembles of climate pro-144

jections cannot be interpreted without considering the uncertainty (Kirtman et al., 2014;145

Madsen et al., 2017; Hall et al., 2019), in particular in the context of adaptation plan-146

ning. The analysis is based on a 10-year data set of European crop yields because that147

is where the most robust and reliable data were found, but very similar trends were also148

found in the 20-year data set including also years 2019–2021 (see Supplementary Infor-149

mation).150

The large uncertainty related to dynamical changes in precipitation results in the151

inability of the models to provide confident projections of specific outcomes. Therefore,152

the use of the median or mean projected changes for future adaptation decisions could153

substantially underestimate the risk of large changes in precipitation and it could mean154

that the risk of the opposite sign of changes is not accounted for (IPCC AR6 WG2; Wa-155

ter (Caretta et al., 2022)). Consequently, information on the range of possible outcomes156

can be valued by users for effectively informing risk assessments (Löwe et al., 2018) and157

story-line approaches examining unlikely events with severe consequences are required158

(Shepherd et al., 2018).159
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The European case that we highlight in this commentary, is a prominent example160

of how food security can be compromised if we underestimate the role of interannual vari-161

ability. In other, less economically resilient, regions of the world, similar events can have162

vastly greater impacts, causing severe socioeconomic disruption. Therefore, this com-163

mentary serves as a motivation for the atmospheric science community to provide more164

insight into the changes in global atmospheric circulation patterns. More attention should165

also be paid to describing the outputs of all model projections using, for example, plau-166

sible storyline approaches (Zappa & Shepherd, 2017), or probabilistic risk-based method-167

ologies (Shepherd, 2014) to encompass rather subtle information which is present in the168

models, but we are unable to grasp it using conventional approaches (i.e., mean and spread169

of projections). From the agricultural perspective, there is an increasing need for a bet-170

ter understanding of the plant response to changing water availability, especially when171

their productivity is expected to decrease substantially during the 21st century (C. Zhao172

et al., 2017). Bridging these gaps can help us mitigate the impacts of future hydrocli-173

matic extremes across the world.174
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Figure 1. a) Standardized pressure anomalies in 500hPa layer over the period

April–September 2018. The anomalies are calculated with respect to 1979–2018 period. b)

Relative precipitation anomaly across Europe for the year 2018 with respect to

1981–2010. c) 4-week accumulated Evaporative Stress Index (ESI) between July 17

and August 13 of 2018 d) Percentage difference of 2018 cereals yield with respect to

2008–2017 cereals yield. Cereals class includes wheat, rye, maslin, barley, oats, mixed grain

other than maslin, grain maize, sorghum, triticale, and other cereal crops such as buckwheat,

millet, canary seed and rice.
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Figure 2. Comparison of crop yield in 2018 and the average of 2008–2017. The pan-

els show the ratio between yield from 2018 and the average yield from 2008 to 2017 for various

crops (upper panels; median per region) and countries (lower panels), according to European

Commission Statistics (2020). The left panels show the ratio for all cereals together (wheat, rye,

maslin, barley, oats, mixed grain other than maslin, grain maize, sorghum, triticale, and other

cereal crops such as buckwheat, millet, canary seed and rice) and the right panels present the

individual crops. The circles and their size represent the relative yield fraction of the given crop

among the other reported crops within each country. The bigger the circle the higher the yield of

given crop.

                 2018
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1534 1536 1554 1559 1586

Standardized precipitation anomaly [mm]

<2.6 −2.6 , −1.6 −1.6 , −1 −1 , −0.3 −0.3 , 0.3 0.3 , 0.9 0.9 , 1.4 1.4 , 2.3 >2.3

Figure 3. Water Seesaw years since 1500 CE. Shown via standardized precipitation

anomaly. The categories are classified using Jenks natural breaks classification method.
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Figure 4. a) Differences in precipitation and temperature anomalies between the

Mediterranean and Central+Northern Europe. The annual anomalies are calculated with

respect to the previous 30-year average. Negative dPREC corresponds to wetter conditions

in the Mediterranean compared to Central+Northern Europe (water seesaw), and positive dT

suggests relatively warmer Central and Northern Europe. Position close to the x-axis (red line)

suggests equal temperature anomaly for both regions. b) The distribution of differences in

a number of seesaw events between historical and scenario runs of the Max Planck Institute

Earth System Model (MPI-ESM; (Maher et al., 2019)) from the single-model initial-condition

large ensemble (SMILEs) consisting of 100 members for each of three Representative Concentra-

tion Pathways (RCP2.6, RCP4.5 and RCP8.5.)
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7 Open Research175

All data used for this commentary are freely available on Eurostat database (European176

Commission Statistics, 2020), in particular datasets:177

• Cereals for the production of grain (including seed) by area, production and hu-178

midity, https://ec.europa.eu/eurostat/databrowser/view/tag00027/default/179

table?lang=en;180

• Green maize by area, production and humidity, https://ec.europa.eu/eurostat/181

databrowser/view/tag00101/default/table?lang=en;182

• Grain maize and corn-cob-mix by area, production and humidity, https://ec.europa183

.eu/eurostat/databrowser/view/tag00093/default/table?lang=en;184

• Barley by area, production and humidity, https://ec.europa.eu/eurostat/databrowser/185

view/tag00051/default/table?lang=en;186

• Wheat and spelt by area, production and humidity, https://ec.europa.eu/eurostat/187

databrowser/view/tag00047/default/table?lang=en;188

• Rye and winter cereal mixtures by area, production and humidity, https://ec189

.europa.eu/eurostat/databrowser/view/tag00049/default/table?lang=en;190

• Oats and spring cereal mixtures by area, production and humidity, https://ec191

.europa.eu/eurostat/databrowser/view/tag00053/default/table?lang=en;192

• Dry pulses and protein crops for the production of grain (including seed and mix-193

tures of cereals and pulses) by area, production and humidity, https://ec.europa194

.eu/eurostat/databrowser/view/tag00094/default/table?lang=en195
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