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Key Points:

+ We demonstrate the capacity of statistical models to generate global maps of fCO9
and air-sea flux with a latency reduced to one month.

e A decrease in the CO5 source for January to August 2023 diagnosed in the tropical
Pacific coheres with the retreat of the La Nina event.

e An unusual northeastern Atlantic sink reduction diagnosed for June 2023 is linked to

record heat and exceptionally low winds.
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Abstract

The Surface Ocean COgy Atlas (SOCAT) of COq fugacity (fCO;) observations is a key
resource supporting annual assessments of COy uptake by the ocean and its side effects on
the marine ecosystem. SOCAT data are usually released with a lag of up to 1.5 years which
hampers timely quantification of recent variations of carbon fluxes between the Earth System
components, not only with the ocean. This study uses a statistical ensemble approach to
analyse fCO9 with a latency of one month only based on the previous SOCAT release and
a series of predictors. A retrospective prediction for the years 2021-2022 is made to test the
model skill, followed by the generation of fCO4 and fluxes from January to August in 2023.
Results indicate a modest degradation of the model skill in prediction mode and open the
possibility to provide robust information about marine carbonate system variables with low

latency.

Plain Language Summary

There is a growing need to monitor carbon emissions and removals over the globe in near
real time in order to correctly interpret changes in COs concentrations as they unfold. For
the oceans, the best information comes from measurements of the surface ocean CO5 fugacity
(fCO2) by the international marine carbon research community. So far, this data is mostly
available 6 to 18 months behind real time after collection, qualification, harmonization, and
processing. Here, we show that a set of biological, chemical, and physical predictors available
in near-real time, allows the information contained in the “old” fCO5 measurements to be
transferred over time. Based on a statistical technique, we combine all these data sources
to estimate global monthly maps of fCOy and of COq fluxes at the air-sea interface within

one month behind real time and with good accuracy.

1 Introduction

The ocean is a sink taking up about 26% of atmospheric carbon dioxide (CO2) and
90% of the heat-induced largely by anthropogenic greenhouse gas emissions (Canadell et
al., 2021; Friedlingstein et al., 2022). A side effect of the ocean’s role as a global climate
modulator is the increase in seawater acidity, which dramatically affects marine ecosystems
(Hopkins et al., 2020; Doney et al., 2020; Cooley et al., 2022). The global ocean carbon
sink is proportional to COs human emissions only at the decadal scale. On shorter time

scales, it varies with the climate (mostly temperature and winds), with a dependency that
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also varies from basin to basin given their respective geographical, dynamic, and biological

specificities (Rodenbeck et al., 2015; Landschiitzer et al., 2016; Gruber et al., 2023).

Measurements of surface ocean COq fugacity (fCOs2) from ships, drifters, moorings,
and autonomous surface platforms are the main reference to document the actual varia-
tion of air-sea fluxes (fgCO3) in space and time (Friedlingstein et al., 2022) because the
two are linearly related. Long-term efforts in maintaining and expanding international ob-
serving networks together with a coordinated data aggregation of the Surface Ocean COg2
Atlas database - SOCAT (Bakker et al., 2016, 2023) have provided millions of individual
fCO4 observations since the 1950s and associated gridded products. However, fCO4y data
are poorly sampled leaving out most areas for some or all of the year. Statistical data-
based reconstructions of fCOy (Rodenbeck et al., 2013; Landschiitzer et al., 2016; Gregor
& Gruber, 2021; Chau et al., 2022b) have emerged to gap-fill the SOCAT database using
auxiliary data, resulting in reconstructions of fCO; global monthly maps. They are still
the topic of active research to improve the reconstruction quality, but these maps lag be-
hind real time by 0.5 to 1.5 years: the update of the SOCAT archive follows an annual
pace with a public release usually in June after measurement collection, quality control,
and processing. This lag is problematic for the documentation of the carbon cycle as it
evolves, while the main variables of the carbon cycle are progressively integrated within op-
erational programmes with much faster data releases. A prominent example of operational
programmes in need of a reduced time lag is the operational observation-based anthro-
pogenic CO4 emissions monitoring and verification support capacity (CO2MVS) that the
European Commission is building under its Copernicus Earth Observation programme (e.g.,
Janssens-Maenhout et al. (2020)). As its observational component relies heavily on satellite
observations of COs in the atmosphere, which is affected by the ocean as well as terrestrial
emissions and removals, better estimates of fCOs would result in efficient estimates of air-
sea fluxes and thence benefit air-land flux accuracy, in addition to being directly interesting
to users. The COsMVS fits within the Global Greenhouse Gas Watch, an even larger green-
house gas monitoring infrastructure that the World Meteorological Organization (WMO) is
setting up (https://public.wmo.int/en/media/press-release/world-meteorological

