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Abstract— Ultrafast ultrasound (US) imaging is a pio-
neering imaging modality that achieves higher frame rates
than traditional US imaging, enabling the visualization and
analysis of fast dynamics in tissues and flows. Neverthe-
less, images resulting from this technique suffer from a
low-quality level. Recently, convolutional neural networks
(CNN) have demonstrated great potential for reducing im-
age artifacts and recovering speckle patterns without com-
promising the frame rate. As yet, CNNs have been mostly
trained on large datasets of simulated or in vitro phantom
images, but their performances on in vivo images remains
suboptimal. In the current study, we present a method to
enhance the image quality of single unfocused acquisitions
by relying on a CNN. We introduce a training loss function
that accounts for the high dynamic range of the radio fre-
quency data and uses the Kullback-Leibler (KL) divergence
to preserve the probability distributions of the echogenicity
values. We conduct an extensive performance analysis of
our approach using a new large in vivo dataset of 20,000
images. The predicted images are compared qualitatively to
the target images obtained from the coherent compounding
of 87 plane waves (PW). The structural similarity index mea-
sure, peak signal-to-noise ratio and KL divergence are used
to quantitatively analyze the performance of our method.
Our results demonstrate significant improvements in image
quality of single PW acquisitions, highly reducing artifacts.

Index Terms—Deep learning, Image reconstruction,
Quality enhancement, Ultrafast ultrasound imaging

[. INTRODUCTION

Ltrasound (US) imaging is widely used in medical imag-

ing due to its real-time ability to produce high-quality
images of soft tissues. In particular, a technique achieving
frame rates of multiple kilohertz called ultrafast US has
revolutionized US imaging. The high frame rates achieved
by ultrafast US can be exploited to study fast changes in
the human body and have enabled new imaging modalities
such as shear-wave elastography, which analyses the tissues’
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viscoelasticity, or ultrafast Doppler imaging for flow imaging
[1].

Traditional ultrasound uses focused beams to scan the
imaging plane line by line, whereas ultrafast US transmits a
single unfocused wavefront such as a diverging wave (DW)
or a plane wave (PW) [1]. While focused beams concentrate
energy in narrow beams, unfocused wavefronts disperse en-
ergy across the entire field of view. Consequently, imaging
with unfocused beams yields lower-amplitude backscattered
echoes and a lower signal-to-noise ratio (SNR), resulting in
lower contrast. Contrast is also degraded by artifacts caused
by grating lobes (GLs) and side lobes (SLs). Furthermore,
ultrafast acquisitions suffer from lower lateral resolution due
to broader main lobes of the point spread function, compared
to line by line acquisitions.

A technique to improve the image quality of ultrafast US
images is coherent plane wave compounding (CPWC). This
strategy coherently compounds multiple images obtained from
unfocused wavefronts steered at different angles, suffering
from a trade-off between image quality, which is enhanced
by increasing the number of compounded acquisitions, and
frame rate, which is reduced [2]. Furthermore, coherent com-
pounding assumes that during acquisition the region of interest
is stationary. Consequently, images acquired on fast-moving
areas might suffer from severe motion artifacts.

Several deep learning-based techniques have been proposed
to enhance the image quality of ultrafast acquisitions. These
approaches are intended to reduce the artifacts caused by
GLs and SLs while preserving the speckle patterns, as they
comprise positional information of the underlying physical
phenomena. While [3]-[8] focus on enhancing the image
quality of single PW acquisitions, others intend to improve
the quality of the compounding of few PWs [9]-[11] or DWs
[12], [13].

Most of these studies use convolutional neural networks
(CNNs) that learn the mapping between an input image,
acquired with one or a few unfocused acquisitions, and a target
image resulting from the compounding of several unfocused
acquisitions [4], [8], [9], [11]-[13]. Gasse et al. [9] enhanced
the contrast ratio and lateral resolution of radio frequency
(RF) images resulting from the compounding of 3 PWs by
using 31 CPWCs as target images. Similarly, Lu er al. [12],
[13] trained a neural network that used beamformed images
acquired with 3 DWs tilted at different angles as input images,



and the images formed by compounding 31 DWs as target
images. RF images were used in [12], while in phase and
quadrature (IQ) images were utilized in [13]. Perdios et al.
[4] trained a CNN using as input and target the RF images
simulated considering a single PW and synthetic aperture
(SA), respectively. Jansen et al. [11] presented a deep learning-
based reconstruction method in the Radon domain. Their
method successfully improved the image quality of the images
acquired with 3 PWs using the compounding of 51 PWs as
target images. In [8], the authors used a CNN to improve the
beamforming of single unfocused acquisitions by training a
CNN using as input the RF images corresponding to single
PWs steered at 0° and as target the IQ data resulting from
compounding with 3 and 5 PWs.

