Conclusion
With eDNA assay, this study revealed the fine-grained and deep
phylogeographic structure of a primary freshwater fish, B. toni ,
over its large distribution area. Combining the eDNA assay with
conventional approaches and a molecular clock analysis, novel
phylogeographic events originating from the glacial period over one
million years ago were uncovered. Conventional surveys in
phylogeographic studies are prone to sampling biases due to the
difficulty of directly collecting many individuals from different sites.
The eDNA-based method provides an unbiased understanding of population
genetic structures over a wide geographic range. When combined with a
sufficient number of appropriate capture-based analyses, eDNA-based
analyses can considerably reduce the effort and time required for
acquiring high-resolution phylogeographic information. In fact,
approximately 300 river samples were collected for this study, covering
the entire Hokkaido region with high geographic density in 32 days. One
of the advantages of this approach is that the same eDNA samples can be
reused for detecting many other species in the same river systems,
facilitating comparative phylogeographic studies. At present, extensive
eDNA projects are being executed on national and global scales. For
example, the All Nippon eDNA Monitoring Network includes more than 800
monitoring sites across the Japanese archipelago
(https://db.anemone.bio/),
whereas the eDNA expedition project of UNESCO World Heritage marine
sites covers more than 15 countries
(https://www.unesco.org/en/edna-expeditions).
The integration of broad-scale eDNA biomonitoring with phylogeographic
analyses has the potential to largely advance our understanding of
global biodiversity. Our findings demonstrate the huge advantages of the
eDNA technique as an innovative population genetic method that can
rapidly and extensively detect biodiversity patterns.
References
1. J. C. Avise, J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E.
Neigel, C. A. Reeb, N. C. Saunders, INTRASPECIFIC PHYLOGEOGRAPHY: The
Mitochondrial DNA Bridge Between Population Genetics and Systematics.Annu. Rev. Ecol. Syst. 18 , 489–522 (1987).
2. R. J. Petit, I. Aguinagalde, J. L. De Beaulieu, C. Bittkau, S.
Brewer, R. Cheddadi, R. Ennos, S. Fineschi, D. Grivet, M. Lascoux, A.
Mohanty, G. Müller-Starck, B. Demesure-Musch, A. Palmé, J. P. Martín, S.
Rendell, G. G. Vendramin, Glacial refugia: Hotspots but not melting pots
of genetic diversity. Science 300 , 1563–1565 (2003).
3. E. K. F. Chan, A. Timmermann, B. F. Baldi, A. E. Moore, R. J. Lyons,
S. S. Lee, A. M. F. Kalsbeek, D. C. Petersen, H. Rautenbach, H. E. A.
Förtsch, M. S. R. Bornman, V. M. Hayes, Human origins in a southern
African palaeo-wetland and first migrations. Nature 575 ,
185–189 (2019).
4. G. Larson, K. Dobney, U. Albarella, M. Fang, E. Matisoo-Smith, J.
Robins, S. Lowden, H. Finlayson, T. Brand, E. Willerslev, F.
Rowley-Conwy, L. Andersson, A. Cooper, Worldwide phylogeography of wild
boar reveals multiple centers of pig domestication. Science.307 , 1618–1621 (2005).
5. A. R. Templeton, Out of Africa again and again. Nature .416 , 45–51 (2002).
6. K. H. Kjaer, M. W. Pedersen, B. De Sanctis, B. De Cahsan, C. S.
Michelsen, K. K. Sand, S. Jelavić, A. H. Ruter, A. M. Z Bonde, K. K.
Kjeldsen, A. S. Tesakov, I. Snowball, J. C. Gosse, I. G. Alsos, Y. Wang,
C. Dockter, M. Rasmussen, B. Skadhauge, A. Prohaska, J. Å Kristensen, M.
Bjerager, E. Allentoft, E. Coissac, P. Consortium, A. Rouillard, A.
Simakova, A. Fernandez-Guerra, C. Bowler, M. Macias-Fauria, J. J. Welch,
A. J. Hidy, M. Sikora, M. J. Collins, R. Durbin, N. K. Larsen, E.
Willerslev, A 2-Million-year-old ecosystem in Greenland uncovered by
environmental DNA. Nature . 612 (2022).
7. D. M. Leigh, C. B. van Rees, K. L. Millette, M. F. Breed, C. Schmidt,
L. D. Bertola, B. K. Hand, M. E. Hunter, E. L. Jensen, F. Kershaw, L.
Liggins, G. Luikart, S. Manel, J. Mergeay, J. M. Miller, G. Segelbacher,
S. Hoban, I. Paz-Vinas, Opportunities and challenges of macrogenetic
studies. Nat. Rev. Genet. 22 , 791–807 (2021).
8. X. P. Liu, G. A. Duffy, W. S. Pearman, L. R. Pertierra, C. I. Fraser,
Meta-analysis of Antarctic phylogeography reveals strong sampling bias
and critical knowledge gaps. Ecography. e06312 (2022).