-congress-approves-global-greenhouse-gas-watch, last access: 20/9/2023).

Here, we demonstrate the capability to retrieve global monthly maps of fCOs from
SOCAT data and then to generate the corresponding fields of air-sea fluxes with a lag re-

duced to one month. To do that, we extend the work of Chau et al. (2022b) who have been
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gap-filling SOCAT gridded data within the framework of the Copernicus Marine Environ-
ment Monitoring Service (CMEMS) based on an ensemble of feed-forward neural network
models (also referred to as CMEMS-LSCE-FFNN) and a set of biological, chemical, and
physical predictors. While Chau et al. (2022b) made the dates of the predictors and the
date of the gridded SOCAT data coincide, we turn to a prediction mode in which the rela-
tionship found between the predictors and the SOCAT data more than 6 months before is
kept. Section 2 below describes the method. We test the approach in the years 2021-2022
by examining the retrospective prediction skill based on the available SOCAT data. Then
we expand model prediction of fCOs and generate fgCOs up to present with a latency
of 1 month: data access via the Institut Pierre-Simon Laplace (LSCE/IPSL) data center,
https://dods.lsce.ipsl.fr/invsat/FFNN_low-latency/. The results include the find-
ing of anomalous variations in regional COy uptake and release by the ocean predicted in
January to August 2023, as described in Section 3. Section 4 draws the main conclusions of

the study.

2 Materials and Methods

CMEMS-LSCE-FFNN (Chau et al., 2022b) is built on machine-learning techniques.
It consists of an ensemble of feed-forward neural network (FFNN) models. This ensemble
approach was developed at LSCE in order to reconstruct surface ocean carbonate system
variables and to support the operational distribution of such datasets by CMEMS since
2019 (Product identity: MULTIOBS GLO_BIO CARBON_SURFACE_REP 015 008,
https://doi.org/10.48670/moi-00047, last access: 22/9/2023). The CMEMS-LSCE-
FFNN fields cover the global ocean at a resolution of 1° x 1° currently and for the period

since the year 1985 at monthly resolution.

Under the hood, these FFNN models represent nonlinear mappings of fCO, against
a set of predictors. Monthly gridded observation-based products of fCOy from SOCAT
(Bakker et al., 2016) are used as the target data in model fitting. fCOs predictors are envi-
ronmental variables: sea surface temperature (SST), sea surface salinity (SSS), sea surface
height (SSH), chlorophyll-a (Chl-a), mix-layer-depth (MLD), COy surface mole fractions
(xCO,), climatological fCO, (fCO2™), and geographical coordinates (latitude and longi-
tude). Product resources of input datasets are detailed in Table S1. CMEMS-LSCE-FFNN
comprises monthly adaptive FFNN models for which the fCO5 and predictor datasets avail-

able within a time span of 3 months for all the years since 1985 (the reconstruction month
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excepted) are used in the fitting phase. SOCAT fCOx in the reconstruction month is only
used in model evaluation. The ensemble of multi-FFNN models was designed by randomly
splitting two-thirds of the 3-month sliding datasets for training and the rest for model test
(Chau et al., 2022b). From the ensemble reconstructions, the model best estimate (ensemble
mean) and lo - model uncertainty (ensemble standard deviation) of fCOy are derived at

the desired resolution.

