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Abstract—With advancements in automated experimental 

setups, material optimisation and discovery can scale to higher 

throughput with larger evaluation budgets. Two state-of-the-art 

algorithms with conceptually different multi-objective 

optimisation strategies (Bayesian and Evolutionary) are compared 

on synthetic and real-world datasets. Our results show that the 

Bayesian optimisation strategy, q-Noisy Expected Hypervolume 

Improvement (qNEHVI) is superior in finding solutions at the 

Pareto Front rapidly, and when considering hypervolume 

improvement as a performance indicator. On the other hand, the 

Evolutionary optimisation strategy, Unified Non-dominated 

Sorting Genetic Algorithm III (U-NSGA-III), can exploit the 

Pareto Front and propose a larger pool of optimal solutions, given 

sufficient evaluation budget, and thus may be a better choice for 

materials discovery problems where knowing the complete Pareto 

Front provides greater scientific value to understanding materials 

space. We discuss the limitations of using hypervolume as a 

performance indicator for optimisation strategies, alongside 

hypervolume-based strategies such as qNEHVI, which do not 

adequately explain the number of solutions at or near the Pareto 

Front. We also performed a comparison of both optimisation 

strategies at different batch sizes to consider throughput 

capabilities.  

 
Index Terms—Bayesian optimisation, constrained multi-

objective optimisation, evolutionary algorithm, materials science  

I. INTRODUCTION 

aterials science as a field is being disrupted with 

advances in machine learning and automation [1]–

[4], where high-throughput experimentation (HTE) 

capabilities accelerate discovery of materials in more complex 

search spaces. Users not only save time on experimentation by 

virtue of automated workflows with faster processing, but also 

leveraging on equipment with larger batches of experiments to 

increase throughput and thus minimise experimental time [5], 

[6]. There have been many successful applications of HTE, 

particularly in the single objective problem space alongside 

machine learning-assisted optimisation strategies [7]–[18]. 

 
K.H. acknowledges funding from the Accelerated Materials Development 

for Manufacturing Program at A*STAR via the AME Programmatic Fund by 

the Agency for Science, Technology and Research under Grant No. 

A1898b0043. K.H. also acknowledges funding from the NRF Fellowship NRF-

NRFF13-2021-0011. (Corresponding author: K.H). K.Y.A.L. and K.H. 

conceived of the research. K.Y.A.L. working with E.V-G. and Y-F.L. 

developed and tested the algorithms and datasets, with key intellectual 

contributions from all authors. K.Y.A.L. wrote the manuscript, with input from 

all co-authors. 

 

K.Y.A.L and E.V-G are with Nanyang Technological University, School of 

Materials Science and Engineering, Singapore 639798. (emails: 

kaiyuana001@ntu.edu.sg, eleonore.vg@ntu.edu.sg). 

However, many real-world problems are more complex, 

specifically with multiple conflicting properties to be 

optimized, for example: strength vs ductility in metal alloys 

[19], device thickness vs fill factor in photovoltaics [20], or 

selectivity vs current density in catalysts [21]. In addition, such 

problems may include constraints that restrict the space of 

feasible solution. This motivates the need for multi-objective 

optimisation strategies with constraint handling capabilities to 

be integrated in HTE setups [22]–[25]. The first step could 

consist of formulating complex material science problems as 

constrained multi-objective optimisation problems (CMOPs). 
 

A. Constrained Multi-Objective Optimisation 

A CMOP with m objectives and (q+k) constraints, can be 

defined as:  

min 𝐹(𝒙) = (𝑓1(𝑥), … , 𝑓𝑚(𝑥))𝑇          (1) 

𝑠𝑡 𝑔𝑖(𝒙) ≥ 0, 𝑖 = 1, … , 𝑞 
     ℎ𝑗(𝒙) = 0, 𝑗 = 1, … , 𝑘 

𝒙 ∈ 𝑅𝑛 

 

where F(x) defines the multi-dimensional objectives to be 

optimised, and gi(x) and hj(x) define the inequality and equality 

constraints, respectively. A solution is an n-dimensional vector 

of decision variables, x. To determine the objective value of a 

solution, a Pareto-optimal solution x1 dominates another 

solution x2 if F(x1) ≤ F(x2) where they are feasible. A total set 

of all feasible and Pareto-optimal solutions can then be defined 

as the Pareto Set, or Pareto Front (PF) when mapped onto the 

objective space. This PF represents all solutions with the 

optimal trade-off between objectives.  

A commonly defined materials discovery problem is usually 

of combinatorial nature with unexplored regions of objective 

space, given some mixture of chemicals, precursors, and other 

process parameters. This problem can be formulated as a 

CMOP with an unknown PF to be extrapolated to, with minimal 
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evaluation budget [26]–[29]. This is achieved through selection 

and evaluation of available solutions 𝒙 ∈ 𝑅𝑛, where each 

solution represents the set of experimental input parameters 

(chemicals, temperature settings etc.) used in the screening. The 

number of data points is typically low, with most works 

generally limited to around 102-103 data points due to practical 

bottlenecks such as time taken to synthesize and characterise, 

or simply due to a limited time/cost budget. 

 
Fig. 1: Illustration of constrained multi-objective (f1 and f2) space for a convex 

minimization problem in bi-objective space. The addition of infeasible regions 

in grey shifts the original PF from solid red to blue. 

 

In addition, the PF can be discontinuous with multiple 

infeasible regions due to underlying property limitations such 

as phase boundaries/solubility limits, or engineering rules, for 

example summing mixtures to 100% [30]. Such constraints can 

also be knowledge-based, where a domain expert with prior 

knowledge sets them to pre-emptively ‘avoid’ poor results and 

converge faster [31]–[33]. 

