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Abstract— Air pollution is a severe problem grow-
ing over time. A dense air-quality monitoring net-
work is needed to update the people regarding
the air pollution status in cities. A low-cost sen-
sor device (LCSD) based dense air-quality mon-
itoring network is more viable than continuous
ambient air quality monitoring stations (CAAQMS).
An in-field calibration approach is needed to im-
prove agreements of the LCSDs to CAAQMS. The
present work aims to propose a calibration method
for PM, 5 using domain adaptation technique to
reduce the collocation duration of LCSDs and
CAAQMS. A novel calibration approach is pro-
posed in this work for the measured PM, 5 levels of
LCSDs. The dataset used for the experimentation
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consists of PM, 5 values and other parameters (PM;o, temperature, and humidity) at hourly duration over a period of three
months data. We propose new features, by combining PM, 5, PM;,, temperature, and humidity, that significantly improved
the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a
collocation time of two days. The proposed model shows high correlation coefficient values (R?) and significantly low
mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing
the collocation time while maintaining high calibration performance.

Index Terms— PM, 5, Collocation, Calibration, Domain adaptation, Deep neural network

[. INTRODUCTION

IR pollution is a global problem that causes seven million

deaths every year [1]. It has several adverse effects on
human health. It also has a significant contribution to the
mortality rate in India [2]. Hence, public awareness of air
pollution is an essential requirement that demands regular
monitoring of the pollution level. Air pollution from par-
ticulate matter (PM) ranks as one of the leading causes of
death globally [3], [4]. The continuous ambient air quality
monitoring stations (CAAQMS) can provide real-time PMs 5
information to people. The establishment of a dense air
pollution monitoring network using the CAAQMS is not a
feasible option due to their high cost [5]. As a result, the
spatial resolution of CAAQMS air quality measurements is
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insufficient for extensive spatiotemporal mapping [6].

Small and portable, low-cost sensor devices (LCSDs) may
improve the capacity to characterize the PMs 5 concentrations
with high spatial and temporal resolution [7]. The LCSD is
a potential technology to meet the PM monitoring network’s
requirement in densely populated cities [6], [8]. These sensors
are capable of capturing spatial variability more effectively [9].
In recent years, various start-ups have emerged, providing
compact and affordable wireless PMs 5 sensors. However, the
measured data using the low cost sensors is less reliable than
that of the CAAQMS [10], [11]. Therefore, it is an essential
requirement to calibrate the LCSDs against the CAAQMS.

A lot of research has been carried out on the calibration of
LCSDs in recent years [12], [13]. Various studies have reported
the satisfactory performance of the PMs 5 low-cost sensors
when compared against Federal Equivalent Methods (FEMs)
or research-grade instruments [8], [14], [15]. It is observed
that the LCSDs are helpful for the evaluation of short-term
changes in the aerosol environment [14]. The authors [§]
concluded that appropriate calibration models are an essential
requirement for the LCSDs to achieve high accuracy and
precision over a wide range in PMs 5 concentration. In [16],
LCSDs and reference monitors are collocated to monitor the
gaseous pollutants and PM. They found that the adequately
supported LCSDs with the data modeling tools have shown
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Fig. 1: The steps performed to obtain the proposed calibration
model.

a considerable potential to measure the air quality. A system
based on linear regression and Gaussian process regressor for
the calibration of low-cost PMs 5 sensors is proposed in [17].
This method is only effective for the high degree of urban
homogeneity in PMs 5 [17]. In [8], it is demonstrated that
the performance of the quadratic calibration method is found
better than that of the simple linear counterpart. The study [5]
focused on the inter-comparison of low-cost PM sensors in
polluted sites and observed the consistent performance of PM
sensors. In [18], a calibration model is developed for various
air pollutants such as PMs 5 and CO5 and tested across sites
and across devices. This work does not use domain adaptation.

The methods discussed above to calibrate PMs 5 values
measured using LCSDs performed well at the same site at
which they are trained. The deployment of these models at
target locations may degrade the performance as the models
are not location and device independent. Therefore, in the
present work, a calibration method is proposed which is
developed at one location (source location s) for a device
d and can be adapted to deploy at a target site (s’) and a
new device (d’). First, the base calibration model M for a d,
using machine learning algorithms, is developed at s using
large training dataset of two months. After that, the M is
adapted at s’ for a d’ using a lesser amount of training dataset.
Hence, the collocation time of LCSDs with CAAQMS can be
significantly reduced. To achieve the objective, the domain
adaptation-based method is implemented in the present work.
To the best of the authors’ knowledge, domain adaptation-
based calibration of PMs 5 LCSDs has not been explored yet.
This paper contributes the following facet.

1) The features derived from PMs 5, PM;(, humidity (RH),
temperature (Temp), time, and effective time-lag features
are proposed. The use of the derived features with
other existing features provides a more robust machine
learning-based model for the calibration of PMs 5 values
measured using LCSDs.

