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Abstract—Atmospheric errors in interferometric synthetic 
aperture radar (InSAR)-derived estimates of surface deformation 
often obscure real displacement signals, especially in mountainous 
regions. As climate change disproportionately impacts the 
mountain cryosphere, developing a technique for atmospheric 
correction that performs well in high-relief terrain is increasingly 
important. Here, we developed and implemented a statistical 
machine learning-based atmospheric correction that relies on the 
differing spatial and topographic characteristics of periglacial 
features and atmospheric noise. Our correction is applied at the 
native spatial and temporal resolution of the InSAR data (40 m, 12 
days), does not require external atmospheric data, and can correct 
both stratified and turbulent atmospheric noise. Using Sentinel-1 
data from 2015-2022, we trained a convolutional neural network 
(CNN) on atmospheric noise from 136 short-baseline 
interferograms and displacement signals from time-series 
inversion of 337 interferograms. The CNN correction was then 
tested on a densely connected network of 202 Sentinel-1 
interferograms which were inverted to create a displacement time 
series. We used the Rocky Mountains in Colorado as our training, 
validation, and testing areas. When applied to our validation data, 
our correction offers a 690% improvement in performance over a 
global meteorological reanalysis-based correction and a 209% 
improvement over a high-pass filter correction. We found that our 
correction reveals previously hidden time-dependent kinematic 
behavior of three representative rock glaciers in our testing 
dataset. Our flexible, robust approach can be used to correct 
arbitrary InSAR data to analyze subtle surface deformation 
signals for a range of science and engineering applications.  
 
Index Terms—Atmospheric correction, machine learning, 
artificial neural network, regression, interferometry, cryosphere, 
permafrost, rock glacier  

 

I. INTRODUCTION 

Interferometric synthetic aperture radar (InSAR) is a remote 
sensing technique that can be used to measure millimeter-scale 
deformation of the Earth’s surface from space [1].  This 
sensitivity makes InSAR a powerful tool for deformation 
monitoring with an array of applications in Earth science and 
engineering disciplines [2], [3]. However, noise caused by 
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interaction of the radar signal with the atmosphere limits the 
accuracy of InSAR-derived surface displacement maps [4]. 
Atmospheric noise is especially detrimental in mountainous 
regions, where high-relief topography causes atmospheric 
turbulence and strong variation in relative humidity over short 
spatial and temporal scales. This situation is further exacerbated 
by limited availability of validation data, restricted snow-free 
observation periods, and poor options for reliable stable 
reference points [5]–[7]. Along with issues caused by steep 
slopes, including layover and radar shadow [8]–[10] 
atmospheric noise makes effective processing and 
interpretation of InSAR data challenging in mountain 
environments.  

As climate change disproportionately impacts the mountain 
cryosphere [11], an atmospheric correction for InSAR data that 
performs well in mountainous regions is increasingly necessary 
to accurately monitor and understand changing natural hazards 
and water resources. Such a correction would provide insight 
into the changing deformation regime of glaciers  [12], 
permafrost [13], ice-cored moraines [14], and landslides [15]. 
At the same time, large quantities of archived SAR data, on-
demand InSAR processing, and cloud-computing resources for 
machine learning provide opportunities for new methods to 
correct atmospheric noise. A statistical learning approach can 
take advantage of large data archives to remove stratified and 
turbulent atmospheric noise from individual interferograms in 
mountainous regions. This approach relies on the fact that 
atmospheric noise has different spatial and topographic 
characteristics than signals related to displacement of alpine 
permafrost features.  

As radar signals travel through the spatially heterogeneous 
atmosphere, their velocity is slightly altered. Changing 
temperature, pressure, and relative humidity modulate the 
refractive index, causing a two-way phase delay in the radar 
echo [4]. At C-band wavelengths (~5.5 cm), most of this delay 
occurs in the lower 5 km of the troposphere, where water vapor 
partial pressure is highest [16], [17]. Tropospheric conditions 
change significantly on sub-hourly time-scales, causing 
differing two-way phase delays during successive radar 
acquisitions and introducing an atmospheric component into the 
interferometric phase offset [17], [18]. This offset manifests as 
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apparent displacement signals of up to 15-20 cm in magnitude, 
with spatial wavelengths ranging from short (km) to longer 
scale (tens of km) that are unrelated to deformation of the 
ground surface [16], [19]–[21]. Atmospheric noise is typically 
described as ‘stratified’ or ‘turbulent,’ depending on its physical 
origin. Stratified atmospheric noise is caused by coherent 
changes in altitude-correlated gradients of pressure, 
temperature, and water vapor; it typically manifests as 
elevation-dependent noise and is prominent in mountainous 
regions [16], [17]. Turbulent atmospheric noise is caused by 
turbulent mixing of water vapor in the lower troposphere, and 
typically manifests as km-scale noise [16], [17]. A third noise 
component results from landscape-scale lateral changes in 
temperature, pressure and water vapor, and manifests as gradual 
phase gradients over tens of kilometers [16]. Li et al. [20] found 
that a spatial resolution of 0.3 km was required to characterize 
and remove 90% of atmospheric noise in C-band 
interferograms over the Shanghai region in China, which is 
mostly flat. Higher spatial resolutions (<300 m) are likely 
required where rugged topography shortens noise length scales.  