CMOPs can be solved in various ways, but recently, two 

classes of algorithms have shown promises in solving such 

problems with a high level of success, namely: multi-objective 

evolutionary algorithms (MOEA) and multi-objective Bayesian 

optimisation (MOBO).  

 

B. Evolutionary Algorithm 

MOEAs [34] work by maintaining and evolving a population 

of solutions across an optimisation run. For example, Genetic 

Algorithms (GA) are a specific subset that utilise ‘operations’ 

alike biological processes [35]: members of the population are 

selected to become parents based on a specific selection 

criterion, and then undergo crossover and mutation to form a 

children population. Within the field of MOEAs, various 

constraint handling techniques have been proposed [36]–[38] as 

well as extensions of MOEAs to many-objective (m>2) 

problems [39]. MOEAs are well suited to implementations 

where solutions can be tested in parallel, given their population-

based approach, where each generation’s population can be 

treated as a batch. MOEAs have been successfully applied in 

materials-specific multi-objective problems: experimental data 

is used to construct a machine learning model which is then 

treated as a computation optimisation problem to be solved, and 

the results evaluated physically [40]–[45]. The use of MOEAs 

relevant to materials science has seen computational and 

inverse design problems [46]–[52]. 

C. Bayesian Optimisation 

MOBOs leverage on surrogate models to cheaply predict 

some black-box function, and then utilise an acquisition 

function to probabilistically compute a predictive function and 

return the best possible candidate where gain is maximised [53]. 

The choice of surrogate model can depend on the user, but in 

recent literature, it has become synonymous with ‘kriging’ 

which refers specifically to the use of Gaussian Processes (GP) 

as the surrogate model, taking advantage of its flexibility and 

robustness [54]. The extension of MOBOs to CMOPs is less 

mature, with relatively new implementations that cover 

parallelization, multi-objective and constraints [55]–[59]. On 

top of these, there are also hybrid variants such as TSEMO [60] 

or MOEA/D-EGO [61] which integrate the use of MOEAs to 

improve the prediction quality of the underlying surrogate 

models. In general, BO as an overarching optimisation strategy 

has already been established as an attractive strategy for use in 

both computational design problems [62]–[67], as well as 

experimentation problems [68]–[74] due to its sample efficient 

approach. 

 

D. Hypervolume 

As previously discussed, the PF defines the set of optimal 

solutions of a CMOP. For optimisation of CMOPs, 

hypervolume (HV) is often used as a performance indicator. It 

defines the Euclidean distance bounded by a point, and the 

reference point in a single dimension, and a HV in multiple 

dimensions. It directly shows the quality of the solutions since 

a solution set with high HV is closer to the true PF and is diverse 

as it effectively dominates more objective space. An illustration 

of the HV measure for a multi-objective (two dimensions for 

illustration) convex minimization problem is presented in Fig. 

2, where HV is computed by finding the area of non-dominated 

solutions, i.e. the solutions closest to PF without any 

competitor, bounded by a reference point. 

Aside from being a performance metric to compare 

optimisation strategies, HV can also be directly evaluated to 

guide convergence of various algorithms. Hanaoka et al showed 

that scalarization-based MOBOs may be best suited for clear 

exploitation and/or preferential optimisation trajectory of 

objectives, whereas HV-based MOBOs are better for 

exploration of the entire search space [75]. Indeed, HV-based 

approaches empirically show a preference in proposed solutions 

towards the extrema of a PF [76], [77], and thus can better 

showcase extrapolation. In contrast, scalarization approaches to 

reduce multi-objective problems to a single-objective such as 

hierarchically in Chimera [78] or any user-defined function [79] 

have limitations: i) it is difficult to determine how to properly 

scalarize objectives; ii) single objective optimisation methods 

cannot propose a set of solutions that balance trade-off. 

Within the context of multi-objective optimisation and 

material science implementation, two state-of-the-art 

algorithms were compared in the present work: q-Noisy 

Expected Hypervolume Improvement (qNEHVI) [80] and 

Unified Non-dominated Sorting Genetic Algorithm III (U-
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NSGA-III) [81]. They are MOBO and MOEA-based 

algorithms, respectively. They were chosen based on their 

reported performance in solving complex CMOPs (with respect 

to HV score), and the fact that they are capable of highly 

parallel sampling, making them suitable for integration within 

an HTE framework. 

 
Fig. 2: Illustration of hypervolume for a convex minimization problem in bi-

objective space. The red line represents the ground truth PF, while the blue 

points and region reflect the best-known solutions and their associated 

hypervolume, respectively. The green point and region are then used to 

illustrate the contribution of a new evaluated solution. The computation of 

hypervolume in objective space is performed with respect to a lower bound with 

a reference point, shown by the red star. 

 

Furthermore, both algorithms are chosen from open-source 

Python libraries, making them easy to implement and enabling 

reproducibility of results presented. The main contributions of 

our work are as follows: 

1. We show that qNEHVI is a more sample efficient 

optimisation strategy which is aligned with the wide 

adoption of MOBOs for materials experimentation 

2. We present 2 alternative means of illustration as 

metrics to assess the performance of multi-objective 

optimisation besides HV score 

3. We demonstrate the weaknesses of qNEHVI in 

attaining diverse set of optimal solutions which is an 

important domain-specific criteria 

4. We explore various batch sizes that are relevant to 

high-throughput experimentation for materials science 

 

We thus provide means for materials scientists to empirically 

compare and decide upon an appropriate optimisation strategy 

for experimentation. This paper is organised as follows: the 

experimental set up, including algorithms and metrics are 

presented in section II. Benchmark problems and the results 

obtained are reported and discussed in section III. Finally, 

section IV concludes this paper and outlines avenues for future 

work. 