Using focused acquisitions as target images has also been
proposed [5], [10]. Zhou et al. [5] used a generative adversarial
network (GAN) that used RF images acquired with 1 PW
as input. Khan et al. [10] implemented a CycleGAN to
enhance the B-mode image quality resulting from different
numbers of compounded acquisitions: 3, 7, 11, and 31 PWs.
Alternatively, recent studies have been conducted on the use
of self-supervised learning for enhancing the quality of single
unfocused acquisitions without target images [6], [7].

Acquiring large in vivo datasets to develop deep learning
methods for ultrafast image improvement is a time-consuming
and ethically regulated process. Consequently, most of the
training datasets combine in vitro (phantom) and a limited
number of in vivo acquisitions. Furthermore, the models
are typically evaluated on acquisitions taken on the same
phantoms used for training, hindering the assessment of their
generalization capabilities [5], [7], [9], [10], [12], [13]. Only a
few datasets contain exclusively in vivo data, such as the one
used in [5] where a GAN was trained, tested, and evaluated
using 360 pairs of RF data acquired on different body parts
of 30 healthy volunteers.

Alternatively, simulated data has been used to develop
these deep learning-based methods for image enhancement
[4], [6], [8]. For instance, Zhang et al. [6] trained a net-
work exclusively on simulated data generated with the Field
I Ultrasound Simulation Program, without evaluating their
performance on experimental acquisitions. Similarly, Lu et
al. [8] trained a CNN using simulated data obtained with
the Field II Ultrasound Simulation Program and phantom
images. Their approach was evaluated on phantom and in
vivo images. Finally, Perdios et al. [4] trained a CNN on
simulated data using a spline-based Spatial Impulse Response
(SIR) US simulator. The SIR simulation was used to generate
a large dataset containing pairs of single unfocused and SA
acquisitions, using simulated phantoms containing random
ellipses of constant mean echogenicity. Their CNN-based
reconstruction was tested on in vitro and a few in vivo frames.

Despite the advantages of training on simulated or in vitro
data, some of these methods lack large-scale validation on in
vivo data and an objective evaluation on phantoms not included
in the training dataset. Therefore, in the current work, we
present an improved deep learning image enhancement method
for ultrafast ultrasound imaging based on the approach intro-
duced in [4]. A detailed analysis of the method performance

when trained and tested on a large collection of in vivo images
is conducted.

Authors in [4] proposed a CNN-based US image recon-
struction method that not only reduces artifacts and restores
the speckle patterns of single ultrafast acquisitions but also
can be used for displacement estimation [14]. Although this
approach showed potential for recovering high-quality images
from single unfocused acquisitions using simulated data, the
quality improvement dropped significantly when applied to
in vivo data due to the domain shift between in vivo and
simulated data [4]. The objective of this work is to improve
the performance of this approach on in vivo data, by reducing
noise and artifacts from single in vivo PW acquisitions to
achieve an image quality comparable to that of CPWC with
87 PWs. To accomplish this, the CNN described in [4] has
been modified and trained on a large in vivo dataset.

This work introduces two significant contributions. Firstly,
a novel loss function is proposed that effectively handles the
high dynamic range of the RF images while preserving the
probability distribution function of the echogenicity values.
Secondly, a comprehensive in vivo dataset comprising 20,000
images is presented. This dataset has been used for training
the CNNs and will be made available for public access along
with this paper.