Here we revisit the two versions of CMEMS-LSCE-FFNN referred to as FFNNv2021 and
FFNNv2022. These two models respectively used SOCATv2021 and SOCATv2022 datasets
(Bakker et al., 2021, 2022) as the target input data of fCO5. Note that SOCAT has been
annually published mid-June. Due to the delay mode for data collection, reprocessing, and
qualify control, SOCAT provides gridded data up to the year before the publication date
(see Bakker et al. (2016, 2023) for instance). For the period 1985-2021, SOCATv2022 offers
an amount of roughly 311700 monthly 1-degree gridded data, 5000 more than SOCATv2021
(Table S3a). The data increase in SOCATvV2022 is mostly distributed within the last three
years due to the late availability of some data sources (Figure 1). However, SOCATv2021
has more data before 2018, up to at least 1000 more in some years (e.g., 2011 and 2012) due
to an erroneous flagging of some data (Bakker et al., 2021). Despite this feature, the two
corresponding FFNN reconstructions do not exhibit large systematic offsets in their fCOq

estimates (Chau et al., 2022a).

For all experiments in this study, the ensemble size (i.e., number of FFNN model runs)
is set to 50. FFNN with 50 ensemble members has less computational complexity than
with the usual size of 100 but it shows similar reconstruction skill (Chau et al. (2022b);
Figure S2). The same input data of predictors is fed to the two FFNN model runs (Ta-
ble S1). The FENNv2021 (respectively FENNv2022) model relies on SOCATv2021 (respec-
tively SOCATv2022) and predictor datasets in 1985-2020 (respectively 1985-2021). This
allows deriving the ensemble global reconstructions of fCOs over the 36-year and 37-year
periods, accordingly. The ensemble of FFNN models is then applied to predict fCO4 given
the set of predictors in the years 2021-2022 for version 2021 and in the year 2022 for the
latter. The quality assessments are made for (1) the two global reconstructions in the period
1985-2020, (2) FFNNv2021 one-year prediction against FENNv2022 one-year reconstruction
in 2021, and (3) FFNNv2021 two-year prediction against FFNNv2022 one-year prediction in
2022. Model performances will be qualified with the latest SOCAT data, i.e., SOCATv2023

(Bakker et al., 2023). The number of evaluation data for prediction in the years 2021 and



142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

2022 over the global ocean is 10908 and 8602, respectively (Table S3a), which is statistically

sufficient for significant validation.

Model skills are examined from global to sub-basin scale. Here we consider the sub-

basins defined by the REgional Carbon Cycle Assessment and Processes2 project (https://

github.com/RECCAP2-ocean/RECCAP2-shared-resources/tree/master/data/regions, last

access: 20/3/2023). Due to a lack of evaluation data in several RECCAP2 biomes, we ag-
gregate some of them, yielding 14 provinces in total (see Table S2 and Figure S1). These
ocean provinces, therefore, differ from the original biomes proposed by Fay and McKinley
(2014). Apart from the Northern Indian Ocean (11.NIO), the number of data for prediction
evaluation ranges from 133 (12.SI0, i.e., Southern Indian Ocean) to 2350 (2.NA-SS, i.e.,

North Atlantic seasonally stratified) in the year 2021 and from 73 to 2265 in the year 2022.

For the actual prediction in 2022 and 2023, the latest model (FFNNv2022) has been
run given monthly data of predictors (Table S1) in the year 2022 to present. We choose to

release the maps of fCOy and fgCO5 for the previous month on the 15th of each month.

3 Evaluation and Discussions
3.1 Reconstruction and Prediction of CO. fugacity in 1985-2022
3.1.1 Global qualification

FFNNv2021 and FFNNv2022 share consistent global RMSD and determination coeffi-
cient 72 (Figure 1 and Table S3). Between 1985 and 2020, the two reconstructions inherit
the same RMSD of 19.1 patm and r? of 0.78 (Table S3b). Improvement in the global recon-
struction skill of FFNNv2022 in recent years (Figure 1b) is moderate despite 5000 additional
fCO4 data in the model training (Figure 1a). In detail, these 1.7% additional data in SO-
CATv2022 (311694 in total) in 1985-2021 correspond to 9615 data added in 2021 and 4278
data removed from SOCATv2021 in 1985-2020 (see the spatial distribution of removal data

in Figure S2c).