II. EXPERIMENTAL SETUP 

This section describes the two optimisation strategies, 

qNEHVI and U-NSGA-III used for this study. We present three 

metrics of comparison, four synthetic benchmarks and two real-

world materials science benchmarks. 

 

A. q-Noisy Expected Hypervolume Improvement 

qNEHVI is a HV-based MOBO that utilises expected HV 

improvement, which was shown to outperform scalarization, 

entropy-based and even other HV-based approaches like 

TSEMO. The base acquisition function is defined in [80] as: 

 

𝛼𝑁𝐸𝐻𝑉𝐼(𝒙) = ∫ 𝛼𝐸𝐻𝑉𝐼(𝒙|𝒫𝑚) 𝑝(𝑓|𝒟𝑚)𝑑𝑓          (2) 

 

Originally, 𝛼𝐸𝐻𝑉𝐼 extends the classic Expected Improvement 

acquisition function [81] to HV as an objective [82]. The 

integration of 𝑝(𝑓|𝒟𝑚), which represents the posterior 

distribution of previously evaluated noisy points, with 𝛼𝐸𝐻𝑉𝐼 

maintains Bayes optimality with noisy observations. Further 

on, the authors also provided a means of both sequentially and 

jointly evaluating a batch of points. 

Our implementation here relies on the sample code reported 

in the BoTorch [83] tutorial for constrained multi-objective 

optimisation, with the significant change being to decrease 

initial Quasi Monte Carlo (QMC) sampling to 128 (default 

settings according to API) instead of 512 to improve 

computational run times. The use of QMC here generates 

candidates 𝑋𝑐𝑎𝑛𝑑 for optimization. We do not foresee 

significant change in the performance of qNEHVI with this 

changed hyperparameter. 

 

B. Unified Non-Dominated Sorting Genetic Algorithm III 

U-NSGA-III is an improved implementation of many-

objective NSGA-III which is better generalisable for single and 

bi-objective problems. The original NSGA-III [84], [85] relies 

on reference vectors to maintain diversity but did not include a 

selection operator to determine fitter and more feasible parents 

for mating. In comparison, the use of non-dominated ranking 

for the previous algorithm NSGA-II [86] provides a stronger 

selection pressure for bi-objective problems. Thus, a new 

tournament selection operator (Algorithm 1) is introduced that 

allows U-NSGA-III to take advantage of both reference vector-

guided diversity and stronger selection pressure in convergence 

in single, bi and many objective problems. U-NSGA-III is a 

suitable MOEA that performs robustly for CMOPs purely 

without surrogate modelling. 

The use of reference points in directing evolution helps to 

maintain diversity of the entire population, since the reference 

point is decomposed into multiple reference vectors (depending 

on number of objectives) in the hyperplane, where points that 

are closer (smaller Euclidean distance) to a reference vector 

belong to that niche. In tournament selection, winners are 

preferred from different niches to preserve diversity. Otherwise, 

traditional non-dominated sorting is used to determine which 

parent has a better non-dominated ranking and smaller 

constraint violation for selection as the winner, 𝑝𝑠, for mating. 

We rely upon the implementation found in pymoo [87], 

setting population size µ, number of children λ and reference 

points H to be µ = λ ≈ H, following the original NSGA-III paper 

[88], [89]. Having µ = λ is analogous to a pure search via U-

NSGA-III with no underlying surrogate modelling, since the 

  

  

                      

                 

                

           
            
           

  

  

                          

                  

                                       



4 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

   

 

total number of proposed candidates is equal to the total sample 

batch size. 

 

 

 

Algorithm 1: Pseudo-code for Tournament Selection for U-

NSGA-III [90], where 𝑝 here represents a parent member, and 

𝜋 represents the reference direction associated with that parent 

1. if 𝜋(𝑝1) = 𝜋(𝑝2) then 

2.    if 𝑝1. 𝑟𝑎𝑛𝑘 < 𝑝2. 𝑟𝑎𝑛𝑘 then 

3.       𝑝𝑠 = 𝑝1 

4.    else 

5.       if 𝑝2. 𝑟𝑎𝑛𝑘 < 𝑝1. 𝑟𝑎𝑛𝑘 then 

6.          𝑝𝑠 = 𝑝2 

7.          else 

8.             if 𝑑⊥(𝑝1) < 𝑑⊥(𝑝2) 

9.                𝑝𝑠 = 𝑝1 

10.          else 

11.             𝑝𝑠 = 𝑝2 

12.          end if 

13.       end if 

14.    end if 

15. else 

16.    𝑝𝑠 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑝𝑖𝑐𝑘(𝑝1, 𝑝2) 

17. end if 

 

C. Metrics 

We performed a comparison of qNEHVI and U-NSGA-III 

on various synthetic and real-world benchmark problems. As a 

starting point, we took batch size (the number of samples to 

evaluate per iteration) at 8, following a generally higher range 

of throughput in materials experimentation. All optimisation 

runs are initialised with a Sobol sampling of 2*(variables+1), 

following S. Daulton et al in their implementation of qNEHVI 

[91].  

 

We compare both approaches based on 3 metrics: 

1. Optimisation trajectory – a single optimisation run at 

high evaluation budget (100 iterations x 8 points per 

batch) is plotted in objective space to illustrate the 

trajectory of proposed solutions at each iteration 

towards the PF. 