[I. METHODS
A. Dataset Acquisition and Preprocessing

A large dataset of 20,000 in vivo images acquired on differ-
ent body parts has been collected from nine healthy volunteers,
as outlined in Table I. The acquisitions were performed with
the approval of the Cantonal Commission on Ethics in Human
Research (2022-01696, CER-VD, Switzerland). An in vitro
image was also acquired on the CIRS model 054GS phantom
(CIRS, Norfolk, VA, USA) to assess the performance of our
method and derive normalization matrices. The acquisitions
were collected using the GE 9L-D linear array transducer (GE
Healthcare, Chicago, Illinois, USA), a linear array transducer
with 192 elements and a center frequency of 5.3 MHz, and
the Vantage 256 system (Verasonics, Kirkland, WA, USA).

Each acquisition consisted of 87 PWs steered at different
angles acquired at a pulse repetition frequency of 9 kHz. An
alternating steering angle sequence [15] with a steering angle
spacing of 0.38° was employed. The steering angle spacing
and the number of steered acquisitions were determined such
that the focusing quality was comparable to that of the
optimal multi-focus, as described in [2] and [4], considering
an F-number of 1.75. Time gain compensation was applied
assuming a tissue attenuation of 0.5 dB/ (cm - MHz).

The ultrasound probe was moved before each measurement
to ensure that each acquisition was distinct from the previous
one. The maximum frame rate between two acquisitions was
restricted to 47.5 Hz, maintaining an Intensity Spatial Peak
Temporal Average (ISPTA) below the Food Drug Administra-
tion (FDA) recommended threshold of 94 mW/cm? [16]. The
peak-to-peak voltage was set to 40V to ensure a Mechanical
Index (MI) below 0.7, as recommended by the British Medical
Ultrasound Society (BMUS) [17]. The imaging configuration
and parameters used are specified in Table II.



TABLE |: Number of images, and mean and standard deviation
of the echogenicity values of the dataset

Number of images Echogenicity (dB)

1 PW 87 PWs

Dataset 20,000 4.6519.93 -3.83+1228
Abdomen 6,599 5.431938 -3.08x11.45
Carotids 3,294 2.99:1025  -5.77+1335
Breast 3,291 4.28+1050  -4.64+1296
Lower limbs 2,616 6.341957 -0.87x11.40
Upper limbs 2,110 3.99:1078  -3.93:13.03
Back 2,090 3.9319.08 -5.44111.27

TABLE II: Imaging configuration and acquisitions’ parameters

Parameter Value
Linear array transducer GE 9L-D
Center frequency 5.3 MHz
Bandwidth (at -6 dB) 75%
Aperture 43.93 mm
Element number 192

Pitch 230 pm
Element width! 207 pm
Element height 6 mm
Elevation focus 28 mm
Transmit frequency 5.208 MHz

Excitation cycles 1
Sampling frequency 20.833 MHz
Number of compounded acquisitions 87

Steering angle spacing 0.38°
Pulse repetition frequency 9 kHz
Peak-to-peak voltage 40 V

T Estimated value

Ultrafast US imaging can be formulated as an inverse
problem [18]. Let us consider the measurements y &€ RY,
the measurement noise € € RY, the measurement model
operator H: RM — RN and the vectorized image that we
want to estimate @ € RM . Then, the inverse problem can be
formulated as finding @ such that y = HO + €.

Our reconstruction pipeline relies on the estimation of a
solution to this inverse problem. This estimation is obtained
following the method described in [4] with a backprojection-
based DAS operator that has been implemented using PyUS
[19], a GPU-accelerated Python package for US imaging. A
A/8 x A/8 grid with a width spanning the probe aperture and
a depth from 1 mm to 55 mm has been considered, resulting
in images of 1483 x 1189 pixels.

From each acquisition, we estimated two RF images. The
first corresponds to the single unfocused acquisition obtained
from the PW measurement steered at 0°, and it is referred
to as the input image. The second results from coherently
compounding the 87 PWs acquisitions steered at different
angles and is referred to as the target or CPWC image.

Using 1,000 speckle image pairs acquired on the CIRS
model 054G phantom, we computed two normalization matri-
ces: one for the input and the other for the target images. We
first beamformed the speckle images. Afterward, we detected
the envelope and log-compressed the resulting images to
generate the B-mode images. These B-mode speckle images
were averaged, giving rise to a matrix of 1483 x 1189 values.
By converting the B-mode average matrices to linear scale,
we obtained the normalization matrices. These normalization
matrices were applied to normalize all the RF images by

dividing the RF images by them. The vectorized normalized
RF image corresponding to the single unfocused acquisition
is denoted as xipw € RM, while the one corresponding to
the target image is denoted as x € RM,

To evaluate the diversity of our datasets, the probability
distributions of the B-mode values of the normalized images,
xipw and x, have been analyzed. The mean and standard
deviation of these distributions for both imaging modalities
are presented in Table I. We observe that our images span
a high dynamic range, which significantly varies across dif-
ferent imaged body areas. Furthermore, the single unfocused
images tend to have higher echogenicity and a narrower range
compared to the target images, leading to reduced contrast.