2) The other contribution of the proposed work is that the
developed model is adaptable at (s',d’) with two days
of collocation time.

The paper’s remainder is as follows: Section II explains a
brief overview of sensor deployment and data acquisition. Sec-
tion IIT describes data preprocessing and features extraction,
calibration models, domain adaptation, and performance eval-
uation criteria of the calibration model. Section IV describes

the case study. Section V provides the conclusion and future
work.

[I. SENSORS DEPLOYMENT SITES AND DATA
COLLECTION

In this work, two start-up’s A and B have installed the
LCSDs to measure the PMs 5. The start-up A has installed the
LCSDs at Mumbai Airport, Borivali, Kalyan, Mahape, Nerul,
Powai, Vileparle, and Worli in Mumbai Metropolitan Region
(MMR) Maharashtra, India. These sensors are collocated with
the CAAQMS sensors to measure the PMs 5 levels. The
PM sensors used by start-up A is Plantower PMS-7003, and
the Bosch BME-280 sensors are used to measure Temp and
RH. Start-up B has installed the LCSDs at Mumbai Airport,
Mahape, Nerul, and Vileparle. Start-up B has used Telaire
sensor for measuring the PM, and Sensirion sensor for the
measurement of Temp, and RH. In this study, the data collected
for November 1%, 2020 to January 315, 2021 is utilized to
perform the experiments. The data is available at an interval
of 15, 30, and 60 minutes for CAAQMS sensors and 1, 15,
30, and 60 minutes for the LCSDs of start-up A. The start-
up B has provided the data at an interval of 30 seconds and
1 minute. All the experiments are performed using the data
available at an interval of 60 minutes. The data provided by
start-up B is averaged out at 60 minutes.

[1l. METHODOLOGY

This work presents a methodology for the calibration of
the PMs 5 measured using LCSDs. The overall method is
developed in two phases. In the first phase, the M for a d
is developed using different machine learning techniques at
s. Finally, the M is adapted for d’ at s’ using the domain
adaptation methods with a shorter collocation time. The steps
carried out for developing the calibration model are shown in
Fig. 1, and described as follows:

A. Data pre-processing and feature preparation

The obtained dataset contains outliers and missing values.
Therefore, it needs to be pre-processed before the experimental
work. We have considered all outliers data points i.e. Temp
>50°C or < 1°C and RH > 100 % or < 1 % as missing
values.

The dataset contains features that have different ranges.
Hence, normalization of the input features to bring them
on to a similar scale is essential. The normalization reduces
the training’s sensitivity to the inputs’ scale and makes the
features well-conditioned for optimization. The normalization
is performed as follows:

Ny = (D

Oz
Where Ny and z denote the normalized input features and
actual input features, the Z and o, represent the mean and
standard deviation of the actual input features. Moreover, the
output of the model has only one variable. Hence, the output
vector is not normalized in this work.



JHA et al.: DOMAIN ADAPTATION BASED DEEP CALIBRATION OF LOW-COST PM3y 5 SENSORS 3

0.6
L |
I IR

Correlation coefficient
o
o

-0.2 I

0 5 10 15 20 25
Features

Fig. 2: Correlation of the features w.r.t CAAQMS’ PM, 5 at
Airport site for start-up A.

The performance of the calibration model is improved by se-
lecting useful features. There are many possible combinations
of base features. We have empirically selected a few simpler
combinations of the base features named as derived features.
We get intuition from the study [8]. They have shown that
RH?/(RH — 1) is a useful feature to form the calibration
model. So, we have considered RH?/(RH — 1) and other
derived features to train the calibration model.

In this paper, effective time-lags [19], weather, time, and
non-linear features are used for developing the model. The
effective values of lags for PM, 5 and PM;, are found using
the cross-correlation coefficients [20]. The other features are
also selected using cross-correlation coefficients. The Pear-
son’s correlation of the features w.r.t CAAQMS PM, 5 is
computed as follows:

b STy - 7)
VEE - 22 YK (- )2

Where z; and y; denote the value of t'* feature and
CAAQMS’ PMy 5, respectively. The Z, and i represent the
mean value of the features and CAAQMS’ PMy 5, respectively.
The 27 features that have shown high correlation with the
reference PM, 5 values are selected that are shown in Table 1.
Their correlation values are shown in Fig. 2. The indexes
at 0, 5, 10, 15, 20, and 25 represent PMy 5, Sin( 2% hour),
PM, 5 at lag t-23, PM;g at lag t-3, PM> 5 x RH, and PM;
x Temp X RH, respectively. The two features showing the
highest correlation coefficient in Fig. 2 at indices 7 and 13 are
PM, 5 and PM;( at lag 1, respectively. Hence, these features
have the highest significance in the formation of the calibration
model. The correlation coefficient of Temp is negative (index
3 in Fig. 2), this represents that Temp and CAAQMS’ PM, 5
have inverse relationship. Further details of the features are
provided in Table I. The order of features in Table I is the
same as in Fig 2.
Further, we have prepared input (features) and output pairs
based on effective time-lags, base features, and combination of
base features without removing missing values. Thereafter, we
have removed all input-output matrix rows if one or more than
one missing values are present in any specific row. Finally, the
obtained features’ matrix is used to train the calibration model.

