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Abstract—Speech COVID-19 detection systems have gained
popularity as they represent an easy-to-use and low-cost so-
lution that is well suited for at-home long-term monitoring
of patients with persistent symptoms. Recently, however, the
limited generalization capability of existing deep neural network
based systems to unseen datasets has been raised as a serious
concern, as has their limited interpretability. In this paper, we
propose two innovations to help overcome these issues. First,
we propose the use of a 3-dimensional modulation frequency
tensor (called modulation tensorgram representation, MTR) as
input to a convolutional recurrent neural network for COVID-
19 detection. The representation is known to provide robustness
against different environmental factors seen across datasets. Next,
we propose the use of spectro-temporal saliency masking to
aggregate regions of the MTR related to COVID-19, thus helping
further improve the generalizability and interpretability of the
model. Experiments are conducted on three public datasets and
results show the proposed solution consistently outperforming
two benchmark systems in within-, across-, and unseen-dataset
tests. The proposed method relies on a similar number of
parameters to the benchmark, thus a promising solution for at-
home monitoring of COVID-19 infection.

Index Terms—Generalizability, COVID-19 detection, modula-
tion tensorgram, saliency map, spectral-temporal.

I. INTRODUCTION

Since the outburst of coronavirus disease in 2019 (COVID-
19), significant efforts have been made to investigate how
to best control the pandemic through the development of
reliable and accessible diagnostic tools [1]. It is known that
the COVID-19 virus can induce infection in the respiratory
tract, hence causing respiratory-related symptoms such as
sore throat, cough, and shortness of breath [2]. Meanwhile,
several studies have reported its effects on neuromuscular
control, as well as proprioceptive functions [3], [4]. Together,
these symptoms lead to degraded coordination of speech
production, which further opens up the possibility of detecting
COVID-19 via speech analysis. Such analyses may enable the
development of remote, rapid, and low-cost diagnostic tools.
Furthermore, as approximately 10% of COVID-19 survivors
are reported to show prolonged respiratory symptoms [5], the
development of long-term speech-based symptom monitoring
tools could become an important ally for clinicians.

To accelerate the research in acoustics-based COVID-19
detection, several groups have collected COVID-19 speech
samples from around the world and shared them publicly via
challenges, including the ’ComParE’ [6], ’DiCOVA’, and ’Di-
COVA2’ [7], [8] Challenge datasets, as well as the complete
Cambridge database [9]. The release of these datasets has facil-
itated the development of new acoustic features and machine

learning based diagnostic models. As one of the earliest at-
tempts, Schuller et al. proposed the use of openSMILE features
[10] with a linear support vector machine (SVM) classifier and
achieved an unweighted average recall (UAR) rate of 72.1%
on the ComParE dataset [6]. This system was later employed
as a baseline in the 2021 ComParE speech sub-challenge and
was also the winning system of the challenge. The majority
of the models proposed in subsequent studies, however, have
relied on deep neural networks (DNN), convolutional neural
networks (CNN), and recurrent neural network (RNN). Sharma
et al., for example, achieved an area under the curve of the
receiver operating characteristics (AUC-ROC) of 84.3% with
a bi-directional long-short term memory (BiLSTM) model
on the DiCOVA2 dataset [8]. A similar BiLSTM model was
used in the winning system of the DiCOVA2 challenge [11].
Akman et al., in turn, proposed a 9-layer convolutional residual
network and achieved an AUC-ROC of 78.7% on ComParE
and 78.6% on DiCOVA [12].

Regarding input features, most deep learning based models
have relied on the spectrogram representation [11]–[13]. CNN
models usually take as input the mel-scaled spectrogram
as a 2-dimensional (2D) image, while RNN models require
spectrograms to be segmented into time frames, which are then
flattened into 1-dimensional (1D) feature vectors. While the
spectrogram provides details about linguistic and paralinguistic
content [14], it is known that it is sensitive to environmental
artifacts (e.g., background noise and/or room reverberation)
and may be sub-optimal for speech diagnostics. In fact, recent
studies have shown that the performance of CNN based
COVID-19 detection systems could degrade to chance-level
when tested on unseen datasets [12], [15], [16]. As COVID-
19 speech recordings are often collected ”in-the-wild”, care
must be taken to ensure that environmental noise does not
hamper diagnostic accuracy.

