References

Aldrich, M., Billington, C., Edwards, M., Laidlaw, R., 1997a. Locations of tropical montane cloud forest sites as recorded in a worldwide inventory compiled by UNEP-WCMC and published in “A Global Directory of Tropical Montane Cloud Forests.”
Aldrich, M., Billington, C., Edwards, M., Laidlaw, R., 1997b. Tropical Montane Cloud Forests: An Urgent Priority for Conservation. The World Conservation Monitoring Centre. https://doi.org/10.34892/DEPR-ZA38
Allen, M.R., Dube, O.P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., Zickfeld, K., 2018. Framing and Context, in: Masson-Delmotte, V., Zhai, H., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T. (Eds.), Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. The Intergovernmental Panel on Climate Change.
Anchukaitis, K.J., Evans, M.N., 2010. Tropical cloud forest climate variability and the demise of the Monteverde golden toad. Proc. Natl. Acad. Sci. U.S.A. 107, 5036–5040. https://doi.org/10.1073/pnas.0908572107
Bååth, R., 2014. Bayesian First Aid: A Package that Implements Bayesian Alternatives to the Classical *.test Functions in R, in: UseR! 2014 - the International R User Conference. Presented at the The R User Conference, Los Angeles, USA.
Betts, M.G., Wolf, C., Ripple, W.J., Phalan, B., Millers, K.A., Duarte, A., Butchart, S.H.M., Levi, T., 2017. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444. https://doi.org/10.1038/nature23285
Bonshoms, M., Ubeda, J., Liguori, G., Körner, P., Navarro, Á., Cruz, R., 2022. Validation of ERA5-Land temperature and relative humidity on four Peruvian glaciers using on-glacier observations. J. Mt. Sci. 19, 1849–1873. https://doi.org/10.1007/s11629-022-7388-4
Bruijnzeel, L.A., Mulligan, M., Scatena, F.N., 2011a. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Process. 25, 465–498. https://doi.org/10.1002/hyp.7974
Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S., 2011b. The climate of cloud forests, in: Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511778384
Chagnon, F.J.F., 2004. Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett. 31, L24212. https://doi.org/10.1029/2004GL021188
Diffenbaugh, N.S., Barnes, E.A., 2023. Data-driven predictions of the time remaining until critical global warming thresholds are reached. Proc. Natl. Acad. Sci. U.S.A. 120, e2207183120. https://doi.org/10.1073/pnas.2207183120
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E.C., Jones, B., Barber, C.V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J.E.M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L., Brito, J.C., Llewellyn, O.A., Miller, A.G., Patzelt, A., Ghazanfar, S.A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Lillesø, J.-P.B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K.F., Saleem, M., 2017. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 67, 534–545. https://doi.org/10.1093/biosci/bix014
Dommo, A., Vondou, D.A., Philippon, N., Eastman, R., Moron, V., Aloysius, N., 2022. The ERA5’s diurnal cycle of low-level clouds over Western Central Africa during June–September: Dynamic and thermodynamic processes. Atmospheric Research 280, 106426. https://doi.org/10.1016/j.atmosres.2022.106426
Feeley, K.J., Bravo-Avila, C., Fadrique, B., Perez, T.M., Zuleta, D., 2020. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 10, 965–970. https://doi.org/10.1038/s41558-020-0873-2
Feeley, K.J., Silman, M.R., Bush, M.B., Farfan, W., Cabrera, K.G., Malhi, Y., Meir, P., Revilla, N.S., Quisiyupanqui, M.N.R., Saatchi, S., 2011. Upslope migration of Andean trees: Andean trees migrate upslope. Journal of Biogeography 38, 783–791. https://doi.org/10.1111/j.1365-2699.2010.02444.x
Foster, P., 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55, 73–106. https://doi.org/10.1016/S0012-8252(01)00056-3
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J., 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2, 150066. https://doi.org/10.1038/sdata.2015.66
Gentry, A.H., 1992. Tropical Forest Biodiversity: Distributional Patterns and Their Conservational Significance. Oikos 63, 19. https://doi.org/10.2307/3545512
Goldsmith, G.R., Matzke, N.J., Dawson, T.E., 2013. The incidence and implications of clouds for cloud forest plant water relations. Ecol Lett 16, 307–314. https://doi.org/10.1111/ele.12039
Helmer, E.H., Gerson, E.A., Baggett, L.S., Bird, B.J., Ruzycki, T.S., Voggesser, S.M., 2019. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS ONE 14, e0213155. https://doi.org/10.1371/journal.pone.0213155
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N., 2018. ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J., 2020. The ERA5 global reanalysis. Q.J.R. Meteorol. Soc. 146, 1999–2049. https://doi.org/10.1002/qj.3803
Karger, D.N., Kessler, M., Lehnert, M., Jetz, W., 2021. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat Ecol Evol. https://doi.org/10.1038/s41559-021-01450-y
Kruschke, J., 2013. Bayesian Estimation Supersedes the t Test. Journal of Experimental Psychology 142, 573–603. https://doi.org/10.1037/a0029146
Kuhn, M., Johnson, K., 2016. Applied Predictive Modeling. Springer Nature, New York.