2

TABLE |: Features used to train the calibration model.

[Types of features [Input Parameters ]

3

Base Pollution based features|PMg 5 in ugm™
Features \measured by LCDS PMyg in pgm >
‘Weather based RH in %

features Temp in °C
Periodicity due to Cos( 37 hour)
hour of the day Sin( 3% hour)
Derived RH feature [8] |[RH?/(RH-1)

PMs 5 at t-1, t-2, t-3

PM; 5 at t-23, t-24, t-25

PMg at t-1, t-2, t-3

PMq at t-23, t-24, t-25

PMs 5 X PMg, PM2 5 X RH
PMs 5 X Temp

PM;p X RH, PM;jy X Temp
PMs 5 X Temp X RH,

PM;p X Temp X RH

PMjy 5 X PMjp X Temp X RH

Effective time lags

Derived
Features

Non-linear features

B. Techniques used to obtain the calibration model

The various technique to model the relationship between
LCSDs and CAAQMS are summarised as follows:

1) Linear Regression (LR): It models the linear relationship
between input and output. A multivariate linear regression
model (MVR) is a commonly used method for the calibration
of low-cost sensors [21], [22].

2) Ridge Regression (RR): It reduces the overfitting of the
LR model using Ly regularization [23].

3) Least Absolute Shrinkage and Selection Operator
(LASSO): LASSO-based regression (LAR) reduces the over-
fitting of the LR model using L; regularization. [23].

4) Elastic Net Regression (ENR): It reduces the LR model’s
overfitting by incorporating both the L; and L, regulariza-
tion [24].

5) Support Vector Regressor (SVR): SVR can also be used
to train a model to map the low-cost sensors’ data to the
CAAQMS. It estimates the function using a support vector
machine. The prediction using SVR depends upon the support
vectors [25]. It is utilized to calibrate the low-cost sensors for
measuring ozone concentrations [26].

6) Deep Neural Network (DNN): Artificial Neural Network
is a widely used tool in various time series regression and
forcasting problems [19], [27]. It approximates the non-linear
relationship between inputs and output for developing the
calibration model. It has an input layer, output layer, and a
hidden layer between the input and output layers [28]. The
DNN consists of more than one hidden layers.

C. Domain Adaptation

In the present work, a calibration model M is developed
at (s,d) and adapted at (s’,d’) using a shorter duration
of training data. This kind of approach is suitable at those
sites where the CAAQMS monitors are available for a short
duration. As the direct deployment of M at (s',d’) may not
show good performance due to domain shift [29]. Domain
adaptation-based techniques are required to overcome these
issues. The domain adaptation refers to adapt the knowledge
from one domain to work to the new domain [29], [30].
This kind of approach is found useful for the calibration
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of haptic sensors [31]. The steps of the domain adapta-
tion method for start-up A and B are different. For start-
up A, M is adapted at (s’,d’) in two steps as follows:

Algorithm 1: Domain adaptation method

Input: A labeled source domain dataset Dg = {Xg,
YVs}, a small amount of labeled target domain dataset
Dr, = {Xr,, Y1, }, and large amount of unlabeled
target domain dataset Dy, = {Xp, }.

Output: Labels V7, of the unlabeled data X7, in
the target domain

1. Normalize the source and target domain features
using (1).

2. Learn a regression model f: Xg — ygal
and (4).

3. Save the models learned at source domain as base
model M.

4. Freeze the layer of M and add a new layer at the
top of the M.

5. Use the D, to train the newly added top layer
with a higher learning rate using (5).

6. Fine-tune the entire model with a lower learning
rate by using the Dr, using (6).

7. Utilize the new learned regression models for
predicting the labels of Dr, as 79‘2” = fnew (X1, )
8. Finally, evaluate the performance of the proposed
model using the metrices such as, R?, M AE,
MAPE, and SMAPE as shown in (7)-(11).

1. In step one, a new layer is added on the top of the layers
of M learned at (s, d). The layers trained at (s, d) are frozen
and only the newly added layer is trained with a much smaller
dataset at (s',d’) .