2. Probability density map – 10 runs at a lower evaluation 

budget (24 iterations x 8 points per batch) are plotted 

together with a Gaussian kernel density estimate to 

illustrate the probability distribution of solutions being 

proposed in the objective space. 

3. Batch sizing – various batch sizes are compared using 

log HV difference to illustrate their HV improvement. 

 

III. RESULTS AND DISCUSSION 

In this section we describe the four synthetic benchmarks and 

two real-world materials science benchmarks that we apply 

qNEHVI and U-NSGA-III to, using the three metrics 

mentioned above to assess their performance. For synthetic 

benchmarks, we also presented a contour plot to illustrate 

scaling dimensionality. 

 

A. Synthetic benchmarks 

For synthetic benchmarks, we select two-objective scalable 

problems for comparison as described in Table 1. The ZDT test 

suite [92] provides a range of PF shapes, while the MW test 

suite [93] provides constraints and uniquely shaped PFs to 

challenge the optimisation algorithms. Both test suites rely on a 

similar construction method for minimization problems: taking 

a single variable function f1 against a shape function f2 as such: 

min 𝑓1(𝑥) = 𝑥1   (3)  

min 𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

  

The single variable function closely resembles certain real-

life multi-objective problems where an input is to be minimised 

against some other objective, for example minimizing process 

temperature, while achieving a target output [68]. 

Since the synthetic problems are scalable, we did an 

additional comparison of both qNEHVI and U-NSGA-III 

across a range of dimensionality from 2 to 12 to represent 

possible experimental parameter space in combinatorial 

screening experiments, as shown in Fig. 3. 

U-NSGA-III in Fig. 3 a) and c) shows a more gradual change 

in colour and did not reach the maximum values for higher 

dimensions, indicating a slower rate of convergence and poorer 

HV improvement, respectively, which scale with dimensions. 

In contrast, results presented in Fig. 3 b) and d) for ZDT1 and 

ZDT2, respectively, indicate that qNEHVI converges fast at a 

high HV improvement, as illustrated by the bright yellow 

coloration which appears early and maintains this up to dim=12 

with little loss in initial performance. 

qNEHVI, while showing superiority in overall HV score for 

the ZDT3 and MW7 problem, had a lower rate of convergence 

and maximum HV improvement as dimensions increase, 

illustrated in Fig. 3 f) and h) by the colour gradient. Although 

we note that in other literature, GP models tend to perform 

poorly at high dimensionalities [94], [95], this was not observed 

here, to the limit of 12 dimensions. We believe that the 

underlying stochastic QMC sampling used is what drives the 

optimisation and hence the performance remains robust. 

It should be noted that in Fig. 3 e), U-NSGA-III’s HV score 

on the ZDT3 problem scales inconsistently with 

dimensionality:  dim=5 shows better HV improvement 

(brighter colour) compared to dim=2 to 4. We attribute this to 

the disconnected PF being strongly affected by differences in 

initilisation, where entire regions can be lost as the evolutionary 

process fails to extrapolate and explore sufficiently. We discuss 

this further for Fig. 4 and 5 where we visualize the optimization 

trajectory for both algorithms.  
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TABLE I 
LIST OF SYNTHETIC BENCHMARKS 

Name Definition PF Range of 𝑥𝑖 n_obj n_constr ref_pt1 

ZDT1 

𝑓1(𝑥) = 𝑥1 

𝑔(𝑥) = 1 + 
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

 

ℎ(𝑓1, 𝑔) = 1 − √𝑓1/𝑔 

convex [0, 1] 2 0 [11, 11] 

ZDT2 

𝑓1(𝑥) = 𝑥1 

𝑔(𝑥) = 1 + 
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

 

ℎ(𝑓1, 𝑔) = 1 − (𝑓1/𝑔)2 

concave [0, 1] 2 0 [11, 11] 

ZDT3 

𝑓1(𝑥) = 𝑥1 

𝑔(𝑥) = 1 + 
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

 

ℎ(𝑓1, 𝑔) = 1 − √𝑓1/𝑔  − (𝑓1/𝑔)sin (10π𝑓1) 

disconnected [0, 1] 2 0 [11, 11] 

MW7 

𝑓1(𝑥) = 𝑔3𝑥1 

𝑓2(𝑥) = 𝑔3√1 − (𝑓1/𝑔3)2 
𝑐1(𝑥) = (1.2 + 0.4sin (4𝑙)16)2 − 𝑓1

2 − 𝑓2
2 ≥ 0 

𝑐2(𝑥) = (1.15 + 0.2sin (4𝑙)8)2 − 𝑓1
2 − 𝑓2

2 ≤ 0 
𝑙 = arctan (𝑓2/𝑓1) 

disconnected [0, 1] 2 2 [1.2, 1.2] 

Lastly, we observe in Fig. 3 g) for MW7 that U-NSGA-III 

performs significantly worst as compared to qNEHVI, 

regardless of dimensionality. The presence of more complex 

constraints in the problem means that many solutions are likely 

to be infeasible and require more iterations to evolve to 

feasibility according to the evolution mechanism. Infeasible 

solutions do not contribute to HV improvement at all, and we 

note that this is one of the limitations of plotting using HV as a 

metric, where feasibility management is not clearly reflected. 

In order to investigate why qNEHVI presented a higher HV 

improvement for qNEHVI, we then proceed to plot the 

optimization trajectory to observe solutions in objective space, 

as shown in Figure 4. We set the number of dimensions to 8. 