One alternate representation that has been explored in
speech applications due to its noise-robustness properties is
the modulation spectrum representation (MSR) [17]–[19]. The
MSR is a 2-dimensional (2D) frequency-frequency represen-
tation that decouples signal components from noise as their
spectro-temporal dynamics differ. As such, it has become a
prime candidate for analyzing in-the-wild speech recordings
[20]–[22]. In fact, Zhu et al. recently proposed the use of
the MSR to characterize the changes in the movement of
articulators resulting from the disease. The system was shown
to not only outperform several baseline COVID-19 detection
systems but also generalize better across datasets [16], [23]. In
the system described in [23], low-level descriptor features were
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Fig. 1: Block diagram of the processing steps to compute the 3D modulation tensorgram.

extracted from the MSR (e.g., centroid at a specific modulation
frequency band) and used as input to either SVM or deep
machine learning models. Motivated by the gains seen in
conventional spectrogram-based COVID-19 detection systems
where the temporal dynamics of the spectrogram played a
crucial role (e.g., [11]), it is hypothesized that similar benefits
could be obtained from the MSR.

To validate this assumption, in this study we investigate
the use of a 3-dimensional (3D) modulation tensorgram repre-
sentation (MTR). Much like in spectrogram-RNN based solu-
tions where spectrograms are computed over certain window
sizes (which are then shifted and the process is repeated
until the end of the speech utterance), the same is achieved
here. The resulting time-frequency-frequency representation is
thus comprised of temporally cascaded MSR snapshots, each
computed over a certain window length, thus providing an
overall depiction of the temporal changes of the MSR (more
details to follow in the next section). As recurrent neural
networks were shown in the past to take advantage of this
temporal dynamics information, here we propose a customized
convolutional recurrent neural network (CRNN) model trained
on top of 3D MTRs. For simplicity, this system will be
henceforth described as MTR-CRNN. Further, as interpretable
models are desirable, especially for healthcare applications, we
propose a spectral-temporal saliency map to identify the salient
regions in the MTR being used by the diagnostic system.
The saliency analysis allows not only for more interpretable
findings but also enables the use of MTR masking, leading to
a system that generalizes well across datasets.

The remainder of this paper is organized as follows. Section
II describes the computational procedure to obtain the 3D
MTR, the MTR-CRNN model architecture, and the details
of the proposed spectral-temporal saliency maps. Section III
describes the experimental setup, while Section IV describes
and discusses the obtained results. Lastly, Section V presents
the conclusions.

II. PROPOSED SYSTEM DESCRIPTION

A. Modulation Tensorgram Representation

It is known that the MSR captures the long-term dynamics
of the speech signal [24] and has been shown to carry
meaningful information about vocal characteristics, such as
vocal hoarseness and breathiness [23], [25]. To generate the
3D MTR, we here follow the same computational proce-
dure described in [22]. The general processing pipeline is
depicted in Fig. 1. First, as speech recordings are collected
with different devices, the signal amplitude is normalized to
remove unwanted amplitude variations caused by different

loudness levels. Next, the pre-processed signal x̂(n) is filtered
by acoustic filterbanks. While the gammatone filterbank is
commonly used to mimic human perception of sound [26],
it is not clear whether such a filterbank remains optimal for
processing COVID-19 speech. For example, a recent study
showed that a bio-inspired filterbank could outperform the
conventional gammatone filterbank when analyzing COVID-
19 coughs [27]. Hence, we experiment with two different
23-channel filterbanks: linear-scale and gammatone [28]. Fur-
thermore, based on insights from [21], different lower and
upper frequency ranges are explored. After applying the first
filterbank, the temporal envelope ej(n) is computed from each
filtered signal x̂j(n) via the Hilbert transform:

ej(n) =
√

x̂j(n)2 +H(x̂j(n))2, (1)

where H(·) denotes the Hilbert transform and the subscript j
denotes jth filterbank. To obtain temporal dynamics informa-
tion, each temporal envelope ej(n) is then windowed with a
256-millisecond (ms) Hamming window and an overlap of 216
ms. Such window length is relatively longer than that used in
conventional spectrograms (e.g., 16 ms) and has been shown
to provide appropriate resolution in low-frequency modulation
frequencies [29]. To obtain the modulation spectrum Ej(m;n)
from each acoustic frequency component, the discrete Fourier
transform DFT (·) is applied to the temporal envelope ej(n):

Ej(m; fm) = |DFT (ej(m;n))| , (2)

where | · | denotes the absolute value operation, m denotes the
frame number, and fm denotes modulation frequency. An 8-
channel modulation filterbank is then used to group neighbor-
ing modulation frequencies. Similar to the acoustic filterbanks,
two different modulation filterbank types are tested, as are
different lower/upper modulation frequency values. Table I
summarizes the types of filterbanks tested and upper/lower
frequency ranges. The optimal settings found through our
experimentation are also reported in the table. Lastly, all
MSRs computed per frame are aggregated into a final 3D
representation called a “modulation tensorgram”.