A. Atmospheric Noise Correction: Previous work 

Atmospheric noise corrections can be broken into two groups 
– those that rely on external atmospheric data and phase-based 
methods that characterize noise empirically. Typical sources of 
atmospheric data used for interferogram correction include 
ground-based meteorological observations [5], [22], path 
delays from fixed global navigation satellite systems (GNSS) 
reference stations [23]–[25], global meteorological reanalysis 
data [26]–[28], regional atmospheric models [29], [30], and 
near-infrared water vapor products from spaceborne 
spectrometers (e.g. Moderate Resolution Imaging 
Spectroradiometer (MODIS) [31], Medium Resolution Imaging 
Spectrometer (MERIS) [32]).  

Below, we briefly consider some limitations of existing 
atmospheric correction techniques relevant to application in 
mountainous regions. GNSS and meteorological stations 
provide point estimates of differential phase delay which 
require interpolation to produce noise maps at typical InSAR 
resolutions (<100 m). In mountainous regions where GNSS and 
meteorological stations are sparse, even sophisticated 
interpolation likely misses most short-scale turbulent noise. 
Global meteorological reanalysis data products typically have 
spatial resolutions of tens of kilometers, requiring downscaling 
to typical InSAR resolutions and producing mixed correction 
results in high-relief terrain. Both global and regional 
atmospheric models may have reduced accuracy in mountain 
regions where there is a dearth of accurate in-situ 
meteorological data [33]–[35]. Furthermore, the temporal 
resolution of most climate model outputs (typically 1 or 6 hour 
intervals) may not align well with SAR satellite acquisition 
timestamps, potentially requiring temporal interpolation and 
further reducing correction accuracy [36]. Corrections derived 
from optical spectrometers (e.g., MERIS, MODIS) also suffer 
from relatively coarse (~1 km) spatial resolution and relative 
acquisition time issues, with the added requirement of solar 
illumination and cloud-free conditions. While spectrometers 
provide water vapor products, they cannot be used to correct for 
atmospheric noise caused by variable pressure and temperature, 
which is non-negligible in mountainous terrain [17].  

Empirical methods to correct atmospheric noise use linear, 
piecewise, and power-law relationships between surface 
elevation and phase to remove elevation-dependent noise [37], 
[38]. Interferogram stacking [4], [39] is a simple method to 
derive mean surface displacement from multiple 
interferograms, canceling random atmospheric noise that is not 
spatially or temporally correlated. However, stacking is not a 
viable correction option for a limited number of interferograms 
or where surface deformation occurs on short timescales 
relative to the observation interval. Zebker [40] demonstrated 
an approach that uses multiple reference points to remove noise 
from a single interferogram. While promising, this approach is 
computationally intensive and may be ineffective for large-area 
displacements or where coherence is low in the vicinity of 
features of interest, as is frequently the case in mountainous 
terrain. Despite more than two decades of research, mitigation 
of atmospheric noise remains a significant challenge, with no 
universal approach for mountainous regions [21]. 

B. Atmospheric Noise Correction with Machine Learning 

Where displacement signals of interest have different spatial 
and/or temporal characteristics than co-occurring atmospheric 
noise, convolutional neural networks (CNNs) present an 
alternative option for atmospheric noise correction that can 
address many of the limitations of existing methods. CNNs are 
a central tool in computer vision and are frequently applied to 
image denoising problems [41]–[43]. Through a series of 
convolutions and pooling operations, CNNs restructure images 
to create simplified latent representations of patterns in the data. 
These representations can then be expanded to the input 
dimensions, retaining only selected characteristics of the 
original image. In the field of InSAR processing, CNNs have 
previously been used to filter wrapped interferograms [44]–
[46], to unwrap interferograms [47]–[49], and to detect 
deformation related to ground subsidence [50], [51], volcanic 
activity [52], [53], mining [47], [54], landslides [55], and 
earthquakes [56]. Chen et al. [57] implemented a multi-layer 
perceptron neural network to remove elevation-dependent 
atmospheric noise from interferograms. Rouet-Leduc et al. [58] 
used a CNN to extract cumulative displacement related to fault 
activity from short interferogram time series, relying on 
spatiotemporal differences in atmospheric noise and 
displacement signals of interest. While effective, this approach 
is analogous to an improved method of interferogram stacking, 
and like interferogram stacking, it ultimately results in a single 
reduced measurement from multiple observations. 

Here, we present a CNN atmospheric correction based solely 
on the differing spatial and topographic characteristics of 
atmospheric noise and displacement signals of interest. Our 
correction is applied at the native spatial and temporal 
resolution of the original InSAR data. It does not rely on 
external atmospheric data or synthetic training data, and it can 
remove both stratified and turbulent atmospheric noise in 
mountainous terrain. We developed and tested our approach 
using publicly available SAR data, on-demand InSAR 
processing services, cloud-based machine learning resources, 
and open-source software. 