9. J. D. Phillips, R. A. Gwiazdowski, D. Ashlock, R. Hanner, An
exploration of sufficient sampling effort to describe intraspecific DNA
barcode haplotype diversity: examples from the ray-finned fishes
(Chordata: Actinopterygii). DNA Barcodes . 3 , 66–73
(2016).
10. C. I. M. Adams, C. Hepburn, G.-J. Jeunen, H. Cross, H. R. Taylor, N.
J. Gemmell, M. Bunce, M. Knapp, Environmental DNA reflects common
haplotypic variation. Environ. DNA . (2022).
11. S. Tsuji, N. Shibata, R. Inui, R. Nakao, Y. Akamatsu, K. Watanabe,
Environmental DNA phylogeography: Successful reconstruction of
phylogeographic patterns of multiple fish species from cups of water.Mol. Ecol. Resour. (2023).
12. K. Weitemier, B. E. Penaluna, L. L. Hauck, L. J. Longway, T. Garcia,
R. Cronn, Estimating the genetic diversity of Pacific salmon and trout
using multigene eDNA metabarcoding. Mol. Ecol. 30 ,
4970–4990 (2021).
13. A. Goto, T. Nakanishi, H. Utoh, K. Hamada, A preliminary study of
the freshwater fish fauna of rivers in southern Hokkaido. Bull.
Fish. Sci. Hokkaido Univ. 29 , 118–130 (1978).
14. Japan Association for Quaternary Research, Quaternary Maps of
Japan (with explanatory text). Univ. Tokyo Press (1987).
15. M. Nakagawa, M. Amma-Miyasaka, D. Miura, S. Uesawa,
Tephrostratigraphy in Ishikari Lowland, Southwestern Hokkaido: Eruption
history of the Shikotsu-Toya volcanic field. Jour. Geol. Soc.
Japan . 124 , 473–489 (2018).
16. E. Bermingham, J. C. Avise, Molecular zoogeography of freshwater
fishes in the southeastern United States. Genetics . 113 ,
939–965 (1986).
17. A. Perdices, I. Doadrio, P. S. Economidis, J. Bohlen, P. Bǎnǎrescu,
Pleistocene effects on the European freshwater fish fauna: Double origin
of the cobitid genus Sabanejewia in the Danube basin
(Osteichthyes: Cobitidae). Mol. Phylogenet. Evol. 26 ,
289–299 (2003).
18. R. G. Reeves, E. Bermingham, Colonization, population expansion, and
lineage turnover: Phylogeography of Mesoamerican characiform fish.Biol. J. Linn. Soc. 88 , 235–255 (2006).
19. L. E. MacConaill, R. T. Burns, A. Nag, H. A. Coleman, M. K. Slevin,
K. Giorda, M. Light, K. Lai, M. Jarosz, M. S. McNeill, M. D. Ducar, M.
Meyerson, A. R. Thorner, Unique, dual-indexed sequencing adapters with
UMIs effectively eliminate index cross-talk and significantly improve
sensitivity of massively parallel sequencing. BMC Genomics .19 , 30 (2018).
20. D. W. Fadrosh, P. G. Bing Ma, N. Sengamalay, S. Ott, R. M. Brotman,
J. Ravel, An improved dual-indexing approach for multiplexed 16S rRNA
gene sequencing on the Illumina MiSeq platform. Microbiome .2 , (2014).
21. M. Miya, Y. Sato, T. Fukunaga, T. Sado, J. Y. Poulsen, K. Sato, T.
Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh, W. Iwasaki,
MiFish, a set of universal PCR primers for metabarcoding environmental
DNA from fishes: Detection of more than 230 subtropical marine species.R. Soc. Open Sci. 2 , 150088 (2015),
22. S. Tsuji, M. Miya, M. Ushio, H. Sato, T. Minamoto, H. Yamanaka,
Evaluating intraspecific genetic diversity using environmental DNA and
denoising approach: A case study using tank water. Environ. DNA .2 , 42–52 (2020).
23. R. Saka, Y. Takehana, N. Suguro, M. Sakaizumi, Genetic population
structure of Lefua echigonia inferred from allozymic and mitochondrial
cytochrome b variations. Ichthyol. Res. 50 ,
301–309 (2003).
24. D. M. Irwin, T. D. Kocher, A. C. Wilson, Evolution of the cytochromeb gene of mammals. J. Mol. Evol. 32 , 128–144
(1991).
25. G. Orti, M. A. Bell, T. E. Reimchen, A. Meyer, Global survey of
mitochondrial DNA sequences in the threespine stickleback: Evidence for
recent migrations. Evolution. 48 , 608–622 (1994).
26. Y. Ono, The Northern Landbridge of Japan. Quat. Res.29 , 183–192 (1990).
27. L. Excoffier, Patterns of DNA sequence diversity and genetic
structure after a range expansion: Lessons from the infinite-island
model. Mol. Ecol. 13 , 853–864 (2004).