Lawton, R.O., Nair, U.S., Pielke, R.A., Welch, R.M., 2001. Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests. Science 294, 584. https://doi.org/10.1126/science.1062459
Lei, Y., Letu, H., Shang, H., Shi, J., 2020. Cloud cover over the Tibetan Plateau and eastern China: a comparison of ERA5 and ERA-Interim with satellite observations. Clim Dyn 54, 2941–2957. https://doi.org/10.1007/s00382-020-05149-x
Liland, K., Mevik, B., Wehrens, R., 2021. pls: Partial Least Squares and Principal Component Regression.
Litovsky, A., Mulligan, M., Larsen, E., Campbell, M., Micklethwaite, K., 2022. Cloud Forest Assets: Financing a Valuable Nature-based Solution. Earth Security.
Los, S.O., Street-Perrott, F.A., Loader, N.J., Froyd, C.A., 2021. Detection of signals linked to climate change, land-cover change and climate oscillators in Tropical Montane Cloud Forests. Remote Sensing of Environment 260, 112431. https://doi.org/10.1016/j.rse.2021.112431
Lu, S., Shao, X., Freitag, M., Klein, L.J., Renwick, J., Marianno, F.J., Albrecht, C., Hamann, H.F., 2016. IBM PAIRS curated big data service for accelerated geospatial data analytics and discovery, in: 2016 IEEE International Conference on Big Data (Big Data). Presented at the 2016 IEEE International Conference on Big Data (Big Data), IEEE, Washington DC,USA, pp. 2672–2675. https://doi.org/10.1109/BigData.2016.7840910
Malhi, Y., Wright, J., 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. Phil. Trans. R. Soc. Lond. B 359, 311–329. https://doi.org/10.1098/rstb.2003.1433
Mayer, A., Jones, K., Hunt, D., Manson, R., Carter Berry, Z., Asbjornsen, H., Wright, T.M., Salcone, J., Lopez Ramirez, S., Ávila-Foucat, S., Von Thaden Ugalde, J., 2022. Assessing ecosystem service outcomes from payments for hydrological services programs in Veracruz, Mexico: Future deforestation threats and spatial targeting. Ecosystem Services 53, 101401. https://doi.org/10.1016/j.ecoser.2021.101401
McNicholl, B., Lee, Y.H., Campbell, A.G., Dev, S., 2022. Evaluating the Reliability of Air Temperature From ERA5 Reanalysis Data. IEEE Geosci. Remote Sensing Lett. 19, 1–5. https://doi.org/10.1109/LGRS.2021.3137643
Mehmood, T., Liland, K.H., Snipen, L., Sæbø, S., 2012. A review of variable selection methods in Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems 118, 62–69. https://doi.org/10.1016/j.chemolab.2012.07.010
Mulligan, M., 2021. Mapping Hydrological Ecosystem Services and Impacts of Scenarios for Deforestation and Conservation of Lowland, Montane and Cloud-Affected Forests, in: Myster, R.W. (Ed.), The Andean Cloud Forest. Springer International Publishing, Cham, pp. 189–218. https://doi.org/10.1007/978-3-030-57344-7_10
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D.G., Piles, M., Rodríguez-Fernández, N.J., Zsoter, E., Buontempo, C., Thépaut, J.-N., 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383. https://doi.org/10.5194/essd-13-4349-2021
Nair, U.S., Asefi, S., Welch, R.M., Ray, D.K., Lawton, R.O., Manoharan, V.S., Mulligan, M., Sever, T.L., Irwin, D., Pounds, J.A., 2008. Biogeography of Tropical Montane Cloud Forests. Part II: Mapping of Orographic Cloud Immersion. Journal of Applied Meteorology and Climatology 47, 2183–2197. https://doi.org/10.1175/2007JAMC1819.1
Nair, U.S., Ray, D.K., Lawton, R.O., Welch, R.M., Pielke, R.A., Calvo-Alvarado, J., 2011. The impact of deforestation on orographic cloud formation in a complex tropical environment, in: Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S.E. (Eds.), Tropical Montane Cloud Forests: Science for Conservation and Management, International Hydrology Series. Cambridge University Press, pp. 538–548. https://doi.org/10.1017/CBO9780511778384.057
Narvaez, R., Mabe, J., Falconer, A., 2017. Cloud Forest Blue Energy Mechanism. The Global Innovation Lab for Climate Finance.