2. In this step, the entire model is finetuned with a much

smaller dataset at (s, d’).
For start-up B, M is adapted at (s’,d’) using the step-2 only.
The proposed algorithm for the adaptation of M is summarised
in Algorithm 1. The dataset of source (Dg) and target (Dr)
domain are splitted in training and testing data. The size of
training dataset at Dy is much smaller as compared to Dg.

using (3)

We consider M with parameters 6 at (s,d), that maps
LCSDs observations (x) to calibrated PMs 5 (7). We use a
DNN model to implement M. The parameters of M at (s, d)
are initialized randomly. The architecture of M consists of
one input layer, seven hidden layers, and one output layer.
The parameter 6 of M is updated using the two months of
data at (s,d) using gradient descent algorithm over Dg as
follows,

0 0 —avLlp.(0) 3)

Here, o € R is the learning rate. The 6 and 6’ represent the
randomly initialized weights and learned weights of M. The
V denotes the gradient. The used loss function is the mean
absolute error, which is defined as

Lps(0)= Y |folx)—y| @)

(z,y)€Ds

Now, to adapt M at (s',d’), we discard the output layer of

TABLE II: The selected values of the parameters for develop-
ing the base calibration model.

[Model — [Parameters fo be funed [Used values
SVR Kernel Linear
ENR Regularization parameters (alpha, beta) |1
RR Regularization parameter (alpha) 1
LAR Regularization parameter (Beta) I
Units in input JTayer 27
No. of hidden Iayers 7
DNN Units in hidden 512,256,128,64
layer 32,16,8
Model Units in output layer 1
training epochs, activation function Max-2000, RELU
Iearning rate 0.001
Toss Tunction MSE
early stopping (patience, monitor) (100, val-Ioss)
Step-1 learning rate 0.1
Domain P early stopping (patience, monitor)[(50, val-loss)
adaptation Step-2 learning rate 0.0001
P early stopping (patience, monitor)|(50, val-Toss)

M and add a layer on the top of M. The weights of the layers
trained at (s, d) are freezed and the weights (¢) of the added
layer are trained using two days of data at (s',d’):

¢ b —BVeLp.(0,¢) (5)

Here, 5 € R is the learning rate which is kept higher than
a € R. The ¢ and ¢’ are the randomly initialize weights and
the learned weights for the new layer added on top of M.

Finally, the parameters (6’, ¢’) of the entire model are fine-
tuned using two days of data at (s’,d’) as follows,

@ — (9/7 (ZS/) - ’YVEDT (0/7 ¢/) (6)

Here, v € R is the learning rate which is kept lower than
a € R. The © denotes the learned weight after the adaptation
of the calibration model at (s’, d’). The adapted model is tested
using the rest of the data at (s’,d’) over Dr.

D. Calibration model’s performance evaluation criteria

The coefficient of determination R2, the mean absolute
error (MAE), the mean absolute percentage error (MAPE),
and symmetric mean absolute percentage error (SMAPE)
are computed to evaluate the performance of the calibration
model. These are expressed as follows:

2t @)
RRP=1-2 (8)

1 K
MAE = = |z — 4(x)] 9)

(10)
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Fig. 3: Performance evaluation in terms of cumulative MAE (pgm ~?), cumulated over deployment time of the different models

for start-up A in Task L.

TABLE IlI: Average performance (over different locations) of
different models for Task-I (start-up A).

Performance of M with[[Performance of M with

base features base+derived features
Model RZ " TMAPE [SMAPE |R> |MAPE |[SMAPE

(%) (%) (%) (%)

UNC [-0.06[25.93 [22.60 -0.06]25.93 [22.60
LR [0.60 [17.50 [17.46 0.81 [13.03 [13.15
SVR 1[0.59 [17.75 [17.79 0.80 [13.05 [13.20
ENR [0.50 [20.32 [20.08 0.74 11535 |15.21
RR [0.60 [17.50 [17.46 0.80 [13.33 [13.50
LAR [0.58 [18.25 [18.22 0.76 [14.10 [14.21
DNN [0.66 [16.7 15.81 0.82 [12.05 [11.84

TABLE IV: Average performance (over different locations) of
different models for Task-I (start-up B).

Performance of M with[[Performance of M with

base features base+derived features
Model R TMAPE [SMAPE ||R> |[MAPE |SMAPE

(%) (%) (%) (%)

UNC [0.50[18.00 [18.31 0.50[18.00 [18.31
LR [0.55[18.18 [18.94 0.74114.43  [14.77
SVR [0.52]1831 [19.31 0.66[15.40 [16.27
ENR [0.35|21.45 [22.15 0.60[16.96 [17.62
RR  [0.55[18.17 [18.93 0.70]14.48 [14.85
LAR [0.48[19.13 [20.23 0.61[16.52 [17.70
DNN [0.66|15.78 [15.46 0.75|13.46 [13.17

1 S /202 — 4(x)]
SMAPE = — > (H> x 100% (11)

K 2\ [zl + ax)]
where, K denotes total number of observations. The z; and
2¢(x) are the CAAQMS’ and calibrated PMs 5 values for

observation t, respectively.

[V. EXPERIMENTAL RESULTS AND DISCUSSION

We have experimented with two kinds of tasks. In the
first task, we have trained M using the data at (s,d), and
test its performance for the same (s,d). In the second task,
the performance of M at (s’, d’) with and without domain
adaptation are compared.