Figure 2 illustrates the importance of using a 3D tensorgram
representation, as opposed to an averaged 2D representation,
as in [23]. On the far left, the MSR averaged over all frames
is shown. On the right, ten different MSR snapshots are
shown. As can be seen, the modulation spectral patterns can
differ greatly across time frames and such changes may carry
important diagnostic cues.

B. Model architecture
The model architecture of MTR-CRNN is depicted in Fig.3.

The CRNN model is comprised of two blocks, namely the 3D
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Fig. 2: Examples of the averaged 2D MTR and MTR snapshots at ten different frames. Examples are generated from the
same speech sample.

Fig. 3: Model architecture of the proposed MTR-CRNN system.

TABLE I: Overview of the modulation spectrogram
parameter search detailing types of the filterbank, acoustic

frequency (f ) range, and modulation frequency (fm) range.

Parameter Range Step Optimal
Acoustic filterbank gammatone, linear - gammatone

Modulation filterbank log, linear - log
Lower bound f (kHz) 0-1 .125 .125
Higher bound f (kHz) 6-8 1 8
Lower bound fm (Hz) 0-3 1 3
Higher bound fm (Hz) 16-128 8 32

CNN block and the RNN block. As a uniform input shape
is required for convolutional layers, speech samples are first
unified to 10 s length by right zero-padding shorter recordings
and segmenting longer recordings. This leads to a consistent
3D MTR shape {1×150×23×8} across all speech samples.
Each input 3D MTR is then mean-variance normalized. Each
part of the CNN block consists of a convolutional layer, a batch
normalization layer, and a max pooling layer. A {3× 3× 3}
kernel is used for all three convolutional layers to extract
meaningful modulation spectral patterns from neighboring
MTR snapshots. The max pooling layer aims to remove the
redundant MTR snapshots with relatively low energies, as
these MTR snapshots usually correspond to silent frames. The
output of the CNN block is then fed into a fully-connected
layer to reduce feature dimensionality, leading to an output
sequence of shape {25× 128}.

The subsequent RNN block has three cascaded bi-

directional gated recurrent unit (GRU) layers to explore the
temporal dependency of neighboring MTR snapshots. The
output of the RNN block is then layer-normalized and fed into
a pooling layer which finds the maximal value along the time
dimension to generate a sequence-level embedding of shape
{1×256}. Lastly, a fully-connected layer is used to project the
256-dimension embedding to a 1-dimension output, which is
then passed through a sigmoid layer to obtain the final COVID-
19 probability score. To avoid over-fitting, a dropout factor of
0.7 is applied to the last fully-connected layer.

C. MTR Saliency Maps

Previous studies have suggested that different regions of
the modulation spectrum correspond to different properties
of the speech signal [23]–[25]. A better understanding of the
MSR regions being used by the model would allow for better
interpretation of the results and could lead to insights about
the acoustic properties of COVID-19 speech. To this end,
we propose a spectral-temporal saliency map based on the
”vanilla gradient” saliency map algorithm originally invented
for weakly supervised learning [30]. The method has been
shown to be more robust than perturbation-based methods,
thus is a good candidate for in-the-wild data [31].

The processing steps used to compute the spectral-temporal
saliency maps is depicted in Fig. 4. First, the vanilla gradient
method is used to compute raw saliency maps from a trained
MTR-CRNN. The output map shape remains the same as the
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Fig. 4: Computation of the spectral-temporal saliency maps and the F-ratio plot. Only training data are used.

input shape, i.e., {150 × 23 × 8}. Although the raw saliency
maps suggest attentive regions in each MTR snapshot, the
temporal saliency is not well presented. Inspired by an audio-
visual fusion saliency model [32], we solve this issue by
first transforming the 3D raw saliency maps to a set of 1D
temporal saliency coefficients. The transformation procedure
is as follows. A 3D filter F is first used to discard the low-
saliency regions in each 2D saliency map M(t, i, j) with a
pre-determined threshold:

F (t, i, j) =

{
1 for |MS(t, i, j)| ≥ 0.2max{M}
0 for |M(t, i, j)| < 0.2max{M} (3)

where M denotes the raw 3D saliency map. Next, the filter is
applied to each 2D saliency map and an averaging is used to
obtain the temporal saliency coefficient Ct:

Ct(t) =

∑
i,j(F (t, i, j)⊙M(t, i, j))M(t, i, j)∑

i,j F (t, i, j)M(t, i, j)
. (4)

Each set of coefficients is of shape {150× 1}, corresponding
to the temporal attention scores at each time step. To unify
the coefficient range across samples, each set of coefficients is
normalized between 0 and 1 and a 1D median filter is applied.
Lastly, the temporal saliency coefficients Ct are multiplied
with the raw saliency map to obtain the spectral-temporal
saliency map MST :

MST = Ct(t)M(t). (5)

As the final goal is to localize modulation spectral regions
that are most closely related to COVID-19, the 3D spectral-
temporal saliency map MST is then averaged over time which
results in a single 2D saliency map MAve per sample. To
further explore group differences, the Fisher ratio (F-ratio)
is computed between two groups (COVID-19 positive and
COVID-19 negative) of temporally averaged saliency maps:

F-ratio =
V ARb

V ARw
, (6)

where V ARb represents the between-group variance, and
V ARw represents the within-group variance for each of the
23× 8 saliency map values. Fisher ratio scores are then used
to highlight the important discriminatory regions in the MTR.

III. EXPERIMENTAL SETUP

A. Dataset description

Three COVID-19 speech datasets are employed in our
study: the ComParE COVID-19 Speech Sub-challenge
dataset [6], the second DiCOVA Challenge dataset [11], and
the English subset from the Cambridge COVID-19 sound
database [9]. These datasets are referred to hereinafter as
CSS, DiCOVA2, and Cambridge set, respectively. For all
three datasets, volunteers across the world were encouraged
to record and upload their voice data via Android and web
apps1. With CSS, participants were asked to utter the sentence
“I hope my data can help to manage the virus pandemic” at
most three times in their mother tongue. The same speech
content is used for the Cambridge set but uttered in English
only. With DiCOVA2, participants did number counting from 1
to 10 in a normal pace in English. For all datasets, participants
were asked to self-declare whether they were COVID-negative
(including healthy or having COVID-like symptoms or pre-
existing medical conditions) or COVID-positive (including
symptomatic and asymptomatic cases).

An overview of the participant demographics from the three
datasets is shown in Fig. 5. For CSS, a total of eight languages
were included, with the majority of samples being uttered in
English, Portuguese, Italian, and Spanish. The gender split
was 45% female and 35% male (the remaining 20% chose
Prefer not to say or Other). Close to 28% of the COVID-
positive subjects were asymptomatic while only 59% of the
COVID-negative subjects were without respiratory symptoms.
For DiCOVA2, all recordings were in English only. The gender

1See https://www.covid-19-sounds.org and https://coswara.iisc.ac.in/
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(a) (b) (c)

Fig. 5: Participant demographics for CSS, DiCOVA2, and Cambridge. (a) Subject age distribution for CSS and DiCOVA2,
(b) Language distribution for CSS, (c) Respiratory symptoms distribution (W/: With; W/o: Without).

TABLE II: Data partition and class distribution.

Dataset Partition Positive Negative Total

CSS
Train 56 243 299

Validation 130 153 283
Test 87 189 266

DiCOVA2 Train 137 635 772
Test 35 158 193

Cambridge Test 500 500 1000

distribution was 70% male and 30% female. Among COVID-
positive subjects, close to 87% were symptomatic. While for
COVID-negative subjects, 86% were healthy without respira-
tory symptoms or other medical conditions. For the Cambridge
set, no age information is provided. The symptom distribution
is similar to that of CSS, where 88% of the COVID-positive
subjects are symptomatic and 41% of the COVID-negative
subjects are with COVID-like symptoms.

The CSS dataset was partitioned into three separate subsets
by the challenge organizers, namely training, validation, and
test. For comparisons, we employed the same challenge parti-
tion in this study. It should be emphasized that in the CSS
dataset, several COVID-positive recordings were originally
sampled at 8 kHz while the majority of the other files were
sampled at 16 kHz. Keeping these up-sampled recordings has
been shown to lead to over-optimistic results, thus we have
removed them from our analysis, as suggested in [33]. The
DiCOVA2 dataset, in turn, is comprised of development and
evaluation subsets, with the evaluation data being accessible
only to challenge participants. Hence, we performed a speaker-
independent training-test split (80/20%) using the development
subset only. Lastly, the Cambridge dataset originally contained
1,486 samples from 1,000 subjects. Since it was used only as
a blind test set in our experiments, we removed the duplicated
users to simulate a real-world setting, thus a total of 1,000
speech samples were used in our experiments. All recordings
in the DiCOVA2 and Cambridge sets were sampled at 16 kHz.
Table II summarizes the data split and class distributions for
all three datasets.