 

II. DATA AND STUDY SITE 

A. Data 

We used Copernicus Sentinel-1 C-band single-look complex 
(SLC) radar data collected between June 15 and October 15 
during the period from 2015 to 2022. Data were acquired in 
interferometric wide (IW) swath mode (250-km swath width) 
with vertical co-polarization (VV) along ascending (satellite 
moving north and looking east) relative orbits 151 and 49 and 
descending (satellite moving south and looking west) relative 
orbit 56. The Sentinel-1 SLCs have a spatial resolution of 22 m 
in azimuth (i.e., along-track direction) and 2.7-3.5 m in range 
(i.e., across-track direction) depending on incidence angle. 
Minimum revisit times vary between 6 and 12 days. 
Interferograms were processed using the Alaska Satellite 
Facility's Hybrid Pluggable Processing Pipeline (ASF HyP3) 
[59]. We performed multi-looking (10 looks in range and 2 
looks in azimuth) resulting in interferograms with 40 m pixel 
spacing. Sentinel-1’s large swath width and short revisit time 
make it well suited for landscape-scale deformation monitoring. 
ASF HyP3 uses the 2021 release of the 30 m Copernicus “GLO-
30” digital elevation model (DEM) product to remove the 
topographic component of the phase and geocode the 
interferograms [60]. The GLO-30 DEM product has an absolute 
vertical accuracy of <4 m (LE90) and an absolute horizontal 
accuracy of <6 m (CE90) [61], [62]. The DEM tiles covering 
the interferogram extents were geoid-corrected, resampled to 
match the pixel spacing of the interferograms, and reprojected 
to Universal Transverse Mercator (UTM) zone 13N [59]. The 
same output DEM products are used during CNN training.  

B. Study Site 

We selected a study area in the Rocky Mountains in 
Colorado, USA (Figure 1) due to the large area above treeline 
and high density of slow-moving periglacial features [63]–[65]. 
The full ~46700 km2 study area (including training, validation, 
and testing areas) contains, from north to south, the southern 
Front Range, the Gore Range, the northern Sawatch Range, the 
Mosquito Range, the Elk Mountains, the southern Sangre de 
Cristo Mountains, and the San Juan Mountains, offering a broad 
sample of mountain characteristics and an elevation range from 
~1650-4400 m. The study area contains at least 2647 active 
rock glaciers with variable orientations covering a total of ~230 
km2 [64]. Median rock glacier area is 0.0579 ± 0.0975 km2 and 
the median major and minor axis length of rock glacier 
polygons is 0.403 ± 0.306 km and 0.208 ± 0.118 km, 
respectively (± 1 standard deviation). While no previous studies 
considered the line-of-sight (LOS) InSAR velocity of Colorado 
rock glaciers, the mean LOS velocity of rock glaciers in the 
nearby Uinta Mountains ranged from ~0-3 cm/yr during the 
period from 2016 to 2019 [66]. The study area likely contains 
other slow-moving, coherent processes including non-rock 
glacier permafrost creep, solifluction, and landslide motion 
[e.g., 67].  
 
 

Fig. 1. Map showing training, validation, and testing area 
locations. Rock glacier inventory is from [64]. Yellow triangles 
in the testing area show locations of representative rock 
glaciers, which are, from west to east, Ragged Peak rock glacier 
(RP), Hayden Peak rock glacier (HP), and Crystal Lake rock 
glacier (CL). (a). Heatmap showing the spatial distribution of 
128x128-pixel training and validation subsets. (b) Detail of the 
testing area, showing mean line-of-sight (LOS) velocity from 
the 7-year cumulative displacement time series for ascending 
Sentinel-1 pairs (Azimuth (AZM) and LOS directions shown in 
legend). 
 

We selected three representative rock glaciers in the testing 
area for detailed kinematic analysis (Fig. 1, Table 1). The 
Crystal Lake rock glacier flows eastward from Ellingwood 
Ridge toward Crystal Lake Creek. The Ragged Peak rock 
glacier is part of a large rock glacier complex in the cirques 
between Ragged Peak to the west and an unnamed Ruby Range 
peak to the east. The Hayden Peak rock glacier occupies the 
valley between Hayden Peak to the north and South Hayden 
Peak to the south. 
 
Table 1. Characteristics of selected representative rock 
glaciers.  

 



 

III. METHODS 

A. Training Dataset Preparation  

We prepared training and validation datasets composed of 1) 
characteristic atmospheric noise maps and 2) characteristic 
displacement signal maps (Fig. 2). These maps were combined 
to form composite “training interferograms.” During training, 
characteristic atmospheric noise maps serve as the “target 
noise” and corresponding characteristic displacement signal 
maps serve as the “target signal.”  
 
Characteristic Atmospheric Noise Maps 

Extending the logic applied by Hanssen et al. [68], we 
assume that the magnitude of atmospheric noise far exceeds the 
line-of-sight magnitude of coherent periglacial displacement 
signals for short-baseline interferograms, and that apparent 
displacement is dominated by atmospheric noise. Assuming a 
mean rock glacier LOS displacement rate of 1 cm/yr [66], the 
mean (over all pixels) magnitude of atmospheric noise is on 
average 116 and 58 times greater than the magnitude of rock 
glacier displacement in all 6- and 12-day interferograms, 
respectively.  