A. Task I: Calibration Model for a fixed site and device
(s,d)

The training data consists of parallel data recorded simul-
taneously with the CAAQMS and d. The training and testing
of M is performed using the data obtained by d, which is
collocated with CAAQMS at s. For the experiments, out of
the entire dataset, the last two weeks’ data (336 hours) is used

—— Reference —— UNC —— DNN2 (Calibrated)
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Fig. 4: The plot showing PMs 5 levels measured by CAAQMS,
uncalibrated PMs 5 levels measured by LCSD, and calibrated
PM, 5 values using DNN2 for Task-II (Start-up B).

TABLE V: Average performance (over different locations)
of different calibration models deployed at (s’,d’) without
domain adaptation for Task-II (start-up A and B).

Testset-1 Testset-2

R? |MAPE [SMAPE |[R> |[MAPE |SMAPE
Model (%) | (%) (%) | (%)
UNC [0.31 [22.8T (2070 [|0.36 [21.45 [19.77
LR |-1.53|37.76 |39.31 1513877 |40.28
SVR [-0.40(35.01 (3840 |[-0.40(34.65 |39.60
ENR [-0.55|36.02 |38.32 ||-0.61|36.47 [41.42
RR  |-0.49(35.79 [39.02 ||-0.3934.47 [39.07
LAR |-0.50|35.78 [38.44 [|-0.5736.22 |41.47
DNN [-0.45[3438 [37.62 ||-0.39]33.14 [37.72

for testing, the data from two weeks previous to that is used
for validation and the remaining data is used for training. We
have experimented with two sets of features - base features set
and base+derived features set. These feature sets have already
been described in Table 1. The average values of evaluation
metrics, averaged over eight locations, using different models
are summarised in Table III and IV for start-ups A and
B, respectively. Here, UNC denotes the trivial model which
outputs the uncalibrated PMs 5 values. We have found that the
DNN model performed best for start-up A and B. Also, with
the addition of the derived features, an improvement in the
performance of M, over that with just using the base features,
can be observed with all the models for both the start-ups.
We have found this improvement to be statistically significant
as the p-value for the R? score is less than 0.05 for all the
models applied to the uncalibrated data of start-up A.

We have also computed the MAE for each location’s cali-
bration model. The cumulated MAE for the calibrated PMs 5
values at Airport, Mahape, and Powai are shown in Fig. 3 for
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Fig. 5: Performance evaluation of DNN2 and baseline models for Task-II in terms of cumulative MAE (ugm—2), cumulated
over deployment time for start-up A ((a), (b)) and start-up B (c) for Testset-1.

TABLE VI: Performance comparison of different calibration

models for Task-II (start-up A).

TABLE VII: Performance comparison of different calibration
models for Task II (start-up B).

Testset-1 Testset-2 Testset-1 Testset-2
Model | R? MAPE| SMAPE| R? MAPE| SMAPE Model | R? MAPE | SMAPE| R? MAPE | SMAPE
(%) (%) (%) (%) (%) (%) (%) (%)

Mahape Mahape
UNC 027 [ 24.05 | 20.80 | 0.65 | 15.85 | 15.30 UNC 030 [ 2271 | 25.09 | 031 | 21.67 | 2434
LRI 196 | 38.80 | 32.62 | -5.40 | 4472 | 33.66 LRI 1379 | 72.90 | 90.80 | -2.71 | 3633 | 84.04
SVRT | 0.82 | 12901 | 11.60 | 0.78 | 11.88 | 12.74 SVRT | 049 | 1941 | 18.63 | 049 | 19.76 | 21.76
ENRI | 0.77 | 15.72 | 1331 | 0.66 | 14.64 | 15.68 ENRT | 056 | I8.02 | 1726 | 043 | 2063 | 22.62
RR1 0.60 | 1654 | 1491 | 0.69 | 1498 | 1451 RR1 025 | 2383 | 2261 039 | 2240 | 2531
CART | 087 | I1.0I | 994 | 078 | 11.57 | 12.55 LCART | 060 | 1594 | 17.06 | 0.09 | 29.16 | 34.90
DNNT | 071 | 15.08 | 1396 | 0.66 | 15.59 | 16.68 DNNT | 4.09 | 63.27 | 95.72 | -1.3% | 39.08 | 88.33
DNNZ | 0.88 | 949 | 9.32 | 0.84 | 10.93 | 1183 DNN2 | 0.68 | 13.95 | 14.66 | 051 | 1645 | 17.56