B. CNN Architecture and Training

Our CNN architecture is based on the U-Net architecture
described in [4]. This architecture has previously demonstrated
success in enhancing ultrafast ultrasound images by effec-
tively mitigating artifacts from GLs and SLs when trained on
simulated data. The main modification from the architecture
presented in [4] is the replacement of the rectified linear
unit activation functions with the Scaled Exponential Linear
Unit (SELU) activation functions [20]. This activation function
accelerates the convergence of the network. The resulting
architecture is illustrated in Figure 1.

The network aims to learn the mapping f: RM — RM
between x;pw and x in order to estimate higher-quality
images, X, from the PWs steered at 0°: X = f(x1pw). Thus,
the CNN has been trained using as input images the estimated
RF images corresponding to the PWs steered at 0°, x;pw, and
as target images, the estimated RF images resulting from the
87 PWs compounded acquisitions, X.

To prevent the inclusion of similar images from the same
volunteer in both the training and validation or test sets, a
volunteer-based split is performed. Out of the 9 volunteers, 6
have been used for training, 1 for validation and 2 for testing.
This split corresponds to 16,077 image pairs for training, 1,826
for validation and 2,097 for testing.

The network has been trained for 20 epochs using 16
channels and Adam optimizer [21] with a learning rate of
0.0003 and a weight decay of 0.005. The training batch size
has been set to 16 and a random shuffle has been applied on
every epoch. All these parameters’ values have been optimized
using Optuna [22], a software that implements a Bayesian
optimization algorithm for hyperparameter tuning.

C. Training Losses

Due to the high dynamic range of our data, traditional losses
such as mean absolute error and mean squared error are not
suitable. To address this issue, authors in [4] introduced a log-
compressed loss named MSLAE that showed a great potential
to train networks with RF simulated images of high dynamic
range. This loss can be expressed as follows:

1
Lyvspae(x,X) = gHga(X) — ga(X)||1, (D

with
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Fig. 1: Convolutional neural network architecture and the residual convolutional blocks considered. Arrows represent network
layers and operations, while rectangles represent tensors with the number of channels specified below them.

9o (Tm) = sign(a,, ) log,, (nmx(cj,|xm|)> (2)
where z,, denotes the pixel m of the vectorized image x and
a € (0,1).

When using this loss with our in vivo dataset, the network
tends to widen the echogenicities distribution and shift them
to lower echogenicities.

A well-known measure to quantify the similarity between
two probability distributions is the Kullback-Leibler (KL)
divergence. It is a non-symmetric measure of the difference
between two distributions. Let us consider two probability
distributions p(z): RM — R and ¢(2): RM — R¥, with M
and K denoting the number of samples and bins, respectively.
Then, the KL divergence of ¢(z) from p(z) is defined as

K
Drp@la@) =3 p@pn 22t )
prd q(2)k
where p(z), and ¢(z); are the probability estimates of the
k-th bin. To improve the performance of the image enhance-
ment method, we introduce a new loss named KLD-MSLAE
that aims to reduce diffraction artifacts while preserving the
echogenicity distribution probabilities by combining MSLAE
with the KL divergence. It is defined as follows:

Lx1p—msLAg(X, X) = Lvsrag(X, X)
+BDk1(p(2)]|q(2)),

where 8 € R is a weighting factor, and p(z) and
q(z) denote the estimated probability distributions of z =
201log,o(max(a, |x|)) and Z = 20 log; o (max(a, |X])), respec-
tively.