This is representative of a range of experimental parameters that 

materials scientists would consider practical. We first 

performed a single optimisation run of 100 iterations x 8 points 

per batch. The evaluated solutions are plotted onto the objective 

space and coloured by their respective iteration from dark to 

bright. 

The general observations in Fig. 4 a)-h) comparing qNEHVI 

to U-NSGA-III are consistent with results previously reported 

in Fig. 3, specifically in terms of HV scores and convergence 

rate. In all sub figures, qNEHVI was able to propose solutions 

at the PF within the first 20 iterations, as shown by the darker 

colour of points along the red line (true PF). This suggests that 

it is very sample efficient. However, it was unable to fully 

exploit the region of objective space close to the PF, and 

solutions in later iterations are non-optimal.  In fact, in Fig. 4 b) 

and d), ZDT1 and ZDT2 respectively, a large portion of 

solutions lie along the f1=x1=0 line. This is explained by the 

choice of reference point, which we explore in more detail in SI 

1. 

 

 
1 Choice of reference point is taken from BoTorch’s API. 

 

 

 

 
Fig. 3:  Contour plots for dimension vs evaluation budget.  a-b) ZDT1. c-d) 

ZDT2. e-f) ZDT3. g-h) MW7. The colour bar illustrates the mean cumulative 

HV score with respect to cumulative evaluations, over a total evaluation budget 

of 100 iterations x 8 points per batch. Results are averaged over only 5 runs due 

to high computational cost of searching over many dimensions. The results here 

show that qNEHVI is a far superior method when looking at only HV as a 

performance metric. 
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We hypothesize that qNEHVI is unable to identify multiple 

bi-objective points along the PF because the underlying GP 

surrogate model did not accurately model the PF for ZDT1-3. 

As for MW7, despite the algorithm being able to propose many 

solutions near the unconstrained PF, it failed to overcome the 

constraints, as seen by the failure to adjust to the new dotted red 

line. We observed that qNEHVI’s superior HV score (Fig. 3) 

could be attributed to the stochastic nature of QMC sampling, 

which is used to provide a pool of candidates for the surrogate 

model and acquisition function to determine the next ‘best’ 

batch of points to evaluate. This hypothesis is supported by 

results reported in SI 2, where it can be observed that the GP 

model did not fully learn the objective function. 

In contrast, U-NSGA-III, while requiring a significantly 

larger number of iterations to reach the PF, had a more 

consistent optimisation trajectory towards the PF, as seen by the 

gradual colour gradient in Fig. 4 a), c), e), g). This suggests that 

there are less wasted evaluations for MOEAs, as the latter 

iterations are targeted towards the PF. However, despite having 

more solutions near the PF, the HV score is lower for U-NSGA-

III than qNEHVI. This is a limitation of using HV as a 

performance metric:  it strictly rewards non-dominated 

solutions across the entire search space, i.e. a handful of 

solutions at the PF extrema are preferred, as shown previously 

in Fig. 3 where U-NSGA-III showed poorer HV improvement 

compared to qNEHVI for ZDT1, ZDT3 and MW7. 

Notably, we observe in Fig. 4 e) and g) that the disconnected 

PFs for ZDT3 and MW7 can lead to entire regions of objective 

space being omitted. This is clearly seen in both sub-figures 

where solutions only have a single trajectory towards the 

nearest PF region. We previously made the statement, based on 

results reported in Fig. 3 c) and d), for the same synthetic 

problems, that the disconnected spaces are strongly influenced 

by initilisation, where U-NSGA-III’s mechanism of tournament 

selection rewards immediate gain over coverage, i.e. 

exploitation over exploration. This is both a strength and 

weakness of U-NSGA-III in comparison to qNEHVI, where the 

stochastic QMC sampling enables greater exploration of the 

overall search space, but not the PF. 

In addition to observing the optimisation trajectory in the 

objective space, a way to visualise the efficiency of the 

algorithms is plotting a probability density map, which is 

computed by plotting all the sampled points over multiple 

optimisation runs and computing the probability density 

function with a Gaussian kernel estimate. This is used to 

illustrate the likelihood of the same point being sampled in 

different runs, which is shown with a brighter colour. Similar to 

Fig. 4, we take a dimensionality of dim=8, but limit the 

evaluation budget to 24 iterations x 8 points per batch due to 

the computation cost of multiple runs, as well as that of 

computing the probability density function.  

 

 

 

 
Fig. 4: Optimisation trajectory in objective space for a single optimisation run 

of 100 iterations x 8 points per batch.  a-b) ZDT1. c-d) ZDT2. e-f) ZDT3. g-h) 

MW7. The red line represents the true PF, while MW7 being a constrained 

problem has an additional blue line to show the unconstrained PF. The colour 

of each experiment refers to the number of iterations. All problems clearly show 

a more gradual evolution of results as the number of iterations progress in U-

NSGA-III whereas qNEHVI rapidly approaches PF and then fails to converge 

further. 

 

Results reported in Fig. 5 further reinforce the observation 

that qNEHVI produces a large pool of non-optimal solutions for 

all benchmarks problems, where many points exist away from 

the PF. Additionally, the darker coloration for qNEHVI in Fig. 

5 b), d), f) and h) indicates a much lower probability of 

occurrence, which reinforces our hypothesis, that HV 

improvement can be partially attributed to the stochastic nature 

of QMC sampling. Additionally, Fig. 5 b) and d) for ZDT1 and 

ZDT2 respectively also show that there were many solutions 

being proposed at the extrema of f1=x1.  