Nerul Vileparle
UNC 0.63 [ 1681 | 1396 | 0.65 | 14.60 | 14.7% UNC 0.09 [ 2239 | 1979 | 021 | 21.76 | 19.08
LRI 1336 | 7795 | 4024 | 3.19 | 45.75 | 42.34 LRI1 7418 | 199.28 | 127.49 | 4174 | 175.17 | 114.12
SVRT | 081 | 1640 | 13.62 | 0.73 | 13.05 | 1351 SVRT | 0.70 | 15.51 | 14.09 | 0.79 | 13.87 | 12.83
ENRT | 0.68 | 21.01 | 1691 | 048 | 17.54 | 18.55 ENRT | 059 | I8.10 | 1602 | 03I 1839 | 19.02
RRI 0.69 | 17.06 | 15.86 | 048 | 17.05 | 18.96 RR1 054 | 1833 | 1636 | 055 | 21.01 | 17.8%
CART | 081 | 1688 | 1371 | 0.69 | 13.68 | 14.17 LART | 039 | 23.62 | 1955 | 0.63 | 2054 | 17.24
DNNT | -0.26 | 3458 | 28.44 | -0.84 | 31.09 | 35.40 DNNT | 2.73 | 46.08 | 61.62 | -1.31 | 49.17 | 64.77
DNN2 | 0.87 | 11.45 | 10.96 | 0.84 | 10.73 | 10.62 DNNZ | 055 | 1852 | 1657 | 0.76 | 1493 | 13.44

Borivali Airport
UNC 0.80 [ 1738 ] 16.19 | 0.61 | 28.46 | 24.17 UNC 032 | 3533 | 3004 | -0.62 | 29.00 | 2431
LRI 333 | 4346 | 41.15 | 731 | 69.18 | 33.11 LRI 434 | 7473 | 4883 | 321 | 6556 | 4523
SVRT | 0.89 | 1270 | 1239 | 0.78 | 20.89 | 18.21 SVRT | 046 | 20.08 | 20.65 | 042 | 1831 | 2057
ENRT | 088 | 1341 | 1247 | 079 | 2227 | 19.16 ENRT | 028 | 22.14 | 2323 | O0.14 | 2240 | 25.77
RRI 0.92 | 10.89 | 10.13 | 0.69 | 26.15 | 22.16 RR1 0.71 1574 | 1533 | 0.68 1409 | 1498
LART | 091 | 11.24 | 1071 | 0.76 | 23.17 | 20.00 LART | 0.03 | 2546 | 2874 | -025 | 2826 | 33.84
DNNT | 0.66 | 20.79 | 1894 | 0.15 | 38.82 | 30.81 DNNT | -0.15 | 3029 | 2897 | -0.83 | 3434 | 41.02
DNNZ | 088 | 1138 | 11.05 | 0.72 | 26.083 | 22.10 DNNZ [ 073 | 1831 | 1553 | 0.80 | 1328 | 12.16

start-up A and found minimum for DNN model.

B. Task II: Model adaptation to different site and device:
(s,d) — (s',d")

In Task II, M is deployed at (s’,d’) in two ways to show
the effectiveness of domain adaptation. First, M is deployed
at (', d") without domain adaptation and the results are shown
in Tables V. It can be noted that the performance of M
is not satisfactory when deployed at (s’,d’) without domain
adaptation. Similar observation is also found in [18]. Even
if the performance of DNN is found to be slightly better as
compared to the other models deployed at (s’,d’) without
domain adaptation, the UNC is the best. Further, the M is
adapted using the domain adaptation method at (s’, d’) with a
shorter collocation period. Only two days of data (48 samples)
is used to adapt M, which is validated using the next seven
days’ data for both start-ups A and B. The remaining data
is divided into two parts named as Testset-1 and Testset-
2 to examine the adapted model performance in different

time duration. Testset-1 contains 720 samples, and number
of samples in Testset-2 vary at different locations in the range
of 322 samples to 1000 samples. This is due to the different
number of missing samples corresponding to the different
locations. It should be noted that Testset-1 and Testset-2,
shown in Table V to VIII, are of same duration. For start-
up A, the M is developed at Airport and adapted at seven
target locations. For start-up B, the M is developed at Nerul
and adapted at three target locations.

To show the usefulness of the domain adaptation method
in reducing the collocation time, the baseline models are also
developed at (s, d') from scratch. For the fair comparison
of adapted model and baseline models the same split of
training, validation, and the testing dataset are explored and
the performance is compared in Tables VI and VII for start-
up A and B, respectively. In these tables, the LRI, SVRI,
ENRI1, RR1, LAR1, and DNNI1 are the baseline models trained
at (s’,d") from scratch, and DNN2 is the adapted calibration
model. It can be observed that the performance of DNNI is
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TABLE VIII: Average performance of different calibration
models across different sites for Task-II (start-up A and B).

