References
1. H. Yang, C. Wang, B. Jiang, et al: ‘Visual Perception Enabled
Industry Intelligence: State of the Art, Challenges and Prospects’, IEEE
Transactions on Industrial Informatics, 2021, 17 , (3), pp.
2204-2219.
2. X. Chen, G. Wang, H.Guo, C. Zhang: ‘Pose Guided Structured Region
Ensemble Network for Cascaded Hand Pose Estimation’, Neurocomputing,
2017, 395 , pp. 138-149.
3. S. Liu, G. Wang, P. Xie and C. Zhang: ‘Light and Fast Hand Pose
Estimation From Spatial-Decomposed Latent Heatmap’, IEEE Access, 2020,8 , pp. 53072-53081.
4. X. Zhang, S. Huang, Z. Ye: ‘Accurate 3D hand pose estimation network
utilizing joints information’, Signal Processing:Image Communication,
2021, 90 .
5. Amir Rasouli, Iuliia Kotseruba: ‘PedFormer: Pedestrian Behavior
Prediction via Cross-Modal Attention Modulation and Gated Multitask
Learning’, IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 9844-9851.
6. T. Simon, H. Joo, I. Matthews, Y. Sheikh: ‘Hand Keypoint Detection in
Single Images Using Multiview Bootstrapping’, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4645-4653.
7. A. Spurr, J. Song, S. Park and O. Hilliges: ‘Cross-Modal Deep
Variational Hand Pose Estimation’, IEEE Conference on Computer Vision
and Pattern Recognition(CVPR), 2018, pp. 89-98.
8. L. Ge et al.: ‘3D Hand Shape and Pose Estimation From a Single RGB
Image’, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 10825-10834.
9. L. Yang and A. Yao: ‘Disentangling Latent Hands for Image Synthesis
and Pose Estimation’, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 9869-9878.
10.H.‐X. Song, T.‐J. Mu, R. R. Martin: ‘Joint Hand and Object Pose
Estimation from a Single RGB Image using High‐level 2D Constraints’,
Computer Graphics Forum, 2022, 41 , 7, pp. 383-394.
11. L. Chen, S. Lin, Y. Xie, et al: ‘DGGAN: Depth-image Guided
Generative Adversarial Networks for Disentangling RGB and Depth Images
in 3D Hand Pose Estimation’, IEEE Winter Conference on Applications of
Computer Vision (WACV), 2020, pp. 400-408.
12. D. Kong, H. Ma, Y. Chen, et al: ‘Rotation-invariant Mixed Graphical
Model Network for 2D Hand Pose Estimation’, IEEE Winter Conference on
Applications of Computer Vision (WACV), 2020, pp. 1535-1544.
13. L. Fan, H. Rao, W. Yang: ‘3D Hand Pose Estimation Based on
Five-Layer Ensemble CNN’, Sensors, 2021, 21 , pp. 649-664,2021.
14. X. Wang, J. Jiang, Y. Guo, et al: ‘CFAM:Estimation 3D hand poses
from a single RGB image with attention’, Applied Sciences, 2020,10 , pp.618-635.
15. Y. Wang, L. Chen, J. Li, et al.: ‘HandGCNFormer: A Novel
Topology-Aware Transformer Network for 3D Hand Pose Estimation’,
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
2023, pp. 5664-5673.
16. G. Moon, S. Yu, H. Wen, et al: ‘InterHand2.6M: A Dataset and
Baseline for 3D Interacting Hand Pose Estimation from a Single RGB
Image’, European Conference on Computer Vision, 2020, pp. 548-564.