To prepare characteristic atmospheric noise maps, we 
processed all possible ascending and descending short temporal 
baseline Sentinel-1 interferograms (6- and 12-day) from June 
15-October 15 of 2015-2022. This date range was selected to 
yield the maximum number of mostly snow-free 
interferograms. This process yielded 136 interferograms with a 
mean coverage of ~15,400 km2 in the training areas and 45 
interferograms with a mean coverage of ~19,800 km2 in the 
validation area (Table 2; Supplemental Fig. 1). To eliminate 
residual apparent surface displacement signals, which are 
mostly caused by low coherence in areas with cliffs, vegetation, 
surface water, and snow, we used a 7x7-pixel gaussian filter 
with standard deviation of 5 pixels to smooth each 
interferogram.  

 
Table 2. Summary of interferogram datasets.  

 
 
Characteristic Displacement Signal Maps 

Characteristic displacement signal maps were derived from 
time series processing that produces low-noise mean 
displacement rate maps. We assume that the magnitude of 6 to 
8-year LOS displacement signals for active periglacial features 
far exceeds the magnitude of atmospheric noise in these maps 
and that these maps can be used to approximate representative 
displacement rate signals. Following processing, each 
characteristic atmospheric noise map corresponds to one of four 
unique displacement rate maps, with a shared location and 
flight direction: ascending/north training area, 

descending/north training area, ascending/south training area, 
and descending/south validation area (Fig. 1).  

To prepare each of our four LOS displacement signal maps, 
we created densely connected interferogram networks (Table 2; 
Supplemental Fig. 1) by processing ascending and descending 
Sentinel-1 interferogram pairs (temporal baselines from 6-60 
days) from July 10-September 10 of 2015-2022, in addition to 
all interferogram pairs connecting the last three dates of a given 
year to each of the first three dates of the following year with 
data (200 total ascending interferograms, 221 total descending 
interferograms, mean of 7.14 interferograms created for a given 
acquisition). This date range was selected to include only 
maximally snow-free, high-coherence interferograms. The 
Miami INsar Time-series software in PYthon (MintPy) package 
[69] was used to perform time series inversion and produce 
mean LOS displacement rate maps. Before inversion, 
interferograms with mean coherence of <0.3 were removed, and 
after inversion, linear deramping and DEM error corrections 
were performed with MintPy. Time steps in the inverted time 
series fall on SAR image acquisition dates in the original 
interferogram network.  
 
Composite Training Interferogram Preparation  

The characteristic displacement signal and atmospheric noise 
maps were then subsetted, scaled, and combined to form 
composite training and validation interferograms. We used data 
collected along descending orbit 56 over the San Juan 
Mountains and the Sangre de Cristo Mountains for validation 
(Fig. 1A); all other data were used for training. While the 
validation area partially overlaps the training area in the San 
Juan Mountains, the interferograms used to create the validation 
dataset are independent of the interferograms used to create the 
training dataset. The overlap did not cause a problem in 
assessing CNN performance on unseen data, which is the 
primary purpose of the validation dataset.  

To break the large atmospheric noise maps and 
corresponding displacement signal maps into smaller maps 
appropriate for training, we extracted a number of spatially 
matched subsets from both maps. For each map pair, we 
selected random 128 by 128-pixel subsets that satisfied the 
following conditions: 1) median elevation above 3300 m 
(approximately the lower bound for most rock glaciers in the 
study area), and 2) characteristic displacement signal 
dominated by coherent phase variation rather than white noise. 
To quantify the coherence of signals in the displacement map 
subsets, we first masked pixels with magnitude lower than the 
99th percentile of the entire subset. For the remaining high-
magnitude pixels, we calculated the mean cluster size (number 
of pixels that border one another). Larger mean cluster sizes 
indicate that high-magnitude pixels are adjacent, suggesting 
coherent displacement. We selected only subsets with a mean 
cluster size of 99th percentile magnitude displacement map 
pixels greater than three. For each acceptable subset pair, we 
extracted a spatially matching 128 by 128-pixel subset of the 
resampled Copernicus DEM output by HyP3. This random 
subsetting process was repeated until 11,215 training subset 
pairs and 1,704 validation subset pairs were generated, at which 
point it was stopped to limit redundancy in the datasets. 
Displacement signal subsets (output by MintPy in m/yr) were 
then scaled to produce a range of realistic displacement values 



 

(in m). Displacement signal subsets were multiplied by a 
random scalar drawn from a lognormal distribution with a mean 
of -1.5 yr and a standard deviation of 1.5 yr. Scalars from this 
distribution ranged from ~0-35 yr.  

The scaled displacement signal subsets (now in m) were then 
added to corresponding atmospheric noise subsets (in m) to 
create training and validation interferograms for a range of 
effective signal-to-noise ratios (SNRs, 0.000-40.26 with 
median of 0.034). Assuming a typical atmospheric noise 
magnitude of around 5-15 cm, this median SNR corresponds to 
a median target displacement signal magnitude of 0.17-0.51 cm. 
The scaled displacement subsets serve as the “target signal” for 
their respective training and validation interferograms. 
 
Data Normalization and Augmentation 

The training and validation interferograms and target signals 
were normalized between -1 and 1 using min-max 
normalization with shared parameters before they were 
supplied to the neural network. The minimum value across each 
interferogram/target signal pair served as the minimum, while 
the maximum value across the pair served as the maximum. 
Centering was performed by subtracting the median of the 
target signal from both the target signal and the training 
interferogram. The end result was that the target signal had a 
median of 0 and only the target noise remained when it was 
subtracted from the training interferogram. Each corresponding 
DEM subset was normalized between -1 and 1 using the 
minimum and maximum elevation values. The stacks of 
normalized training data (interferogram, target signal, and 
DEM) were randomly mirrored horizontally and vertically 
throughout training.  