Testset-1 Testset-2

R? |MAPE [SMAPE ||[R* |[MAPE [SMAPE
Model (%) | (%) %) |(%)
UNC (03T [22.8T [20.70 ||0.36 [21.45 [19.77
LRI [-885(64.87 [47.15 ||-3.84[53.03 |50.87
SVRT[0.68 [16.61 [15.20 |[0.72 [153.2T |15.03
ENRI[0.65 [18.19 [16.18  ||0.61 [17.28 [17.47
RRT [0.65 [16.55 [15.20 ||0.67 [16.74 [16.19
LART[0.67 [16.64 [15.36 ||0.61 [17.39 [17.79
DNNT[-048(30.57 |33.16 ||-0.15|31.16 |35.73
DNN2[0.75 [14.04 [13.57 ||0.76 [14.70 [14.38

found to be inferior as compared to LR1, SVR1, ENR1, RRI,
and LARI. This is due to the smaller size of the training
dataset. The DNNI1 requires a large amount of training data to
improve the performance as compared to the other baseline
models. However, with the use of the domain adaptation
method, the limitation of the smaller training dataset can be
overcome. This fact is reflected in the performance of the
DNN?2 which is formed using the domain adaptation method.
For startup A, it can be observed that DNN2 has performed
better at five out of seven target locations for Testset-1 and
two target locations for Testset-2. For Mahape, Nerul, and
Borivali, the performance parameters are shown in Table VI.
A summary of the performance evaluation at the remaining
locations for start-up A is provided in the supplementary
material. From Table VII, it can be seen that for start-up B,
the DNN2 have shown better performance at two out of three
target locations. Even though we have observed that different
baseline models have performed better than DNN2 at some
locations and some test datasets, the performance of DNN2 is
found to be overall consistent, as seen in Table VIII. It should
also be noted that the performance of DNN2 is also found
to be substantially better than that of M deployed at (s',d’)
without domain adaptation as can be seen in Table V and VIII.

These results demonstrate the usefulness of the proposed
domain adaptation-based calibration model in reducing the
collocation time of LCSDs with CAAQMS at target locations.
The best-attained values of the evaluation parameters RZ,
MAPE (%), and SMAPE (%) are shown in the bold font in
Table VI and VII.

In Fig. 4, the time series of PMy 5 for CAAQMS, UNC, and
calibrated PMs 5 using DNN2 are compared for start-up B. It
can be observed from Fig. 4 and Table VII that the PMs 5 time
series obtained after calibration is showing better correlation
with the CAAQMS’ PM; 5. We have also computed the MAE
for DNN2 and baseline models at (s’, d’). The cumulative
sum of MAE for DNN2 is found to be lower or comparable
to the baseline models at most of the sites. The cumulative
MAE values for the calibrated PM, 5 values are shown in
Fig. 5. These results indicate the robustness of the proposed
calibration methodology.

Finally, the performance of DNN and DNN2 are also
compared for the same test dataset of 14 days at (s’,d’) and
the results are shown in Table IX and X. It is expected that
DNN will perform better than DNN2 because the former is
trained with much more data at (s’,d’) as compared to the

TABLE [X: Performance comparison of DNN and DNN2
(Start-up A). DNN: Trained using 2 months data at (s',d’)
from scratch. DNN2: Adapted at (s’, d’) using 2 days data.

R? [MAPE[SMAPE| R? [MAPE[SMAPE
(%) | (%) (%) | (%)
Model Mahape Borivali
DNN [0.89] 9.37 | 992 [0.7]18.52] 16.23
DNN2[0.84| 12.57 | 13.75 [0.38] 30.24 | 24.85
Nerul Kalyan
DNN [0.92] 8.15 | 7.87 [0.82] 14.82] 13.78
DNN2[0.85| 11.40 | 10.93 [0.88] 13.20 | 11.81
Vileparle Worli
DNN [0.71] 13.80 | 14.75 [0.88] 10.57 | 10.54
DNN2[0.69] 13.68 | 13.47 [0.66| 19.44 | 16.54
Powai
DNN [0.92] 8.99 [ 8.66
DNNZ|0.86] 13.64 | 12.61

TABLE X: Performance comparison of DNN and DNN2

(Start-up B).

Model R? [MAPE[SMAPE| R? [MAPE|SMAPE
(%) (%) (%) (%)
Airport Vileparle

DNN [0.84] 10.72 | 10.02 [0.70] 14.63 | 14.69

DNNZ2[0.82[ 1321 | 12.10 [0.71] 1632 | 14.57
Mahape

DNN [0.60] 17.80 [17.14

DNNZ[0.51] 1648 [ 17.61

latter. However, it is interesting to note that the performance
of the latter is not very far from that of the former. Moreover,
at certain locations, the performance of DNN2 even surpasses
that of DNN. These results show the potential of the proposed
domain adaptation method in reducing the collocation time for
low cost sensor calibration.