This is the same behaviour as that observed for a single run 

in Fig. 4 b) and d), and we further elaborate upon it in SI 1. In 

contrast, the heuristic nature of U-NSGA-III provides more 

consistency between optimisation runs, which is shown by the 

brighter regions of points near the PF in Fig. 5a), c), e) and g).  

indicating a higher probability density. Notably, the bright 

regions are not spread across objective space evenly. There is a 

preference for the lower range of f1=x1 since it is easily 

tunable, i.e. it is simple to derive improvement by simply 

decreasing x1. This is in line with our previous discussions 
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based on results reported in Fig. 4, where U-NSGA-III prefers 

solutions with immediate improvement. Furthermore, we 

observe that the bright regions are concentrated near the PF, 

which indicates that U-NSGA-III was able to consistently 

approach the PF and maintain a larger pool of near-Pareto 

solutions over the optimisation runs, despite the limited 

evaluation budget. 

In contrast, qNEHVI had relatively few points, although they 

are lying directly on the PF, which is then shown as a higher 

mean HV compared to U-NSGA-III. In a real-world context, 

the larger pool of near-Pareto solutions could have scientific 

value, especially for users looking to build a materials library 

and further understand the PF. However, this is not reflected by 

the HV performance indicator. 

 

 

 

 

 
Fig. 5: Probability density maps in objective space for 10 runs of 24 iterations 

x 8 points per batch. a-b) ZDT1. c-d) ZDT2. e-f) ZDT3. g-h) MW7. The 

evaluated data points are plotted with a Gaussian kernel density estimate using 

SciPy to illustrate the distribution of points across objective space. The colour 

bar represents the numerical value of probability density. Results are averaged 

over the 10 runs and highlight the lower diversity of points and consistency in 

optimisation trajectory for qNEHVI compared to U-NSGA-III. 

 

 

 

 

 

 

 

The choice of batch size is another important parameter to 

consider for materials scientists. It can be tuned when 

attempting to scale up for HTE. A larger batch size is usually 

ideal since it provides higher throughput, and thus more time 

savings since lesser iterations are required. However, batch size 

affects the performance of optimisation strategies, potentially 

reducing the number of iterations needed in a run. We thus 

perform optimisation on the same synthetic problems for 

different batch sizes, keeping dimensionality at dim=8 and with 

the same evaluation budget of 192 points and 10 runs as 

mentioned earlier. We then recorded the hypervolume metric 

across the run and plotted it as a function of log hypervolume 

difference, taking log10(HVmax - HVcurrent), taking HVmax 

from the known PF in pymoo.  

The authors of qNEHVI hypothesised that it operates better 

at small batch sizes by providing a smoother gradient descent 

in sequential optimisation [80]. Results reported in Fig. 6 a), b) 

and d) for ZDT1, ZDT2 and MW7, respectively, support this 

hypothesis, and we clearly observe that the lowest batch size 

setting of 2, as represented by the pink line, has the best 

performance overall. 

Interestingly, this is also the case for U-NSGA-III where the 

lowest batch size of 2 tends to give better HV for ZDT1-3 as 

seen by the blue line. This is also empirically shown in literature 

where, given a total budget, higher populations may impede 

convergence as it effectively limits the number of iterations 

[96]–[98]. It is suggested that the same did not apply for MW7 

since the disconnected PF was often not fully explored due to 

differences in initilisation and how the heuristic search 

operated, which we discuss previously for Fig. 4 and 5. Instead, 

a larger batch size i.e. larger population is beneficial in 

maintaining solutions across disconnected regions of objective 

space, as seen by the red line in Fig. 6d). We also explain why 

this did not apply to ZDT3: since the initial sampling was 

generally able to cover the search space well, there are 

relatively little ‘lost’ regions as seen from Fig. 4c). 

Additionally, we provide optimisation trajectory plots for U-

NSGA-III at different batch sizes in the SI 3 to illustrate this. 

Furthermore, we also observe that qNEHVI has greater 

variance in log HV difference, compared to U-NSGA-III.  This 

further reinforces our hypothesis that the performance of 

qNEHVI is in part due to the stochastic QMC sampling, whilst 

the heuristic nature of U-NSGA-III means that the evolution of 

solutions is more consistent. 
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Fig. 6: Convergence at different batch sizes with the same total evaluation 

budget of 24 x 8. a) ZDT1. b) ZDT2. c) ZDT3. d) MW7. We omitted qNEHVI 

for batch of 16 due to prohibitively high computation cost when scaling up. 

Plots are taken with mean and 95% confidence interval of log10(HVmax - 

HVcurrent), with HVmax being computed from known PF in pymoo. We follow the 

same details as for Fig. 5. Results suggest that qNEHVI works better with low 

batching on disconnected PF. 

 

B. Real-world Benchmarks 

Based on results reported in Fig. 4, 5, 6, we formulate the 

hypothesis that qNEHVI as a MOBO strategy is very sample 

efficient, i.e. able to arrive at the PF rapidly with few 

evaluations and is superior in maximizing hypervolume as a 

performance metric. In comparison, we found that U-NSGA-III 

provides a more consistent search due to its heuristic evolution 

nature over that of stochastic QMC sampling in qNEHVI, and 

furthermore maintain a larger pool of near-Pareto samples that 

is not reflected by the HV performance metric. We also report 

that smaller batch sizes are generally better in both strategies 

over the two-objective jobs used. 

To test this hypothesis, we repeated our experiments on real-

world multi-objective datasets. An unavoidable issue of 

empirically benchmarking optimisation strategies on real-world 

problems is that some surrogate model must be used in-lieu of 

a black-box where new data is experimentally validated. 