The RMSD variability before 2018 (Figure 1b) is likely linked to changes in the data
sampling in regions with high spatiotemporal variability of fCO (see Gregor et al. (2019);
Chau et al. (2022b) for further analysis). However, the difference between the RMSD of
the two reconstructions is negligible then, as it fluctuates within [—0.1,0.1] patm. During

the last four years, a monotonous increase in RMSD (Figure 1b) coexists with a decrease in
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Figure 1. (a) Number of data per year in SOCATv2021 and SOCATv2022, (b) RMSD of
FFNNv2021 and FFNNv2022 against SOCATv2023 fCOa, (c¢) yearly global mean uncertainty (1o).
Differences between the two versions are shown with a grey solid curve with values on the right
y-axis whereas the grey solid curve below 0 (grey dashed horizontal line). The blue and red vertical

lines mark the start of the prediction mode for FFNNv2021 and FFNNv2022, respectively.

the number of SOCAT data (Figure 1a), and the FFNNv2021 reconstruction slightly, but
increasingly, underperforms compared to FFNNv2022. In 2021 and 2022, the FFNNv2021
prediction RMSD is 24.3 patm and 23.1 patm, respectively, roughly 0.5—1 patm higher than
that of the FFNNv2022 reconstruction and prediction (Table S3). Likewise, the variation
of SOCAT fCO; is reproduced with high r? values (0.74 and 0.75), close to the one-year
reconstruction and prediction of FFNNv2022 (0.76) for the years 2021-2022.

The yearly-mean uncertainty over the global ocean (Figure 1c) is computed by weighting
the model estimated uncertainty (ensemble spread) per grid cell (o) with the geographical
area. The two reconstructions before the year 2015 are rather stable with an uncertainty
about 8.5 patm. The increase in FFNNv2021 [v2022] model uncertainty from 8.7 patm [8.5
patm] to 10.8 patm [10.4 patm] between 2015-2020 follows a decrease in observation-based
data from 14877 [14533] to 8482 [11217] (Figure la). In the year 2021, the FFNNv2021
uncertainty of predicted fCOy (11.4 patm) is slightly higher than that of the FFNNv2022

reconstruction but the offset between the two values is as small as 0.5 patm (Figure 1c). The
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prediction uncertainty in 2022 increases by 0.4 — 0.8 patm for the two models (FFNNv2021:
12.2 patm, FFNNv2022: 11.3 patm).

3.1.2 Regional assessment

Model reconstruction and prediction skills are assessed over 14 ocean provinces (Fig-
ure S1 and Table S2) in the years 1985-2020 and 2021-2022 (1985-2021 and 2022) for
FFNNv2021 (FFNNv2022). Results of the regional evaluation are summarized in Figure 2
and Table S4. The two FFNN models perform with a similar skill in reconstruction mode
(1985-2020) over all ocean provinces. Evidently, their reconstructions share consistent pat-
terns in regional-mean fCOs (Figure 2b) and in the spatial and temporal variations (Figures

S4abc and S7) with systematic biases below 1 patm for most of the basins (Table S4). Dif-
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nearly the same (Figure 2cde and Table S4).

ferences in uncertainty estimates and RMSD do not exceed 0.5 patm while those

in r2 are
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Figure 2. Regional comparisons of the two FFNN reconstructions in 1985-2020 (bars) and of the

FFNNv2021 prediction versus the FFNNv2022 reconstruction [prediction] in 2021 [2022] (objects)

in terms of (a) N- number of SOCAT monthly gridded data used in model fitting, (b) - mean fCOa2,

(c) o-mean uncertainty, (d) RMSD model-data deviation, and (e) 72 model-data correlation.