We have used scikit-learn and TensorFlow libraries of
Python programming language. To form the DNN model, the
training time is 18 sec to 40 sec, and testing time is 0.005 sec
with following hardware configuration (GPU: Quadro P2200,
64 GB RAM, intel i7-10700K processor, Python-3.7.10, and
tensorflow-gpu-2.1.0). To adapt the model at (s’,d") (DNN2),
the training time is 45 sec to 65 sec and testing time is
0.4 sec with following hardware configuration (4GB RAM,
intel i3 processor, Python-3.7.10, and tensorflow-cpu-2.1.0).
The dataset and code used in this work are available at
https://github.com/madhavlab/2021ksonuSensorAdaptation.

V. CONCLUSION AND FUTURE WORK

In this work, a novel calibration method for measured PM, 5
levels using LCSDs is proposed. This method makes use of
deep learning for high performance and domain adaptation
for reducing the time required to collocate the LCSDs with
the CAAQMS at the target location. Also, new input features
are derived that improve the performance of the calibration
model. We compare the performance of the proposed domain
adaptation based calibration method and the proposed fea-
tures with several machine learning-based calibration methods
and find improvements with the proposed method. With the
proposed domain adaptation based calibration model, we find
that two days of collocation with the CAAQMS is sufficient
to calibrate a new LCSD at the target location. This method
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is very useful in efficiently expanding the deployment of air
quality monitoring if we have mobile CAAQMS available for
calibration. Also, we find that the proposed method shows high
calibration performance, even with a very short collocation,
very close to the performance of the deep networks trained
with a large collocation data. Our future work will focus
on reducing this gap in performance. In future, we will also
study the sensor drift problem from the domain adaptation
perspective. We will also work towards anomaly detection in
the sensor networks. In future, we will also work to adapt the
proposed calibration model for seasonal variations. Moreover,
we would like to extend the proposed method to the calibration
of gaseous pollutants such as CO, SO, and NO,,.
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models for Task-II (start-up A).

Testset-1 Testset-2
Model | R? MAPE | SMAPE| RZ MAPE| SMAPE
(%) (%) (%) (%)
Powai
UNC 0.50 1785 | 1781 | 072 | 16,11 | 16.28
LRI 4385 | 5034 | 3299 | -1.06 | 3745 | 36.77

SVRI 0.70 14.64 1373 ] 0.87 | 11.33 | 11.37
ENRIT 0.61 20.17 16.90 | 0.70 | 16.73 | 16.37
RR1 0.74 13.19 12.84 1 0.88 | 10.27 | 10.25
LARI 0.73 16.89 1448 1 0.84 | 12.59 | 12.09
DNNO [ -0.10 | 25.20 29.31 026 | 2543 [ 29.37
DNNI 0.19 27.53 22.71 0.69 | 1836 [ 17.44
DNN2 [ 0.78 12.12 1211 | 0.83 | 12770 | 12.28

Vileparle
UNC 0.29 22.80 19.51 0.68 [ 14.23 [ 14.01
LRI -8.17 74.02 4850 | -1.66 | 41.27 | 45.48

SVRI 0.47 21.98 18.58 0.84 | 11.02 | 10.78
ENRI 0.67 19.31 1594 | 0.77 | 1190 [ 12.24
RR1 0.48 19.50 17.03 0.86 | 10.29 | 10.15
LARI 0.71 16.86 14.55 0.85 | 10.39 | 10.65
DNNO [ -0.27 31.55 38.05 | -0.65 | 37.72 [ 47.34
DNNI [ -0.35 27.68 2296 | 0.19 | 23.18 [ 2432
DNN2 [ 0.68 15.47 13.86 | 0.73 | 13.68 | 13.26

Kalyan
UNC 0.69 21.56 18.83 0.67 [ 21.85 ] 19.84
LRI -14.48 | 112.96 | 53.80 [ -3.69 | 6832 | 62.54

SVRI 0.75 17.58 15.49 079 | 16.34 14.62
ENRI 0.76 18.27 16.24 0.86 | 14.36 1291
RRI1 0.71 19.03 16.24 0.65 18.37 15.98
LARI 0.79 15.77 13.66 0.84 | 12.79 11.63
DNNO | -0.18 38.94 49.29 -0.29 | 41.05 51.87
DNNI 0.62 24.04 23.60 0.72 | 21.36 19.87
DNN2 0.68 22.65 19.52 0.87 | 13.96 12.64
Worli
UNC 0.03 27.03 22.99 -0.26 | 31.01 25.63
LRI -1890 | 60.87 41.88 -6.16 | 51.76 56.68
SVRI 0.73 14.92 13.20 0.72 | 15.70 13.96
ENRI 0.71 15.80 13.52 079 | 13.72 12.37
RRI1 0.80 11.42 10.59 0.81 12.83 11.74
LARI 0.80 12.75 11.15 0.85 | 11.75 10.83
DNNO | -0.38 35.88 4421 -0.29 | 33.19 | 40.53
DNNI 0.61 16.34 14.69 0.49 | 20.07 18.61
DNN2 0.81 11.43 10.52 0.73 16.15 14.21