Alternatively, a candidate selection problem can be used where 

optimisation is limited to only proposing new candidates from 

a pre-labelled dataset until eventually the ‘pool’ of samples is 

exhausted [65], [75], [99], [100]. The benefit of this method 

over surrogate-based methods is that only real data from the 

black-box is used, rather than data extrapolated from a model 

approximating its behaviour. However, the candidate selection 

approach assumes that the existing dataset contains all data 

points necessary to perfectly represent the search space and true 

PF. It is generally not possible to prove that this is the case, 

unless the exact function mapping input to output of the black 

box is known, or the dataset contains all possible combination 

of input/output pairs and is therefore a complete representation 

of the problem like that of inverse design. 

Here, due to the relatively small size of the datasets (~102 

data points), the candidate selection method was not 

implemented. Instead, we relied on training an appropriate 

regressor to model the dataset. The two real-world benchmarks 

used in this paper are presented in Table 2, and results are 

shown in Fig. 7, 8, 9. Materials datasets with constraints are 

hard to find from available HTE literature, asides from simple 

combinatorial setups that need to sum to 100%,  [101]. Another 

example is Cao L. et al [70], which included complex 

constraints in the form of solubility, although we were unable 

to attain their full dataset and solubility classifier. 

 

Similar to synthetic benchmark experiments, we compare 

both approaches based on 3 metrics: 

1. Optimisation trajectory in objective space for 100 

iterations x 8 points per batch 

2. Probability density function in objective space for 24 

iterations x 8 points per batch 

3. Comparison of batch size for log hypervolume 

difference 

 

Fig. 7 further supports our conclusions drawn from results 

reported in Fig. 4. As seen in Fig. 7 b) and d), qNEHVI is highly 

sample efficient, with points at or near the PF within the first 20 

iterations or so, indicated by the darker points lying on the red 

line.  

However, qNEHVI shows a large random distribution of 

non-optimal points away from PF across the entire optimisation 

as seen by both dark and bright points, which we attribute to the 

stochastic QMC sampling.  U-NSGA-III performs a gradual 

evolution of points towards the PF as seen in Fig.7 a) and c), as 

well as maintaining a large pool of near-optimal solutions. This 

is reflected by the lower HV scores for U-NSGA-III compared 

to those of qNEHVI. 

At a smaller evaluation budget, we observe that U-NSGA-III 

consistently maintains a large pool of near-optimal solutions, as 

the bright region is seen nearer to the PF, while reporting a 

lower mean HV compared to qNEHVI (Fig. 8 a) and e)). Fig. 8 

b) for the Thin Film problem also corroborates our findings that 

qNEHVI proposes many non-optimal solutions, as seen by the 

bright region away from PF, which indicates a higher 

probability of occurrence. 
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TABLE II 
LIST OF REAL-WORLD BENCHMARKS 

Name Optimization Problem Modelling Technique1 n_var n_obj n_constr2 ref_pt 

Thin film [70] 
Minimize process temperature and maximize 

conductivity of spray coated palladium films 
GP regressor 4 2 0 [1.019, -0.048] 

Concrete Slump [102]  
Maximize slump and compressive strength 

in concrete formulations 
Neural network ensemble 7 2 0 [0, 0] 

 

 
Fig. 7: Optimisation trajectory in objective space for a single optimisation run 

of 100 iterations x 8 points per batch.  a-b) Thin Film. c-d) Concrete Slump. 

across objective space for a single run of 100 iterations x 8 points per batch. 

The red line represents the PF. PFs for real-world datasets were virtually 

generated using NSGA-II for 500 generations with population size of 100. The 

colour of each experiment refers to the number of iterations. The results here 

corroborate the ‘wastage’ of solutions in qNEHVI, although which algorithm is 

superior appears to be problem dependent.  

 

Interestingly, in Fig. 8d) for Concrete Slump problem, we 

observe that qNEHVI is consistently converging to a specific 

region in objective space, while the U-NSGA-III search follows 

that of Fig. 8b) with concentration of solutions at the near-

optimal region close to PF. We hypothesize that qNEHVI’s 

performance for this problem is influenced by how the 

underlying GP surrogate model learns the function and strongly 

biases solutions to that specific region. We show further proof 

in SI 2, where we illustrate the expected PF given by the GP 

surrogate model. 

In contrast, both problems here indicated that U-NSGA-III 

benefited more from larger batch sizes, as seen by the green 

line, which is different from what we observed in Fig. 6 for 

synthetic problems. Our hypothesis is that the modelled datasets 

present a more mathematically difficult optimisation problem, 

with various ‘obstacles’ that inhibit the evolution of solutions 

towards the PF. We support this by referring to our discussions 

for Fig. 7 c) and d) on Concrete Slump regarding local optima, 

as well as observing a notable blank region of objective space 

which U-NSGA-III fails to flesh out in Fig. 7 a) for Thin Film 

problem. Overall, results reported here suggest that given state-

of-the-art implementations in HT experiments, a small batch-

size with MOBO is the right strategy to converge rapidly. 

 

 

 
1 Details of their implementation can be found in SI 4. 
2 Further elaboration on implementing constraints for real-world problems can be found in SI 5. 

 

 
Fig. 8: Probability density maps in objective space for 10 optimisation runs of 

24 iterations x 8 points per batch. a-b) Thin Film. c-d) Concrete Slump. The 

evaluated data points are plotted with a Gaussian kernel density estimate using 

SciPy to illustrate the distribution of points across objective space, with a colour 

bar to represent the numerical value of probability density. Results are averaged 

over 10 runs, taking a smaller evaluation budget of 24 iterations x 8 points = 

192. The results here reinforce the finding that qNEHVI has a more random 

distribution of points, but still outperforms U-NSGA-III for a low evaluation 

budget. 