198

In the years 2021-2022, RMSD (r?) of the FFNN prediction does not change from the

199

200

201

full-period reconstruction by more than about 5 patm (0.1) over many sub-basins (e.g.,
2.NA-SS, 7.NP-PS, 8.PEQU-W, 10.SP, 12.SI0, and 13.S0-SS). As expected, FFNNv2022

(one-year prediction) performs slightly better than FFNNv2021 (two-year prediction) in the
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2022 prediction for many regions (Figures 2de and Table S4). However, the differences in
regional skill scores of the two models are substantially small, i.e., below 3 patm for RMSD
and 0.05 for 2. These results suggest a high confidence level in FFNN prediction for a few
years ahead. The analysis of the spatial distribution and of the time series (Figures 2, S4,
and S7) also reveals consistent features (horizontal gradients of fCOy and seasonality to
long-term variations) from the reconstruction years to the prediction years. fCOs increases
over time (see f.i., 7.NP-PS, 8. PEQU-W, 12.S10) following the trend in atmospheric COx
concentration. Among the fCOy predictors, zCOs stands out with its large increasing
trend that brings some xCOs data used in the prediction above the range of those used
in the training. The growth of atmospheric CO5 is the primary factor driving the increase
in sea surface fCO, (Bates et al., 2014; Gruber et al., 2019; Landschiitzer et al., 2019;
Friedlingstein et al., 2022). The prediction skill, however, does not degrade compared to the
reconstruction as the annual increment of fCOs is typically smaller than its intra-annual
variability (Figure S6). The latter is dominantly driven by temperature-dependent COx
solubility and biological processes (Takahashi et al., 2002; Gallego et al., 2018; Rustogi et
al., 2023). The range of the pre-2021 [pre-2022] training datasets of physical and biological
predictors (e.g., SST, Chl-a) remains similar to that including input data in the next year,
seasonality to multi-month variations of fCOs in the years 2021-2022 can be, therefore,
propagated with these covariates overall. The majority of SOCAT fCO. data for 2021
[2022] stays within the full range of training data which also supports FFNNs to achieve a
skillful prediction (Figure S3). Further analysis of FFNN prediction skills over ocean basins

is presented in the Supporting Information document.

3.2 Prediction of air-sea CO5 fluxes in 2022-2023

The previous results emphasize the skill and reliability of FFNN models in both re-
construction and prediction of COy fugacity (fCO3). In this section, we will use the
FFNNv2022 predicted fCO; field to generate corresponding air-sea fluxes (fgCOs) and
analyze preliminary results for 20 months, from January 2022 to August 2023. fgCOs is
given in molC.m2.yr"! for a flux density and in PgC.yr ! for integration over ocean basins
(see Supporting Information for details of flux calculation and analysis). FFNNv2022 pre-
dicts a reduction in the global ocean uptake of COq for 2022 (2.2540.5 PgC.yr™!) compared
to the previous year (2.36 0.43 PgC.yr'!). When adjusting the estimated global net fluxes

with the riverine outgassing of COq of 0.65 PgC.yr'! (Regnier et al., 2022) and the total
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ocean surface area (FFNNv2022 data covers 95% of the global ocean), one obtains the esti-
mates of anthropogenic ocean carbon uptake consistent with the 2022 projection proposed
by Friedlingstein et al. (2022): the anthropogenic ocean sink in 2021 was 2.9 + 0.4 PgC.yr™!
remains unchanged for the year 2022. This evidence supports their hypothesis that the
persistence of cooling climate patterns (La Nina conditions) weakened COs ocean uptake
in 2021-2022 (high peaks appeared mid-2022, Figure S9). FFNNv2022 predicts a global net
flux of 2.45 £ 0.56 PgC.yr™! for January to August 2023, the enhancement of global ocean
uptake compared to that in 2022 (2.17 £ 0.50 PgC.yr!) is synchronous with the retreat of
La Nina.