The probability distributions p(z) and ¢(Z) have to be esti-
mated so that the estimates are differentiable. We consider that
our probability distributions span over the range [—aqg, aqas],
where agp = 201og;,(a), and we set the number of bins to
K. Each bin k has a width of § = 2a4p/K and is centered
at ¢y, = —agp + (k4 0.5)d, with k = 0, ..., K. Then, we can

“4)

define A, , = 2y, — cx. The probability distribution on the
k-th bin, p(z); can be approximated by

Somea (33 A +§) = 57 (A — )
p(Z)k - =N M 5 5
D=1 2am=1(SA(Amk + 5) = sx(Amp — 5))(5)
with sy (z) = 1/(14e~*) denoting the logistic function with
a growth rate of A.

The accuracy of this probability distribution estimation
increases with the number of bins K and the logistic function
steepness A\. As we increase A, the logistic function will ap-
proach a Heaviside step function, becoming less differentiable.
In this work, we have set the number of bins K to 40, the
logistic growth A to 0.5 and the weighting factor /5 to 1.

In both components of the loss, the parameter o plays
a key role. The components g¢,(xy) are zero for any RF
value that satisfies |xy| < «. This threshold enables us to
use a logarithmic loss without facing the vertical asymptote
of the logarithmic function in O and prevents the network
to learn from lower echogenicities than «. Similarly, the
probability distributions estimated to compute the divergence
only consider the range [—aqgp, aqp]. Different agp values
were used to train the network. By visually assessing the
resulting images, we observed the best results are obtained
with agg =-60 dB.

D. Performance Evaluation and Metrics

To evaluate the performance of our method, we first com-
pare the output of the CNN to the target test images acquired
with 87 PWs. Three metrics are considered: the structural
similarity index measure (SSIM), the peak signal-to-noise ratio
(PSNR), and the KL divergence. These metrics are computed
between the B-mode images within the range of [-40 dB,
40 dB]. Furthermore, we calculate the means and standard
deviations of the resulting echogenicity values.

The contrast (C) and the speckle patterns are assessed in
selected regions of two test images. The contrast between
two image areas is calculated on the envelop-detected images



following [23]. Specifically, the contrast between two desig-
nated areas, denoted as A and B, is computed in decibels as
C =20-log,, (5a/3E). Here, 54 and Sg represent the mean
values of the envelop-detected images in regions A and B,
respectively.

For the assessment of speckle patterns, the signal-to-noise
ratio (SNR) is calculated in selected homogeneous areas.
The SNR is computed as the ratio of the mean value to
the standard deviation: SNR = 54/0,,, where 54 and o,
denote the mean and standard deviation of the amplitude of the
envelop-detected image in the region A. For an ideal Rayleigh
distribution, the expected SNR is 1.91 [24]. To further evaluate
speckle patterns and their resolution, the FWHM of the axial
and lateral dimensions of the 2-D autocovariance function
(ACF) is computed within the same areas containing the
speckle patterns [4], [25].

Our reconstruction method is also evaluated on an in vitro
image taken on the CIRS model 054GS phantom. This image
contains three inclusions with different contrasts: one anechoic
inclusion and two low-echogenic inclusions with a contrast of
-6 dB and -3 dB. All three inclusions are located at a depth
of 40 mm and have a diameter of 8 mm. As with the two in
vivo images, we compute the contrasts of these inclusions. We
also assess the speckle patterns by computing the SNR and the
lateral and axial FWHM of the 2-D ACF. This assessment is
performed within selected areas exclusively containing speckle
patterns.

[11. RESULTS
A. In Vivo

Our CNN has been trained using the MSLAE and KLD-
MSLAE losses. Figure 2 shows the input, target, and output
images of two acquisitions. The first row shows a carotid
artery of one of the volunteers of the test set, while the second
row shows an acquisition taken on the back of the other test
volunteer.

The improvement in terms of the reduction of artifacts is
noticeable using both losses. Particularly, this improvement
can be clearly observed in the area outlined in yellow in the
carotid images, where a large artifact is highly visible in the
input image (Figure 2a), and the area delimited in red in the
back image (Figure 2e). When zooming in on both areas, we
can observe that the artifacts have been reduced and that some
speckle patterns hidden or modified by the artifacts have been
restored. To evaluate the restoration of speckle patterns, the
SNR and the axial and lateral FWHM of the 2-D ACF have
been computed in the areas delimited by yellow and red dotted
lines. The resulting values are specified in Table III.