 

Finally, we also studied the effect of batch size on 

convergence using the two optimisation approaches on the two 

real-world datasets. Results present both similarities and 

differences with what we observe for synthetic benchmarks as 

in Fig. 6. A lower batch size in qNEHVI was better for both 

problems, as seen by the purple line, which is consistent with 

our findings for Fig. 6. 

 

 
Fig. 9: Convergence at different batch sizes with the same total evaluation 

budget of 24 x 8. a) Thin Film. b) Concrete Slump. We omitted qNEHVI for 

batch of 16 due to prohibitively high computation cost when scaling up. Plots 

are taken with mean and 95% confidence interval of log10(HVmax - HVcurrent), 

with HVmax being computed from known PF in pymoo. The results shown here 

support our conclusions for qNEHVI in Fig. 6 but have marked differences for 

U-NSGA-III. 
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IV. CONCLUSION 

We have compared qNEHVI and U-NSGA-III using both 

synthetic and real-world benchmarks, considering different 

experimental parameters such as dimensionality and batch size 

which materials scientists may face when implementing closed 

loop optimisation in HTE. Our results suggest that qNEHVI is 

extremely sample efficient in arriving at the PF to maximise HV 

gain but fails to exploit it. In contrast, we report that U-NSGA-

III has a consistent optimisation trajectory, and better exploits 

the PF while maintaining more near-optimal solutions.  

We thus make the case for MOEAs for materials 

experimentation besides computational design. We also argue 

that such implementations would be best when the objective 

space is mildly discontinuous (which can be the case for 

structural problems such as alloys) since small changes in 

inputs can cause the outputs to vary wildly in objective space, 

and an evolutionary-based strategy can navigate with better 

resolution. This is consistent with work by Liang Q. et al [100] 

on single-objective optimisation, which noted that having 

“multiple well-performing candidates allows one to not only 

observe regions in design space that frequently yield high-

performing samples but also have backup options for further 

evaluation should the most optimal candidate fail in subsequent 

evaluations”.  

Furthermore, MOEAs also scale better in terms of 

computational cost for a high dimensional and high throughput 

context, where they have the means to converge while 

maintaining both diversity and feasibility. HV-based MOBOs 

such as qNEHVI scale poorly to high dimensionality and many-

objective problems due to the cost of computing HV. 

Depending on the HTE set-up, the ML component may not be 

able to leverage on powerful cluster computing for 

computationally intensive problems/models. MOEAs with 

lower computation overhead such as U-NSGA-III would be a 

better choice in such scenarios. With advancements in HTE set 

ups allowing for automation and parallel sampling, we expect 

research groups to leverage on higher throughput systems with 

short turnarounds. This makes the implementation of MOEAs 

much more practical to explore complex search spaces when 

paired with larger evaluation budgets of 103 to 104 data points.  

The choice of batch size to balance optimisation performance 

while minimising experimental cycles is also important. 

Empirically, our results obtained suggest that a smaller batch 

size of around 4 is ideal for the limited evaluation budget of 192 

points, although larger batch sizes are preferred for more 

complex problems (with added difficulty from disconnected 

regions in objective space, or perhaps presence of local optima). 

A caveat of our work here is that the synthetic problems we 

chose are a generalisation of bi-objective spaces with specific 

Pareto geometry that may not translate well for real-life 

experimentation especially for many-objective (M>3) 

problems. Newer benchmarks with higher difficulties and 

complex geometries/PFs [103] are tailored towards challenging 

MOEAs with massive evaluation budgets of up to 107 total 

observations. An example would be MW5 from the MW test 

suite, which has a narrow tunnel-like feasible regions that are 

practically impossible for GPs to model, resulting in MOBOs 

failing to converge. Indeed, R. W. Epps et al noted that it is 

“difficult to impose complex structure on the GPs, which often 

simply encode continuity, smoothness, or periodicity” [74]. We 

refer to other publications which study the differences between 

surrogate models in BO [100], [104], [105], as well as AI 

techniques that scale MOBOs to higher dimensional spaces 

[94], [95].  

Furthermore, materials experimentation is usually afflicted 

with real-world imperfections and deviations during synthesis, 

or uncertainty due to characterization equipment resolution. For 

example, MacLeod et al noted that “the tendency of drop-casted 

samples to exhibit a wide range of downwards deviations in the 

apparent conductivity due to the poor sample morphology” 

[68]. The effect of noise causes deviations in objective values 

from the ‘true’ ground truth, and although unclear, is an 

unavoidable aspect of optimisation which should be tackled 

[106], [107]. In SI 6, we perform a comparison of qNEHVI and 

U-NSGA-III on varying amounts of white noise on outputs. 

In conclusion, our results illustrate that existing performance 

metrics such as HV do not really reflect the goal of fleshing out 

the PF region, where HV-based methods like qNEHVI may not 

achieve satisfactorily. This reflects an aspect of optimisation 

which might be neglected in the purview of multi-objective 

materials discovery: which is to find a diverse set of optimal 

solutions that can adequately convey the trade-offs between 

conflicting objectives. We thus present alternative illustrative 

means such as probability density maps to better benchmark the 

performance of optimisation strategies for such purposes. 

Moving ahead, we hope that this can spur further improvement 

for MOBOs and a stronger consideration for the use of MOEAs 

for materials problems due to its heuristic nature in exploiting 

the PF. 
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