The model prediction retains the seasonal to interannual variations of fCO4 and fgCOq
in the pre-2022 reconstruction over many ocean basins (Figures S6 and S8). One of the
remarkable changes is observed at the equatorial Atlantic (4.AEQU), where the regional
mean fCOy increases by 4.2 patm from the year 2021 to 2022 (Figure S6). However,
such a high increment in the AEQU fCO; is negligible in terms of its contribution to
the global net ocean sink variations between the two years (Figure S8 and Table S5). In
Rodenbeck et al. (2015) [Figures A2 and A4], it is also illustrated that pCO2%*® ranges from
350 patm to 400 patm over an 18-year period while the AEQU net flux has performed
with nearly constant magnitude. Its low interannual variability is in contrast with the
eastern equatorial Pacific (9.PEQU-E) showing the strong impact on temporal variations
of the global net sink (Figure S8). The signature of fCOy dampening (—9.4 patm) over
PEQU-E in Jan to August of 2022-2023 is opposed to its increasing (1.8 patm) with re-
spect to 2021-2022 (Figure S6). As illustrated in Figures S8 and S9, FFNNv2022 prediction
marks an anomalous decline of COy source in the first eight months of 2023 (—0.30 & 0.04
PgC.yr!) compared to that of 2022 (—0.37 & 0.04 PgC.yrt). This reduced source of 0.07
PgC.yr! in PEQU-E contributes to 25% of the increase in the global ocean sink mentioned
above. The reduction in the PEQU-E CO5 source marks the transition from La Nina to

El Niflo announced by e.g., WMO (https://public.wmo.int/en/media/press-release/

world-meteorological-organization-declares-onset-of-el-ni%C3%Blo-conditions, last

access: 05/9/2023).

While the onset of El Nifo over the tropical Pacific (Figure S9a) had been driving
the reduction of ocean COz emission La Nifia anomalies (Figure S8), an exceptional warm-
ing event occurred and spread over the north Atlantic since May-June 2023 (Copernicus

Climate Change Service: https://climate.copernicus.eu/copernicus-record-north

—10—
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Figure 3. Top panels (a-d): anomalies observed in FFNNv2022 prediction of fCO2 and fgCO2
(c,d) follow an extreme marine heatwave event (a,b) over the northeastern Atlantic in June 2023
relative to June 2022 (top panels). Anomalies of surface temperature (SST), wind speed (U), fCOa,
and fgCO2 are computed by subtracting long-term trends and seasonal climatologies relative to the
years 1985-2022. Grey curve represents regional division (Figure S1). Bottom panels (e-g): regional

seasonal cycles of SST, U, and integrated air-sea fluxes since 2000s.

-atlantic-warmth-hottest-june-record-globally, last access: 20/9/2023). It substan-
tially lessened the ocean COg uptake (Figure 3). Based on the CMEMS SST analyses
(Table S1), June 2023 corresponds to the first marine extreme heatwave in the northeastern
Atlantic (40°W-12°E, 5°N-65°N) with an average SST anomaly about 1.1°C (Figure 3ae).
As a comparison, the June anomaly had been typically in a range of —0.5°C to 0.5°C for
the past three decades. In 2023, SST anomalies even exceeded 1.5°C over the northeast-
ern Atlantic seasonally stratified biome (NA-SS, 36°N northward). FFNNv2022 predicts
an enhancement in fCO9 (Figure 3c) following the anomalous warmth in the northeastern
Atlantic which is not seen in June 2022 (Figure 3a). As other environmental factors (e.g.,
salinity and chlorophyll-a) have no remarkable anomalies over this ocean basin (Figure S10),

warming primarily reduces COs solubility and that leads to substantially high surface par-
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tial pressure of COs (Figure 3c). fCO2 anomalies were mostly between 4 patm and 12 patm
in the subtropics, i.e., north Altlantic permanently stratified region (NA-PS) and increased
eastward. FFNNv2022 records the largest fCOs anomalies in the southeast of NA-SS to-
wards the European coast with values above 16 patm. Consequently, the predicted air-sea
fluxes in June 2023 (Figure 3d) suggest lower-than-average CO2 uptake capability. While
fgCOq slightly decreased throughout the NA-PS, an anomalous drawdown is found in the
NA-SS exceeding —0.6 molC.m2.yr! (equivalent to roughly a reduction in ocean COs up-
take of 0.11 PgC.yr!). It is noteworthy that a decline in ocean CO5 uptake is strengthened
if surface wind speeds (U) are lowering and fCOg increases. Accompanied by the largest
positive SST anomaly in June 2023, there is an unusual reduction in wind intensity, i.e., U
anomalies potentially below —1.2 m.s™! as illustrated in Figure 3b. Overall, regional sea-
sonal cycles plotted for each year show the 2023 SST mostly on top of those in the past
(Figure 3e). The most striking warmth recorded in June 2023 was at 1.24°C above that
in June 2022. July and August 2023 followed up with SST increasing but the SST values
are less different from 2022 then (1.06°C and 0.59°C respectively). Also in June 2023, wind
speed dropped out of the lower bound of all seasonal cycles and the difference from the
previous year was about —1.26 m.s! (Figure 3f). The combined anomalies in June 2023
marine extreme heat waves set the northeastern Atlantic ocean sink from an enhanced sink