B. Convolutional Neural Network Architecture 

We tested several CNN architectures, including the 
architecture developed by Rouet-Leduc et al. [58], and 
observed the best performance with ResDepth, a CNN with a 
U-Net architecture developed by Stucker & Schindler [70]. In 
addition to the skip connections typical of U-Nets, which add 
the outputs of encoder layers to the outputs of decoder layers at 
the same level, ResDepth includes an additional “outer” skip 
connection where the input image is added to the model output. 
Our implementation using PyTorch  [71] had five 
downsampling and upsampling layers and two input channels: 
an interferogram and a corresponding DEM. It had 64 initial 
filters, increasing to a maximum of 512 filters, all of size 3 by 
3 pixels. Batch normalization followed by rectified linear unit 
(ReLu) activation was performed after each convolutional layer 
except the final one. Our training sought to minimize the L1 
loss between the model output and the target noise (training 
interferogram minus target signal). We used the AdamW 
optimizer [72], [73] with a learning rate of 0.0002, a weight 
decay of 0.02 and a batch size of 16. We trained for 150 epochs 
on a Nvidia T4 GPU. 

C. Alternative Correction Approaches 

We implemented two widely-used atmospheric noise 
corrections for comparison with the CNN results: a correction 
based on European Centre for Medium-Range Weather 
Forecasts (ECMWF) Reanalysis 5th Generation (ERA5) data 
[27] and high-pass filtering. High-pass filtering was performed 

by applying a gaussian blur with a kernel size of 25 pixels and 
a standard deviation of 3 pixels to the training or validation 
interferogram, then subtracting the blurred interferogram from 
the original. To perform the ERA5 correction we first used the 
pyaps3 package to predict atmospheric noise in each of our 
training and validation atmospheric noise maps. These ERA5 
atmospheric noise prediction maps were subset alongside our 
atmospheric noise maps such that each 128 by 128-pixel 
interferogram had an accompanying ERA5 noise prediction. To 
set a local reference point for each ERA5 noise prediction, 
values in the noise prediction were shifted such that the noise 
prediction value at the location of the smallest magnitude target 
signal value matched the target noise value. The ERA5 
correction was applied by subtracting the ERA5 noise 
prediction from the training or validation interferogram.  

 
Fig. 2. Training flowchart. (a) Target displacement signal maps 
were simulated by inverting densely connected interferogram 
networks for time-dependent displacement, then calculating 
low-noise mean velocity maps. (b) Target atmospheric noise 
maps were simulated by blurring short temporal-baseline 



 

interferograms, obscuring high-frequency signals. (c) Training 
interferograms were formed by summing scaled subsets of 
target displacement signal maps and target atmospheric noise 
maps. Training interferograms were then normalized and 
randomly flipped before training. (d) A U-Net CNN was trained 
to predict atmospheric noise, given input interferograms and 
accompanying DEMs. Neural network architecture and 
accompanying graphic modified from [70].  

D. Evaluation 

We used the structural similarity index measure (SSIM) as 
implemented in the scikit-image package to compare the 
corrected training and validation interferograms to the 
corresponding target signal [74], [75]. The SSIM measures the 
perceptual similarity of two images on a scale between -1 and 
1, where larger values correspond to a higher degree of 
similarity [74]. By comparing luminance, intensity, and 
contrast in a moving window, SSIM accounts for structural 
differences between images and is therefore a better metric of 
perceptual similarity than pixel-wise metrics such as mean 
squared error [74]. A Wilcoxon signed-rank test, which is 
nonparametric and paired, was used to establish significance of 
differences in prediction/target SSIMs between correction 
methods. A Kolmogorov–Smirnov test was used to determine 
whether SSIMs were normally distributed. A similar approach 
was used to evaluate the output maps from the high-pass filter 
and ERA5 correction approaches. 

E. Testing  

Testing Dataset Preparation 
We selected a testing area between the northern and southern 

training areas (Fig. 1). The Sawatch Range and Elk Mountains 
extend down from the northern training area into this testing 
area, providing an opportunity to assess CNN performance in 
unseen terrain that is similar to the terrain used in training. Our 
testing dataset was composed of a densely connected 
interferogram network created by processing all possible 
ascending Sentinel-1 interferograms with temporal baselines 
less than 60 days from July 1-September 30 of 2015-2022, in 
addition to all interferogram pairs connecting the last three 
dates of a given year to each of the first four dates of the 
following year (202 total interferograms; Table 2; 
Supplemental Fig. 1). This date range was selected to capture 
as much summer rock glacier displacement as possible before 
coherence was reduced by seasonal snow. As with training 
dataset preparation, interferograms and associated Copernicus 
DEM products were normalized between -1 and 1 using their 
respective minimum and maximum values.  
 