It is important to acknowledge that the target images might
also be affected by artifacts, such as the SLs present in the
region highlighted in magenta (Figure 2b). These SLs are
partially attenuated but not entirely removed by the CNN, as
shown in the magenta areas of Figure 2c and Figure 2d.

When using the MSLAE loss, the images exhibit increased
contrast. Particularly, there is an over-attenuation of the low-
echogenic areas, which is evident in the deeper area of Figure
2d. In contrast, the KLD-MSLAE loss attains a comparable

contrast to the target images. To quantify this, the contrasts
between the upper and lower areas delimited in magenta and
blue dotted lines have been computed and are presented in
Table III. To further analyze the discrepancies arising from
training with the two different losses, Figure 3 presents the
probability distributions of B-mode values for the input, target,
and CNN’s output images of the test set. It is evident that the
CNN trained with the MSLAE loss causes the echogenicity
distribution to widen and shift toward lower values. Con-
versely, training with the KLD-MSLAE loss enables the CNN
to achieve a distribution of echogenicity closer to that of the
target images.

The reconstructed B-mode images have been compared to
the target images using the metrics SSIM, PSNR and KL
divergence. Table IV presents the mean and standard deviation
of these metrics across all test set acquisitions, along with
the mean and standard deviation of the resulting echogenicity
values. From these results, it is evident that the CNN, when
trained with the KLD-MSLAE loss, enhances both the PSNR
and SSIM with respect to the target images, in comparison
to the CNN trained with the MSLAE loss. Furthermore, the
KL divergence between the output and target images is also
highly improved. A lower KL divergence indicates a higher
similarity in echogenicity distributions and, consequently, a
closer resemblance in contrast to the target images. The
resemblance in echogenicity distributions can also be observed
by analyzing the mean and standard deviation of the resulting
echogenicity values. The CNN trained with KLD-MSLAE
presents a mean and standard deviation closer to the target
echogenicity values. In contrast, when trained with MSLAE,
the resulting echogenicity values have a mean shifted towards
lower values and a higher standard deviation compared to the
target values.

B. In Vitro

The network trained on in vivo data has been applied to
an in vitro phantom acquisition. Figure 4 shows the input,
target, and CNN output images using the two losses. The
regions where the contrasts have been calculated are marked
with multiple concentric circles. The contrasts are calculated
between the inner part of the smaller circles and the back-
ground areas between the two outer circles. The two low-
echogenic inclusions with a contrast of -3 dB and -6 dB with
respect to the background are highlighted in magenta and
green, and the anechoic inclusion is indicated in blue. The
speckle patterns are assessed in three regions highlighted in
yellow by computing the SNR and the FWHM of the axial
and lateral dimensions of the 2-D ACF. Table V summarizes
the resulting metrics.

IV. DISCUSSION

Our deep learning-based ultrafast ultrasound image en-
hancement method has proven to successfully reduce artifacts,
leading to an improvement in the image quality of single
unfocused acquisitions. The two in vivo examples demonstrate
the CNN’s capability to effectively mitigate artifacts on dif-
ferent body parts. The network achieves higher PSNR and
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Fig. 2: B-mode images with a dynamic range of 65 dB (-25 to 40 dB) of the carotid (top row) and back (bottom row) of
two test volunteers: (a) and (e) input images acquired with one plane wave (PW); (b) and (f) target images obtained from the
coherent compounding with 87 PWs; (c) and (g) resulting images from the convolutional neural network (CNN) trained with
the mean signed logarithmic absolute error (MSLAE) combined with the Kullback-Leibler divergence (KLD-MSLAE) loss;
(d) and (h) resulting images from the CNN trained with the MSLAE loss.

TABLE Ill: Evaluation metrics computed on the highlighted areas of the two in vivo acquisitions
Metric wC@) mc@) SNk WHMacr,  FWHMacr, g qeg ®FWHMacr, ®FWHMacr,
(pem) (prm) (pm) (pm)
Target -21.90 -15.83 1.261 254.15 542.29 0.838 302.12 580.19
Input -15.28 -11.95 1.451 446.78 1120.27 1.134 260.01 222.95
KLD-MSLAE| -20.16 -16.49 1.436 242.43 474.97 0.789 296.63 764.88
MSLAE -23.74 -18.88 1.377 248.29 524.63 0.654 337.65 1248.30
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Fig. 3: Probability distributions of echogenicity values in the
test set for input, target, and output images of the convolutional
neural network (CNN). The CNN was trained using both the
mean signed logarithmic absolute error (MSLAE) combined
with Kullback-Leibler divergence (KLD-MSLAE) loss, and
the standalone MSLAE loss.