B. Baseline systems and evaluation metrics

To gauge the performance gains obtained with the pro-
posed MTR-CRNN, comparisons with two top-performing

systems presented in different COVID-19 detection challenges
is performed. For the CCS dataset, the benchmark system
is comprised of 6,373 openSMILE features (INTERSPEECH
ComParE 2016 format), which are extracted per speech sam-
ple, and served as input to a linear kernel SVM classifier. For
the DiCOVA2 challenge, in turn, the system relies on mel-
spectrograms input to a BiLSTM classification model. Details
of these two methods can be found in [6] and [8], respectively.
Since most of the employed datasets have imbalanced class
distributions, the area under the receiver operating character-
istic curve (AUC-ROC) is used as the evaluation metric.

C. Training and inference strategies

Training: Since CSS has a pre-defined training and val-
idation set, hyper-parameters were optimized using the pre-
defined validation set. With DiCOVA2, we implemented a
3-fold cross-validation on the training set. This is to best
optimize the hyper-parameters with a small data set while
maintaining the same test set for direct comparison with other
models. The binary cross entropy (BCE) loss and Adam opti-
mizer were used to train our CRNN model. The optimal hyper-
parameters used for the final CRNN model are summarized in
Table III. In contrast to several existing systems (e.g., [8],
[12]), no oversampling or data augmentation techniques were
employed with the MTR-CRNN system. This was chosen as
one of our goals is to better interpret the features being used
by the model and data augmentation methods could bias our
findings. As data augmentation has been shown to improve the
performance of DNN-based models, the results reported herein
could be regarded as a lower bound on what the proposed
system could achieve.
Inference: To make full use of the available data, training and
validation sets were aggregated and used to train the model
from scratch with the optimal hyper-parameters. To avoid
over-fitting, the model was trained with a fixed number of
epochs which was used to achieve the best validation accuracy
during the training phase. As this would lead to different test
scores when using different initialized parameters, we report
the average test score and standard deviation obtained across
10 random initializations.
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TABLE III: Hyper-parameter search ranges and optimal
values used. Same parameters were used across tasks.

Hyper-parameter Search range Optimal value
Learning rate (1e−5, 1e−4) 6e−5

Batch size (8, 128) 32
Weight decay (1e−5, 1e−4) 1e−4

D. Classification task types

Commonly, COVID-19 detection systems report only the
within-dataset performance, which has been shown to be
often over-optimistic and curtails clinical use [15], [34]. Here,
to better objectively evaluate system generalizability across
datasets, three different classification tasks are implemented:
Task-1: Within- and cross-dataset evaluation. For the within-
dataset evaluation, systems are trained and tested using the
same dataset. Alternately, for cross-dataset evaluations, sys-
tems are trained with the training set of one dataset and blindly
tested on the test set of another dataset.
Task-2: MTR masking. The goal of this task is to find MTR
regions that have a higher potential to generalize across dif-
ferent datasets. The spectral-temporal saliency maps computed
from trained CRNN models in Task-1 are used to search for
these regions. MTR masks are then applied and the masked
representation is then input to the CRNN model for within-
dataset and cross-dataset evaluations.
Task-3: Unseen dataset evaluation. The primary goal of this
task is to explore if the salient MTR regions found in Task-
2 remain generalizable when tested on a completely unseen
dataset. To this end, we use the Cambridge set as a blind
test set. For a fair comparison, all systems (proposed and
benchmarks) are trained with the same datasets (i.e., either
CSS or DiCOVA2 individually, or the combination of both)
and tested on the Cambridge set. This task is designed to
simulate a strict setting where no prior knowledge about the
test set is known.

IV. RESULTS AND DISCUSSION

A. Task-1 system performance

The within- and cross-dataset performance of all three tested
systems are reported in Table IV. As can be seen, the within-
dataset results on CSS show the proposed MTR-CRNN system
outperforming even the CSS benchmark, resulting in a final
average AUC-ROC of 0.770. On the DiCOVA2 dataset, the
obtained results were in line with those obtained from the
DiCOVA2-optimized benchmark. Overall, systems achieved a
somewhat lower accuracy on the CSS dataset, suggesting that
COVID-19 detection with CSS could be a more challenging
task. This is likely due to the varied language distribution of
the dataset, as well as the higher percentage of asymptomatic
COVID-19 samples present in CSS. When tested in the cross-
database setting, the proposed MTR-CRNN system showed
a substantial improvement relative to the benchmarks. As
can be seen, the benchmarks dropped to chance levels when
tested on unseen sets. As CSS and DiCOVA varied greatly in
demographics (e.g., language, gender, age) and speech content,
these results suggest that the proposed method achieved greater
generalizability and robustness to unseen data, whilst requiring

TABLE IV: Task-1 performance comparison. Average and
standard deviation of AUC-ROC scores are calculated from
10 different initializations. Bold values indicate the highest
AUC-ROC. ‘DiC’ corresponds to DiCOVA2 and ‘Param’ to

number of parameters in the deep learning models.