CNN Testing  

Each testing dataset (interferogram and DEM) was supplied 
to the trained CNN to generate a prediction of atmospheric 
noise. The noise prediction was subtracted from the testing 
interferogram, which was then denormalized. Time series 
inversion of the CNN-corrected interferogram network was 
performed with MintPy using the methods described in Section 
IIIA for displacement signal simulation. The same inversion 
process was repeated with the uncorrected interferogram 
network to prepare a control dataset.  

To evaluate the CNN correction, we examined the 
cumulative LOS displacement time series for each of the three 
representative rock glaciers in the testing area. For each rock 
glacier, broadly flat, rocky, high-coherence, and nearby areas 
interpreted to be stable were selected as ‘reference areas’ and 
‘stable areas,’ used to set a local reference point and to quantify 
remaining atmospheric noise, respectively. The distances 
between each rock glacier and corresponding reference areas 
and stable areas varied due to availability of appropriate terrain. 
At each acquisition date in our displacement time series, the 
median of apparent displacement in the reference area was 
subtracted from the displacement maps, effectively setting a 
stable local reference to mitigate landscape-scale atmospheric 
noise. To generate a rock glacier displacement time series, we 
computed the median value of pixels within the rock glacier 
polygon for each time step. We also computed the median of 
apparent displacement in nearby stable areas at each time step 
to provide an estimate of residual atmospheric noise and an 
estimate of uncertainty for the rock glacier displacement time 
series.  

IV. RESULTS AND DISCUSSION 

A.  Training and Validation 

Following training, the CNN generated atmospheric noise 
predictions that matched the atmospheric noise in the input 
interferograms (“predicted noise” in Fig. 3A). When the 
predicted noise was subtracted from the training and validation 
interferograms, the remaining signals included: 1) high-
frequency random noise over low-coherence vegetated and 
snow-covered areas with no observed bias, and 2) displacement 
signals with distinct edges over known periglacial features and 
landslides (“predicted signal” in Fig. 3A).  

The alternative ERA5 and high-pass filter corrections did not 
perform as well as the CNN. The ERA5 correction appeared 
most effective when atmospheric noise was elevation-
dependent. This result is expected, as the 31 km ERA5 grid cells 
are too large to resolve small-scale turbulent noise. Visually, 
the quality of the ERA5 correction was also sensitive to the 
choice of reference point location. The ERA5 correction results 
could likely be improved by manually picking a custom 
reference point for each interferogram, though this is 
impractical for large datasets with thousands of interferograms. 
In addition, the ERA5 correction approach frequently produced 
atmospheric noise predictions that did not resemble the 
observed atmospheric noise.  

The high-pass filter correction was more effective for lower 
SNR values. For interferograms with higher SNRs, high-pass 
filtering tended to overpredict atmospheric noise (Supplemental 
Fig. 3). A high-pass filter correction could likely be improved 
by manually tuning the relevant parameters (e.g., kernel size) 
for each interferogram, but again, this is impractical for large 
datasets.  

The mean SSIM computed between interferograms and 
corresponding target signals (hereafter, the “SSIM value” for a 
corrected dataset) for each correction varied slightly between 
epochs as the SNR of training and validation interferograms 
was randomly scaled. The distribution of training and validation 
SSIM values for all correction approaches was not normal (Fig. 
3c, p=0.00, n=11215 subsets for training and n=1704 subsets 



 

for validation). The CNN-corrected interferograms had the 
highest training and validation SSIM values, significantly 
larger than those for the ERA5-corrected (Fig. 3b; validation: 
p=0.00, n=1704) and high-pass filtered interferograms (p=0.00, 
n=1704). The CNN correction offered a 690% improvement in 
SSIM values over the ERA5 correction and a 209% 
improvement in SSIM values over high-pass filtering (Fig. 3C) 
for the validation dataset.  

Fig. 3. Training and validation results. (a) First row shows 
sample 128x128 pixel inputs for the CNN.  Second row shows 
corresponding CNN outputs and comparable corrected signal 
from the ERA5 and high-pass filter correction methods. The 
CNN-corrected signal most closely resembles the target signal. 
(b) Scatterplot showing target vs. predicted signal for all pixels 
from the sample interferogram in A. The CNN-corrected signal 
has the smallest residuals. (c) Similarity of uncorrected and 
corrected interferograms to the target signal using the structural 
similarity index measure (SSIM) metric for all training and 
validation data. Higher SSIMs indicate greater similarity 
between interferograms and target signals. n corresponds to 
number of subsets. (d) Median and normalized median absolute 
deviation (NMAD) of the SSIM distributions shown in c. The 
CNN-corrected interferograms have the highest SSIMs and are 
most similar to the target signals. 
 

The CNN correction has an advantage over the ERA5 and 
high-pass filtering corrections when applied to a large dataset, 
since it is adaptive and does not require parameter tuning to 
make realistic corrections for interferograms with differing 
noise and signal characteristics. In addition, the ERA5 
correction is model-based and sometimes makes very 
inaccurate noise predictions compared to the observed noise in 
interferograms. However, CNN and high-pass filters are based 
purely on the observed data, and consequently tend to 
consistently reduce noise by deriving corrections from the data 
itself. Unlike the high-pass filter correction, the CNN filters out 
real displacement signals rather than simply blurring them, 
causing it to significantly outperform high-pass filtering, 
especially as SNR increases.  