Oliveira, R.S., Eller, C.B., Bittencourt, P.R.L., Mulligan, M., 2014. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Annals of Botany 113, 909–920. https://doi.org/10.1093/aob/mcu060
Ponce-Reyes, R., Reynoso-Rosales, V.-H., Watson, J.E.M., VanDerWal, J., Fuller, R.A., Pressey, R.L., Possingham, H.P., 2012. Vulnerability of cloud forest reserves in Mexico to climate change. Nature Clim Change 2, 448–452. https://doi.org/10.1038/nclimate1453
Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L., Foster, P.N., La Marca, E., Masters, K.L., Merino-Viteri, A., Puschendorf, R., Ron, S.R., Sánchez-Azofeifa, G.A., Still, C.J., Young, B.E., 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167. https://doi.org/10.1038/nature04246
Pounds, J.A., Fogden, M.P.L., Campbell, J.H., 1999. Biological response to climate change on a tropical mountain. Nature 398, 611–615. https://doi.org/10.1038/19297
R Core Team, 2023. R: A Language and Environment for Statistical Computing.
Ray, D.K., Nair, U.S., Lawton, R.O., Welch, R.M., Pielke, R.A., 2006. Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of orographic cloud formation to deforestation in the plains. J. Geophys. Res. 111, D02108. https://doi.org/10.1029/2005JD006096
Rojas-Soto, O.R., Sosa, V., Ornelas, J.F., 2012. Forecasting cloud forest in eastern and southern Mexico: conservation insights under future climate change scenarios. Biodivers Conserv 21, 2671–2690. https://doi.org/10.1007/s10531-012-0327-x
Smith, C., Baker, J.C.A., Spracklen, D.V., 2023. Tropical deforestation causes large reductions in observed precipitation. Nature. https://doi.org/10.1038/s41586-022-05690-1
Still, C.J., Foster, P.N., Schneider, S.H., 1999. Simulating the effects of climate change on tropical montane cloud forests. Nature 398, 608–610. https://doi.org/10.1038/19293
Tetzner, D., Thomas, E., Allen, C., 2019. A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. Geosciences 9, 289. https://doi.org/10.3390/geosciences9070289
Wang, J., Chagnon, F.J.F., Williams, E.R., Betts, A.K., Renno, N.O., Machado, L.A.T., Bisht, G., Knox, R., Bras, R.L., 2009. Impact of deforestation in the Amazon basin on cloud climatology. Proceedings of the National Academy of Sciences 106, 3670–3674. https://doi.org/10.1073/pnas.0810156106
Wilson, A.M., Jetz, W., 2016. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLOS Biology 14, e1002415. https://doi.org/10.1371/journal.pbio.1002415
Yilmaz, M., 2023. Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of The Total Environment 856, 159182. https://doi.org/10.1016/j.scitotenv.2022.159182
Zotarelli, L., Dukes, M.D., Romero, C.C., Migliaccio, K.W., Morgan, K.T., 2010. Step by step calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences. University of Florida.