System Param Within-dataset Cross-dataset

CSS DiC CSS→DiC DiC→CSS

CRNN 0.9M .770±.019 .781±.011 .600±.023 .509±.004
CSS - .758±.008 .756±.010 .511±.007 .486±.009
DiC 0.8M .714±.015 .789±.016 .483±.020 .462±.019

only 0.1 million more parameters than the DiCOVA2 bench-
mark. Notwithstanding, the drops seen in accuracy suggest that
further improvements may be possible.

B. Task-1 ablation study

To further investigate the role of each module on overall
proposed system accuracy, an ablation study is done where
the individual 3D CNN and RNN blocks are tested, as well
as different temporal pooling schemes and the inclusion of
an attention mechanism. For simplicity, only within-database
experiments are conducted; results are reported in Table V. As
can be seen, for individual blocks, the shallow 2D CNN block
shows similar performance as a 9-layer ResNet, suggesting
that deeper CNNs may overfit on small datasets. When extend-
ing the convolution kernel from 2D to 3D, an improvement is
achieved on both datasets. Such improvement is in line with
previous findings in video analysis, where the 3D convolution
is shown to outperform 2D convolution in terms of capturing
the temporal relationships between cascaded images [35]–[37].
Using only the RNN block, in turn, slight improvements
relative to the 2D CNN block on DiCOVA2 could be seen,
but overall lower accuracy relative to the 3D CNN block was
achieved on both datasets.

Next, we investigate the effect of the temporal pooling size
of the 3D CNN block. As can be seen from the table, temporal
pooling size has an effect on the MTR-CRNN performance,
with CSS showing greater variability. A recent study showed
the effects of temporal pooling on language identification [38],
suggesting that the greater variability seen with CSS could
be due to the greater number of languages available in the

TABLE V: Performance of individual blocks and pooling
sizes. Same hyper-parameters from Table III are used.

Model Detail Within-dataset

CSS DiC

ResNet 9-layer .691±.023 .683±.015
2D CNN block 3× 3 k .689±.026 .674±.019
3D CNN block 3× 3× 3 k .725±.017 .721±0.15

RNN block 6×temporal pooling .671±.018 .696±.022

CRNN

0×temporal pooling .680±.009 .757±.016
2×temporal pooling .702±.015 .753±.007
6×temporal pooling .770±.019 .781 ±.011
30×temporal pooling .625±.020 .762±.013

CRNN+Attention CBAM .715±.023 .747±.016
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database. Temporal pooling layers are known to aggregate
information from neighboring time frames, thus changes in
pooling strategy alter the size of the temporal receptive field of
resultant feature embeddings. In this ablation study, a temporal
pooling factor of 6 showed to achieve the best accuracy
across both datasets. This optimal configuration downsizes the
number of time steps from the initial 150 to 25 after the CNN
block, leading to a 6× larger temporal receptive field for each
time step. Given that a window size of 256 ms with 216ms-
overlap was used to compute the MTR, the resultant temporal
receptive field of each time step is 456 ms. Conventional
window length used for speech analysis usually ranges from
8 to 32 ms [39], which helps to capture transient changes in
speech content. Our findings here, in turn, suggest that speech-
based diagnostics could benefit from larger window size and
longer-term changes, thus further motivating the use of the
MSR/MTR.

Next, we explore the benefits of including an attention
mechanism into the proposed system. Rather than adopting
the commonly used transformer architecture, a convolutional
block attention module (CBAM) is attached to the 3D CNN
block [40]. This approach was chosen as it does not require
major changes to the model architecture nor the input, while a
transformer would require patched features. Results show that
adding a CBAM does not lead to performance improvements,
likely due to the limited size of training data. Moreover, as
CBAM was originally designed for 2D image analysis, it might
require careful modification for 3D tensor processing. This
investigation is left for a future study to investigate the optimal
approach to combine attention mechanism with a 3D MTR.