B. Testing 

As in training, our CNN produced noise predictions that 
matched the appearance of the real atmospheric noise for the 
test interferograms, including both elevation-dependent and 
turbulent noise (Fig. 4). Displacement signals spanning large 
areas (>10 km2) were generally interpreted as atmospheric 
noise by the CNN, even where they had well-defined edges 
(Fig. 4A). Following time series processing, the uncorrected 
displacement time series contained apparent landscape-scale 
positive and negative LOS displacements, while the CNN-
corrected time series contained a gradual accumulation of 
positive displacement signals over time (Fig. 4B). The 
magnitude of apparent km-scale displacement signals is lower 
in the CNN-corrected time series.  

Our CNN interpreted negative signals (motion towards the 
satellite) as atmospheric noise more often than positive signals 
(motion away from the satellite). This was likely caused by 
infrequent movement of periglacial features towards the 
satellite in our training dataset, as features tend to flow 
downslope. While this issue could likely be alleviated by 
inverting the sign of the signal and noise in some portion of the 
training data, this may cause the CNN to learn unphysical 
relationships between topography, periglacial displacement 
signal, and the satellite LOS, ultimately decreasing the overall 
quality of the correction.  

In some locations with short atmospheric noise length scales, 
like over mountain ridgelines, the CNN incorrectly interpreted 
atmospheric noise as a displacement signal. This issue is likely 
caused by blurring of the target noise prior to preparing the 
training and validation interferograms (Section IIIA), which 
was necessary to remove low-coherence signals and isolate the 
atmospheric component of the phase offset. 

C. Rock Glacier Kinematics  

The median displacement time series for all rock glacier 
features show characteristic seasonal variability with higher 
velocities in the summer and lower velocities in the winter (Fig. 
5) in both uncorrected and CNN-corrected records. Winter 
displacements show less variability in magnitude and direction 
in the CNN-corrected time series. For the Crystal Lake rock 
glacier and the Hayden Peak rock glacier, the cumulative 
uncorrected and CNN-corrected displacement was between 6.2 
and 6.9 cm over the 7-year study period, corresponding to a 
mean displacement rate of ~1 cm/yr (Fig. 5A, C, Table 1). For 
the Ragged Peak rock glacier, the cumulative uncorrected 



 

displacement is 4.5 cm, while the cumulative CNN-corrected 
displacement is 7.4 cm (Fig. 5B, Table 1). The uncorrected 
summer rock glacier displacements show apparent changes in 
LOS direction and spatial variability in displacement patterns 
from year to year (Fig. 6). The uncorrected displacements over 
summer stable areas were generally not close to zero and 
sometimes contained the same apparent changes in flow 
direction and velocity as the rock glacier time series, especially 
for Ragged Peak rock glacier (Fig. 6B), suggesting that local 
atmospheric noise contaminated the displacement signal.  

 
Fig. 4. Testing results. (a) Example CNN inputs for a test 
interferogram. The insets on the right show detail around the 
Crystal Lake rock glacier. (b) Example CNN output and 
corrected test interferogram. Note that kilometer-scale turbulent 
and stratified atmospheric noise is removed in the predicted 
displacement signal map, while the rock glacier displacement 
signal is preserved. (c) Google Satellite basemap for context. 
(d) Uncorrected (left) and CNN-corrected (right) cumulative 
displacement time series from inversion of the full 202 
interferogram network used for testing. Note that the elevation-
dependent atmospheric errors persist throughout the 
uncorrected cumulative displacement time series. 
 

By comparison, the CNN-corrected time series displayed 
consistent summer motion in the downslope direction for all 

three rock glaciers. The Ragged Peak rock glacier appeared to 
flow towards the satellite (up and to the west) in the uncorrected 
time series and away from the satellite, in the expected 
downslope direction (down and to the east), in the CNN-
corrected time series (Fig. 6B). This result demonstrates the 
ability of the CNN correction to capture the kinematic behavior 
of coherent, slow-moving surface features with high temporal 
resolution, even where there is significant atmospheric noise 
and limited reference areas in the immediate vicinity of these 
features. Displacement was near-zero with reduced variability 
over stable surfaces (Fig. 6B), indicating that the CNN 
correction effectively removed most atmospheric noise over 
stable areas.  

D. Generalization 

We found that median SSIM values from training were 
consistently larger than median SSIM values from validation, 
suggesting that out-of-region generalization represents a 
challenge for the current CNN correction. This could likely be 
improved by 1) limiting to in-region training data; for example, 
training a network on Sawatch Range data from 2015-2019 and 
applying it to Sawatch Range data from 2020-2023, 2) 
increasing the coverage and diversity of terrain represented in 
the training data, and 3) further data augmentation and network 
architecture refinement. Generalization of CNNs in remote 
sensing is a widespread challenge and an area of ongoing 
research (e.g., [76]–[79]), and our correction approach will 
likely benefit from future work in these research areas.  
 

Fig. 5. Observed mean displacement rate and cumulative LOS 
displacement for three representative rock glaciers in the 
uncorrected and CNN-corrected time series spanning the 7-year 
period from 2016 to 2022. The cumulative displacement 
records are corrected using the median apparent displacement 
over a reference area (white outline) at each time step. 
Uncertainty is quantified using the displacement in the stable 
area. Note variability in the apparent displacement direction and 
magnitude over the stable area in the uncorrected time series 
(gray) compared to the CNN-corrected time series (black). The 
corrected rock glacier time series (bright red) contains summer 
and seasonal displacement patterns more consistent with the 
expected behavior of rock glaciers than the uncorrected time 
series (maroon). 