TABLE 1V: Evaluation metrics computed on the in vivo test
set

Metric PSNR SSIM KL divergence Echogenicity (dB)
Target - - - -4.18x11.64
Input 16.466z0501 0.105:0060  16.466+0.09 4.48:9.44
KLD-MSLAE | 20.292:0307 0.272:0040  20.292z0015 -5.41z1125
MSLAE 16.196z1008 0.179:0036  16.19620.092 -13.65zx13.16

SSIM between the output and target images, compared to those
between the input and target images.

Furthermore, by adopting the KLD-MSLAE loss, we
achieve an overall enhancement in terms of SSIM and PSNR.
The KL divergence component of the loss helps to attain
a contrast and echogenicity distribution similar to the target
images. In contrast, the MSLAE loss shifts the echogenicity
values to lower levels and spans them to a wider range.
This induces a higher contrast, specially visible in anechoic
regions and greater depths. The fact that MSLAE achieves
higher contrast than KLD-MSLAE is further corroborated
by analyzing the computed contrasts within the highlighted
magenta and blue regions. In both areas, the CNN trained
with the MSLAE loss consistently achieves higher contrasts
than when trained with the KLD-MSLAE loss, surpassing the
intended target contrasts. Note that both losses yield contrasts
closer to those of the target images than the single unfocused
input images.

Two specific regions, highlighted in yellow and red, that
exhibit artifacts that hide or alter the speckle patterns have
been analyzed. Upon visual assessment, we can observe that
the CNN recovers speckle patterns that resemble more to those
in the target images when contrasted with the original regions
on the single PW images. In the area indicated in yellow
of the carotid image, the achieved SNR and the FWHM of
the 2-D ACF in both dimensions closely approach the target
values, being the FWHM slightly lower. Nevertheless, within

the red region of the back image, the FWHM of the ACF in the
lateral dimension significantly exceeds the target value. This
disparity is particularly evident when the CNN is trained with
the MSLAE loss. Note that the speckle patterns of this specific
region of the input image are highly altered by artifacts,
leading to an increase in their resolution and rendering them
significantly distinct from the speckle patterns in the target
image. Despite the increase in the lateral FWHM of the ACF,
the region restored by the CNN is much similar to the target
one than those in the input image. It is worth mentioning
that in both regions and in both dimensions, training with the
KLD-MSLAE loss results in a lower FWHM of the 2-D ACF
compared to training with MSLAE.

While there is a clear improvement in in vivo data in terms
of contrast and artifacts removal, this improvement does not
extend to the in vitro phantom image. This disparity could
arise from the domain gap between the in vitro data and the
training dataset, which comprises vastly different structures
and artifacts compared to those present in the in vitro image.

When visually assessing the in vitro image, we can observe
that the CNN produces images of lower echogenicity, specially
when trained with the MSLAE loss. Regardless of the loss
used for training, the CNN produces higher contrasts on the
two low-echogenic inclusions, surpassing those observed in
the target images. Conversely, the contrast of the anechoic in-
clusion is lower than the target value when the CNN is applied,
although representing an enhancement compared to the input
image. As observed in the in vivo images, the contrasts in the
CNN’s output images, trained with the MSLAE loss, exceed
those achieved when trained with the KLD-MSLAE loss. This
fact can be attributed to the widening effect observed in the
echogenicity distribution when training with MSLAE.

To assess the preservation of speckle patterns, the SNR
and the FWHM in both axial and lateral dimensions of the
ACF have been computed for three areas containing only
speckle patterns. In terms of SNR, when trained with the
KLD-MSLAE loss, the CNN slightly improved the SNR. By
contrast, training with MSLAE led to a significantly lower
SNR compared to the target. Furthermore, regardless of the
loss used, the FWHMs of the ACF, especially in the lateral
dimension, exceed the desired values, indicating that the
resolution of the speckle patterns in the phantom image is
penalized. Notably, the KLD-MSLAE achieves lower FWHM
in both dimensions compared to MSLAE, suggesting a better
speckle preservation.