Lastly, to better understand the decisions made by each
block, output embeddings from both the 3D CNN block
and the final fully-connected layer of the CRNN model are
projected to a 3D space with the maximum variance by
performing the principal component analysis (PCA). Figure 6
shows the PCA plots using the training data for both CSS and
DiCOVA2 datasets. Using only the embeddings from the 3D
CNN block, a small group of COVID-19 samples from CSS
can already be distinguished from the non-COVID cluster.
For both datasets, it can be visually observed that COVID-
19 clusters are better separated using the embeddings from
the last layer of CRNN model, which is also reflected by

the higher variance achieved with the first three principal
components. Taken together, these results suggest that the
intermediate representations extracted by the CNN block can
provide certain separability between positive and negative
COVID-19 speech. This separability is further improved by
introducing the temporal dependencies between neighboring
MSR snapshots via the RNN block. This temporal dependency
further motivates the need for a spectral-temporal saliency
map, as explored in Task-2.

C. Task-2 and Task-3 system performance

To better localize the COVID-related regions present in the
MTR, Fisher ratio (F-ratio) plots generated from training data
from both datasets are compared to each other. For example,
the far right and far left plots in Figure 7 show the raw F-ratio
plots for CSS and DiCOVA2, respectively, computed directly
from the average (raw) MSRs of the two classes. Brighter
colors in the plots show modulation spectral regions which
better discriminate between the positive and negative COVID-
19 classes. When temporal information is considered via Eq. 5,
the two middle plots in the figure are obtained. Comparisons
between the middle plots suggest that some MSR regions are
consistent across datasets, thus suggesting these would be ideal
regions for classification.

To avoid measuring energy in individual acoustic-
modulation frequency bins, here we propose to group neigh-
boring frequency-frequency bins into patches. We empirically
propose patches of shape {6 × 3} where modulation spectral
energy values within the patches are summed and min-max
normalized. As shown in the figure, two patches, denoted by
R1 and R2, are chosen to represent the two most discrimi-
nant regions consistently present across the two datasets. R1
corresponds to f = 650 − 1600 Hz and fm = 5 − 13 Hz
while R2 to f = 125 − 500 Hz and fm = 3.5 − 10 Hz.
Previous studies have shown that whispered speech is usually
manifested at f < 1 kHz and fm = 5 − 13 Hz [25], which
partly overlaps with the location of R1 and R2. This finding
could be linked to an increased level of vocal hoarseness that
has been commonly reported with COVID-19 speech, possibly
caused by inflammation of the vocal tract area. In turn, the
highest F-ratio values for both datasets was found around

Fig. 6: 3D PCA projection of embeddings extracted from the last layer of CNN block and the CRNN model using training
data from CSS and DiCOVA2. Class 0: COVID-negative; Class 1: COVID-positive.
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Fig. 7: Discriminative patches found consistently in the spectral-temporal F-ratio plots. Two middle spectral-temporal F-ratio
plots are generated with the spectral-temporal saliency maps, while the raw F-ratio plots are generated directly from the raw

saliency maps. Brighter areas represent higher discrimination between positive and negative COVID-19 speech samples.

f = 1.6 kHz and fm = 5− 6 Hz. This corroborates previous
findings where COVID-19 speech showed more centralized
spectral energy at around f = 2 kHz [23].

Moreover, a direct comparison of the raw and spectral-
temporal F-ratio plots shows that both are almost identical for
CSS, but a marked difference can be seen for DiCOVA2. In the
raw F-ratio plot of DiCOVA2, the highlighted R1 area in the
spectral-temporal plot is barely noticeable. Brighter regions
appear more often in the higher acoustic and modulation
frequency ranges, which have been linked in the past to
represent room acoustic effects, such as reverberation [29].
It is suspected that when the DiCOVA2 data was collected,
isolation was still required when testing positive, thus COVID-
19 positive speech samples could be affected by e.g., room
reverberation, which is more pronounced in enclosed environ-
ments. This further shows the importance of aggregating the
temporal aspect within the saliency map, thus allowing the
model to focus on true COVID-19 discrimination properties
and not potential database biases due to e.g., room properties
resulting from quarantine isolation.

With these insights and obtained saliency maps, masking
is applied to the MTR to extract the two regions only. Task-
2 then tests the within and cross-dataset accuracy using the
proposed CRNN model with the masked MTRs. Table VI
(columns 3-6) reports the accuracy achieved when only R1,
only R2, and both R1+R2 regions are used in the mask for
Task-2. For comparisons, the original results with the full
MTR (as per Table˜IV) are also listed. As can be seen, for the
within-dataset test, the original configuration outperformed the
masked ones for both datasets. Notwithstanding, the masked
version resulted in the highest accuracy in the cross-dataset

task, with a substantial margin of improvement relative to
the original version. Interestingly, using only R1 resulted in
the highest cross-database accuracy, with no benefits seen by
adding information from R2.