in 2022 (0.29 PgC.yr!) back to its magnitude in the 2000s (0.18 PgC yr!) (Figure 3g).

4 Conclusions and Perspectives

This study first examined the skill of CMEMS-LSCE-FFNN, an ensemble approach of
feed-forward neural networks (FFNN) developed by Chau et al. (2022b), in a retrospective
prediction of COs fugacity (fCOsz) over the global ocean. The assessment was done for two
FFNN models. While the latest version (FFNNv2022) trained on SOCATv2022 data for the
period 1985-2021 was used to predict fCOq in 2022, FFNNv2021 trained on SOCATv2021 in
1985-2020 was used to predict fCOs in 2021-2022 allowing the qualification of the two-year
model prediction. SOCATv2023 with data available in the prediction years was used for the
prediction assessment. Our evaluation confirms a robust performance of the FFNN predic-
tion in comparison to independent observation-based data and to the FFNN reconstruction.
The retrospective prediction for the years 2021-2022 retained intra-seasonal to interannual
variations of fCOs as those in the reconstruction time series and no large systematic bias

has been observed between the two across all ocean provinces. The closeness between the
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predicted and reconstructed global net ocean budget implies that, when used as input to an
atmospheric transport model, the prediction removes an appropriate mass of carbon from

the simulated atmosphere: this is an important asset for greenhouse gas monitoring.

The latest model version, FFNNv2022, was ultimately used to predict fCOs from Jan-
uary 2022 to August 2023, i.e., up to 20 months beyond the coverage of its training dataset.
This study also exemplified the assessment of air-sea CO9 fluxes (fgCO3) generated from
the predicted fCOs in the years 2022-2023 over the eastern tropical Pacific, where regional
COy gas exchanges greatly vary with El Nino-Southern Oscillation (ENSO) conditions and
thus affect substantially on interannual variability of the global net sink. The year 2022 has
been predicted with persistently high fCOq (strong COs outgassing to the atmosphere) in
response to the maintenance of La Nina since summer 2020. A remarkable reduction in the
tropical Pacific CO5 source in August 2023 relative to the year before coincides with the
weakening of the cooling phase. Recent discussions about the interaction between the ocean
and climate have largely put attention on the El Nino revisits, their high possibility in trig-
gering more extreme heat worldwide, and further impacts on the marine carbon cycle early
at the end of 2023 onwards. However, already in June 2023 as exceptional surface ocean
warming and extraordinarily low wind intensity fall out historical records over the north-
eastern Atlantic ocean, we have found an anomalous reduction in CO5 uptake setting this
regional sink back to its magnitude in the 2000s. These results emphasise critical needs and
open the possibility to derive monthly predictions for global surface ocean maps of numer-
ous variables driven by fCQOs, including air-sea fluxes, seawater pH, and dissolved inorganic
carbon, as the reconstruction quality of fCOs drives that of the other variables (Chau et
al., 2022a, 2022b). The new datasets for the year 2022 (January) to 2023 (August) are avail-
able via the LSCE/IPSL data center (see Section Data availability) and are updated each
month. This demonstration of an operational service will be extended at an increased hori-
zontal resolution, following the current development of the reference CMEMS-LSCE-FFNN

reconstructions (Chau et al., 2023).

Data availability

Data provided in this research are available for use with open access granted by the

French LSCE/IPSL Data Center (https://dods.lsce.ipsl.fr/invsat/FFNN_low-latency/).
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