Despite the promising results, our approach has two main
limitations that need to be addressed. These limitations arise
from training the CNN exclusively using in vivo data. Firstly,
artifacts similar to those present in single unfocused acquisi-
tions also appear in the CPWC target images. This restricts the
overall quality improvement that the CNN can achieve, as the
target images themselves have inherent limitations. Therefore,
while our network successfully reduces artifacts, complete
eliminate remains challenging.

Secondly, part of our dataset consists of data acquired from
body parts with a shallow depth, where deep regions contain
only noise. In addition, our echogenicity values follow a
Gaussian-shaped distribution, containing only a few samples
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Fig. 4: B-mode images with a dynamic range of 65 dB (-45 to 20 dB) of an in vitro acquisition containing two low-echogenic
inclusions and an anechoic inclusion: (a) input image acquired with one plane wave (PW); (b) target image obtained from the
coherent compounding with 87 PWs; (c) resulting image from the convolutional neural network (CNN) trained with the mean
signed logarithmic absolute error (MSLAE) combined with the Kullback-Leibler divergence (KLD-MSLAE) loss; (d) resulting

image from the CNN trained with the MSLAE loss.

TABLE V: Evaluation metrics computed on the in vitro acquisition

Metric mC(@dB) mC(dB) mC(dB) SNR FWHMACFA (pm) FWHMACFL (pem)
Target -3.00 -6.27 -28.35  1.884x003 244.38:5.00 235.93:845
Input -3.18 -6.00 -18.33  1.911:0024 239.97:4.24 239.85:8.0s
KLD-MSLAE -3.60 -7.38 -20.31  1.895:z0009 287.2317.63 365.10z6.68
MSLAE -4.69 -9.13 -24.04  1.658z0005 297141670 405.14+7.08

for very low or very high echogenicities. Consequently, the
network encounters challenges in learning from the extreme
echogenicity values.

In contrast, these limitations were not present when using
simulated data, as shown in [4]. Firstly, some of their tar-
get images were obtained after oversampling the transducer
aperture, resulting in images with reduced GLs and higher
quality target images compared to ours. Secondly, their dataset
was simulated with phantoms containing random ellipsoidal
inclusions of uniformly distributed mean echogenicity in the
range of -50dB and +30dB with respect to the background,
resulting in a wider range of echogenicities with a more
uniform distribution. Therefore, all echogenicities were better
represented in their simulated dataset.

To tackle these constraints, future studies could explore
using transfer learning from simulated to in vivo data. This
could help the network to generalize from simulated to in vivo
data, leading to enhanced image quality and a reduction of the
number of in vivo acquisitions required to train the network.

V. CONCLUSION

Ultrafast ultrasound achieves high frame rates but at the
expense of image quality. Training a CNN on a large dataset
of simulated images has been previously proposed to enhance
image quality. However, the domain shift between in vivo and
simulated images hindered CNN performances in practice.

To overcome this challenge, we developed a deep learning-
based method for enhancing single unfocused acquisitions.
This method was trained and tested on a large in vivo dataset.

To further enhance the performance of the method, we intro-
duced a novel loss function named KLD-MSLAE. This loss
outperforms MSLAE and accounts both for the high dynamic
range of RF images and the echogenicity’s distribution.

Our approach significantly yielded a substantial enhance-
ment in image contrast and highly reduced artifacts in single
unfocused in vivo acquisitions acquired in different body parts.
The CNN resulted in higher PSNR and SSIM between the
output and target images. Further enhancement in image qual-
ity was achieved through the adoption of the KLD-MSLAE
loss, resulting in a contrast and echogenicity distribution
similar to the target images. Nevertheless, the image quality
enhancement was not observed when applied to the in vitro
image.

Despite our artifact-reduction method showing promising
results, its performance remains constrained by the quality
of the target images and the distribution of values within
the dataset. Previous studies using simulated data have en-
countered fewer limitations, attributed to the availability of
higher-quality target images and datasets with more diverse
echogenicity values. Therefore, future studies could consider
using transfer learning from simulated to in vivo data, thereby
offering the potential for further advancements in the quality
enhancement of ultrafast US images.
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