Lastly, Task-3 provides the most stringent test where a
completely unseen test dataset is used. Columns 7-9 show
the accuracy achieved when a COVID-19 detection model
is trained on only the CSS dataset (and tested on the un-
seen Cambridge set), only DiCOVA2, and on the combined
CSS+DiCOVA2 sets, respectively. As can be seen, accuracy
drops for all tested algorithms. All proposed solutions out-
perform the two benchmarks. In this setting, aggregating
information from both R1 and R2 regions showed the greatest
accuracy across most conditions. Moreover, increasing the
training set size by aggregating two datasets showed some
improvement in accuracy, but not substantial. For comparisons,
a within-dataset accuracy on the Cambridge set for the CSS
and DiCOVA2 benchmarks of .521 and .543 were achieved.
As such, our proposed system with patched input outperforms
the two benchmarks even in a more stringent testing condition,
which shows the robustness of patches found in Task-2 and
the generalizability across datasets.

D. Limitations and future work
While the obtained results have been promising, it is im-

portant to emphasize that the model can only discriminate
between COVID-19 positive and negative, as these were the
only labels available in the public datasets. As such, it is
not clear if the model is discriminating between healthy and
unhealthy participants or COVID-19 itself. As the vocal char-
acteristics of COVID-19 speech found (e.g., vocal hoarseness,

TABLE VI: Performance comparison of different MTR masks. The last column reports AUC-ROC averaged across all tasks.
The same hyper-parameters from Table III are used. Bold values indicate the best system for a given task.

System Input patches Within-dataset: Task-2 Cross-dataset: Task-2 Unseen dataset: Task-3 Average
CSS DiC CSS→DiC DiC→CSS CSS→Cam DiC→Cam CSS+DiC→Cam

MTR-CRNN

R1 .732±.019 .741±.017 .705±.015 .651±.013 .512±.006 .531±.007 .554±.010 .632±.091
R2 .591±.018 .756±.010 .479±.017 .524±.019 .514±.008 .542±.009 .552±.011 .565±.084

R1+R2 .656±.015 .775±.017 .602±.010 .558±.016 .538±.009 .556±.010 .560±.007 .606±.078
Original .770±.019 .781±.011 .600±.023 .509±.004 .540±.011 .541±.007 .543±.008 .612±.106

CSS - .758±.008 .756±.010 .511±.007 .486±.009 .504±.006 .489±.009 .506±.006 .572±.117
DiC - .714±.015 .789±.016 .483±.020 .462±.019 .471±.007 .483±.010 .486±.011 .556±.126
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as seen here) could exist in other respiratory diseases, such as
asthma or chronic obstructive pulmonary disease, the obtained
findings could indeed be more general and represent groups of
diseases and not only COVID-19. Initial attempts at addressing
this issue have been taken by also including cough sounds
in the analysis [41], [42]. Future work should explore the
use of speech and cough sounds, as well as integrate other
pulmonary diseases within the speech databases. Moreover,
the obtained findings may be subject to some inherent data
collection biases. As shown in Fig. 5, the positive/negative
COVID-19 sample distributions differed across e.g., language,
gender, and age groups. As such, the developed models (and
implemented benchmarks) may indeed be biased by certain
participant demographics rather than the disease itself. As
such, a systematic investigation should be performed to test
if there are any inherent biases present in the datasets. The
authors in [33] already signaled a bias from sample rates in
CSS, but there may be other factors.

V. CONCLUSIONS

In this paper, we proposed a novel speech-based COVID-19
detection system called MTR-CRNN. The system is based on
a 3D modulation tensorgram representation (MTR) combined
with a spectro-temporal saliency map mask. Masking enables
the system to focus on discriminant COVID-19 regions of
the modulation spectrum, across both spectrum and temporal
dimensions and bypasses potential database nuances, such as
room acoustics. It also allows for greater interpretability of the
data serving as input to deep learning models. Experiments on
three datasets show the proposed system consistently outper-
forming two COVID-19 detection challenge top-performing
benchmarks on both within-dataset and cross-dataset tasks, as
well as on a completely unseen dataset. Together, these find-
ings show that the proposed system is able to generalize well
to unseen data and to provide users with a more interpretable
and reliable COVID-19 detection solution.
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