 

 
Fig. 6. Observed summer displacement of representative rock 
glaciers and stable areas in the uncorrected and CNN-corrected 
time series for the 7 years between 2016 and 2022. 
Displacement at the beginning of each summer period was set 
to zero. The uncorrected time series shows greater variability, 
and the apparent stable area displacement history is sometimes 
mirrored in the corresponding rock glacier displacement 
history. In the CNN-corrected time series, all rock glaciers 
move away from the satellite over time (as expected), with 
limited apparent stable area displacement. 

E. Limitations and Future Work 

Our CNN correction is based on the differing spatial and 
topographic characteristics of atmospheric noise and slow-
moving periglacial features. This approach involves two major 
assumptions.  

The first assumption is that the true rock glacier displacement 
contribution to observed LOS phase offset is negligible in 6- 
and 12-day interferograms. This may not hold where InSAR is 
applied to detect faster displacements, like those associated 
with glaciers or earthquakes, which display significant phase 
offsets even in short-temporal baseline interferograms. 
However, atmospheric correction becomes less important in 
these high SNR cases, as standard time-series approaches 
applied to densely connected interferogram networks will 
effectively capture the kinematic behavior of fast-moving 
features.  

The second assumption is that apparent displacement signals 
in the low-noise LOS displacement rate maps (the target signals 
during training) have fundamentally different spatial and 
topographic characteristics than the atmospheric noise. We 
expect the performance of our CNN correction to degrade as the 
spatial and topographic characteristics of the signal of interest 
approach those of the local atmospheric noise. Specifically, the 
CNN may interpret more true displacement signals as 
atmospheric noise, and vice versa.  

As such, our current CNN correction approach is well-suited 
for features like smaller slow-moving landslides, stagnant 

debris-covered glaciers, rock glaciers, and ice-cored moraines. 
It is likely less appropriate for features spanning several 
kilometers with limited displacement signals, indistinct 
boundaries, and limited adjacent stable terrain (e.g., ice sheet 
interior). For example, elevation-dependent displacement 
signals related to inflation of volcanoes may appear visually 
similar to stratified atmospheric noise. We recommend that the 
dominant spatial wavelength of the atmospheric noise should 
be at least 2x the dominant spatial wavelength of the feature of 
interest for best results. Future efforts should systematically 
evaluate the effect of different pixel size, radar wavelength, 
acquisition geometry, and geographic location on the CNN 
correction performance.  

Our CNN correction improved the accuracy of cumulative 
InSAR displacement measurements, removing apparent 
displacement in stable areas and correcting apparent rapid 
fluctuations in rock glacier displacement direction along the 
satellite LOS. Unfortunately, we did not have prior knowledge 
of the true 3D surface displacement vectors for any of the 
features of interest, which would provide independent 
validation for our displacement time series results. In the future, 
we hope to train and apply a similar CNN correction for 
landslides and rock glaciers with multiple years of in situ 
surface displacement measurements. 

V. CONCLUSION 

We developed and implemented a statistical machine 
learning approach for correcting atmospheric noise in satellite 
interferometric synthetic aperture radar (InSAR) 
interferograms. We used on-demand InSAR processing and 
cloud computing resources to train, validate and test a denoising 
convolutional neural network (CNN) using simulated 
atmospheric noise and displacement signals derived from 
Sentinel-1 interferograms over the Rocky Mountains in 
Colorado, where slow-moving periglacial features above 
treeline are abundant. Our correction approach offers several 
advantages over existing techniques as it does not require 
external atmospheric data, is applied at the native spatial and 
temporal resolution of individual InSAR datasets, can correct 
both stratified and turbulent atmospheric noise, and was 
developed for use in challenging mountainous regions.  

We found that our CNN correction significantly 
outperformed an ERA5 model-based correction and a high-pass 
filter correction, offering respective 690% and 209% 
improvements in structural similarity index measure (SSIM). 
We tested our approach by correcting a densely connected 
network of snow-free interferograms from the Sawatch Range, 
then inverting for time-dependent cumulative displacement. We 
found that the CNN-corrected displacement time series 
successfully removed atmospheric noise to reveal consistent 
and linear downslope summer displacement of three 
representative rock glaciers. 

Our CNN correction relies on spatial and topographic 
differences between atmospheric noise and slow-moving 
displacement signals of interest. It is suitable for applications 
with 1) slow-moving features with negligible true displacement 
in short-baseline 6- and 12-day interferograms and 2) distinct 
spatial and topographic characteristics for features of interest 
and atmospheric noise. In these circumstances, our CNN 



 

correction represents a step toward realizing the full potential 
of InSAR to monitor any coherent feature displacement with 
high spatial and temporal resolution and mm-scale accuracy. 
For alpine glaciers and periglacial features without in-situ 
instrumentation, the improved accuracy of CNN-corrected 
displacement measurements will allow us to better examine 
their short-term kinematics, improving our understanding of 
their dynamics and ongoing response to climate change.  
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