28. L. Excoffier, H. E. L. Lischer, Arlequin suite ver 3.5: A new series
of programs to perform population genetics analyses under Linux and
Windows. Mol. Ecol. Resour. 10 , 564–567 (2010).
29. N. Azuma, J. I. Hangui, M. Wakahara, H. Michimae, Population
structure of the salamander hynobius retardatus inferred from a partial
sequence of the mitochondrial DNA control region. Zoolog. Sci.30 , 7–14 (2013).
30. T. Matsuhashi, R. Masuda, T. Mano, M. C. Yoshida, Microevolution of
the mitochondrial DNA control region in the Japanese brown bear
(Ursus arctos) population. Mol. Biol. Evol. 16 ,
676–684 (1999).
31. T. Oishi, K. Uraguchi, K. Takahashi, R. Masuda, Population
structures of the red fox (Vulpes vulpes ) on the hokkaido Island,
Japan, revealed by microsatellite analysis. J. Hered.102 , 38–46 (2011).
32. K. Kawai, F. Hailer, A. P. De Guia, H. Ichikawa, T. Saitoh, Refugia
in glacial ages led to the current discontinuous distribution patterns
of the dark red-backed vole Myodes rex on Hokkaido, Japan.Zoolog. Sci. 30 , 642–650 (2013).
33. A. Ooyagi, D. F. Mokodongan, J. Montenegro, I. F. Mandagi, N.
Koizumi, Y. Machida, N. Inomata, S. V. Shedko, A. A. Hutama, R. K.
Hadiaty, K. Yamahira, Phylogeography of the eight-barbel loachLefua nikkonis (Cypriniformes: Nemacheilidae): how important were
straits in northern Japan as biogeographical barriers? Ichthyol.
Res. 65 , 115–126 (2018).
34. H. Sakai, T. Ueda, R. Yokoyama, Genetic structure and phylogeography
of northern Far Eastern pond minnows, Rhynchocypris perenurus
sachalinensis and R. p. mantschuricus (Pisces, Cyprinidae),
inferred from mitochondrial DNA sequences. Biogeography .16 , 87–109 (2014).
35. I. Koizumi, N. Usio, T. Kawai, N. Azuma, R. Masuda, Loss of genetic
diversity means loss of geological information: The endangered Japanese
crayfish exhibits remarkable historical footprints. PLoS One .7, e33986 (2012)
36. T. Yatsuyanagi, H. Araki, Understanding seasonal migration of
Shishamo smelt in coastal regions using environmental DNA. PLoS
One . 15 , e0239912 (2020).
37. T. Minamoto, M. Miya, T. Sado, S. Seino, H. Doi, M. Kondoh, K.
Nakamura, T. Takahara, S. Yamamoto, H. Yamanaka, H. Araki, W. Iwasaki,
A. Kasai, R. Masuda, K. Uchii, An illustrated manual for environmental
DNA research: Water sampling guidelines and experimental protocols.Environ. DNA . 3 , 8–13 (2021).
38. T. A. Hall, BioEdit: a user-friendly biological sequence alignment
editor and analysis program for Windows 95/98/NT. Nucleic Acids
Symp. Ser. 41 , 95–98 (1999).
39. J. D. Thompson, D. G. Higgins, T. J. Gibson, CLUSTAL W: Improving
the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 22 , 4673–4680 (1994).
40. S. Tsuji, N. Shibata, H. Sawada, M. Ushio, Quantitative evaluation
of intraspecific genetic diversity in a natural fish population using
environmental DNA analysis. Mol. Ecol. Resour. 20 ,
1323–1332 (2020).
41. M. Martin, Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet . 17 , 10–12 (2011).
42. R. C. Edgar, Search and clustering orders of magnitude faster than
BLAST. Bioinformatics . 26 , 2460–2461 (2010).
43. X. Turon, A. Antich, C. Palacín, K. Præbel, O. S. Wangensteen, From
metabarcoding to metaphylogeography: separating the wheat from the
chaff. Ecol. Appl. 30 , 1–19 (2020).
44. J. P. Huelsenbeck, F. Ronquist, MRBAYES: Bayesian inference of
phylogenetic trees. Bioinforma. Appl. Note . 17 , 754–755
(2001).
45. S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular
evolutionary genetics analysis across computing platforms. Mol.
Biol. Evol. 35 , 1547–1549 (2018).
46. J. W. Leigh, D. Bryant, POPART: full-feature software for haplotype
network construction. Methods Ecol. Evol. 6 , 1110–1116
(2015).
47. S. Harada, S. Jeon, I. Kinoshita, M. Tanaka, M. Nishida,
Phylogenetic relationships of four species of floating gobies
(Gymnogobius ) as inferred from partial mitochondrial cytochromeb gene sequences. Ichthyol. Res. 49 , 324–332
(2002).