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Abstract—The IIoT network involves smart sensors, actuators, 
and technologies extending IoT capabilities across industrial 
sectors. With the rapid development in connected technology 
and communications in industrial applications, IIoT networks 
and devices are increasingly integrated into less secure physical 
environments. Anomaly detection in IIoT is crucial for cyberse- 
curity. This paper proposes a novel anomaly detection model for 
IIoT systems, leveraging a hybrid deep learning (DL) model. The 
hybrid DL approach combines Gated Recurrent Units (GRU) and 
Convolutional Neural Networks (CNN) for anomaly detection in 
IoT edge computing. The proposed CNN+GRU model achieves a 
notable 94.94% accuracy, underscoring the importance of careful 
model selection for IIoT anomaly detection. The paper suggests 
exploring XGBoost with hybrid CNN+GRU architectures as a 
future direction for high accuracy in complex IIoT contexts. The 
Experimental results indicate a 96.41% accuracy, excelling in 
metrics like false alarm rate (FAR), recall, precision, and F1- 
score. Based on these findings, we recommend future researchers 
consider advanced hybrid architectures and enhance efficiency 
using XGBoost with hybrid CNN+GRU. This approach holds 
promise for significant contributions to IIoT systems’ security 
and Performance evolution . 

Index Terms—Cybersecurity, Anomaly Detection, Industrial 
Internet of Things (IIoT), Edge Computing, Deep Learning. 

 

 

I. INTRODUCTION 

Anomaly detection plays a crucial role across various 

domains, including network security, financial systems, and 

industrial operations [1]. Its primary objective is to identify un- 

expected or abnormal behavior that deviates from established 

patterns, facilitating prompt intervention and the maintenance 

of system integrity. As the digital landscape becomes in- 

creasingly data-rich, traditional rule-based and statistical meth- 

ods [2] face challenges in effectively uncovering anomalies. 

The manifestation of anomalies in edge IIoT data refers to 

unforeseen or irregular patterns observed within data collected 

from edge devices. Detecting such anomalies in edge IoT 

data is paramount for ensuring system reliability, security, and 

optimal performance [3]. 

The dynamic scale of data generation in the digital era 

has propelled the ascendancy of deep learning in IoT sys- 

tems [4]–[7]. Deep learning’s ability to handle extensive 

datasets surpasses conventional machine learning techniques, 

rendering it apt for analysis within IoT contexts. Its capacity 

to dynamically generate data representations [8] and seamless 

integration with IoT ecosystems [9] positions it as a valuable 

asset. Consider a smart home scenario wherein IoT devices 

autonomously interact, birthing a fully intelligent dwelling [4]. 

This synergy has prompted researchers to explore advanced 

deep learning models to address the challenges of anomaly 

detection [10], [11]. 

Figure 1 shows an overview of the industrial anomaly detec- 

tion paradigm, wherein IoT device-generated data undergoes 

preprocessing and is subsequently input into pre-trained deep 

learning models for anomaly identification. Recent research 

has directed attention toward harnessing deep learning mod- 

els, encompassing Long Short-Term Memory (LSTM), Gated 

Recurrent Units (GRU), and Convolutional Neural Networks 

(CNN) to elevate the accuracy and efficiency of anomaly 

detection. These models exhibit remarkable adeptness in cap- 

turing intricate patterns and temporal correlations within data, 

thus augmenting the efficacy of anomaly identification [12]. 

This study undertakes a comprehensive evaluation of well- 

established deep learning models, including CNN, GRU, 

LSTM, and Hybrid models such as CNN+GRU, Autoen- 

coder+CNN, Autoencoder+LSTM, Autoencoder+GRU, along- 

side the potent gradient boosting algorithm XGBoost to ascer- 

tain their proficiency in detecting anomalies within industrial 

IoT systems [13], [14]. 

Anomaly detection is vital across diverse domains, in- 

cluding network security, finance, and industrial systems, to 

identify deviations from expected patterns or abnormal be- 

havior. Within the context of edge-based Internet of Things 

(IoT) systems, anomalies manifest as unexpected or irregular 

patterns within data collected from edge devices. Detecting 

these anomalies is pivotal for preserving system reliability, 

security, and optimal Performance. 

In response to the challenges posed by growing data com- 

plexity, deep learning has emerged as a cornerstone of research 

in IoT systems; with the capacity to handle extensive datasets 

and capture intricate patterns, deep learning methods are well- 

suited for analysis within IoT contexts. As these methods 

generate data representations and integrate seamlessly into IoT 

ecosystems, they offer promising avenues for anomaly detec- 

tion. This study delves into anomaly detection in Industrial IoT 

(IIoT) systems by evaluating a range of deep learning models, 

GRU, LSTM, and CNN, as hybrid ML model variations. By 

comparing the Performance of standalone models and hybrid 

combinations, we aim to uncover their strengths, limitations, 

and capabilities in anomaly detection within IIoT data. 

This paper contributes to advancing edge IIoT security and 

anomaly detection knowledge. We provide insights into their 

Performance and applicability through rigorous evaluation 

and comparison of various deep learning models. Our study 

enhances the existing body of knowledge by illuminating the 

strengths and weaknesses of CNN, GRU, CNN+GRU, and 



2 
 

 

 

Fig. 1: Anomaly detection in IIoT Applications 

 

LSTM models. It offers a comprehensive understanding of DL- 

based techniques for IIoT anomaly detection. Moreover, this 

research lays the groundwork for future investigations into ad- 

vanced techniques and hybrid models. These models leverage 

the diverse strengths of different deep learning architectures, 

potentially leading to more effective solutions for anomaly 

detection in IIoT systems. 

The next sections of the paper are organized as follows. Sec- 

tion 2 summarizes the existing research in anomaly detection 

in edge IIoT systems, focusing on the models under evaluation 

in our study. We highlight the strengths and limitations of 

these approaches to contextualize our work. Section 3 outlines 

the specific contributions our research offers, detailing the 

novel aspects and insights derived from our comprehensive 

evaluation of deep learning models. Section 4 explains our 

research methodology, encompassing the dataset used, the se- 

lection and configuration of models, and the evaluation metrics 

employed to assess their Performance. Section 5 presents our 

experimental setup, results, and an in-depth analysis of each 

model’s Performance. This section sheds light on the compar- 

ative efficacy of the evaluated models. Section 6 summarizes 

our findings, discusses the implications of our research, and 

provides recommendations for future investigations, paving the 

way for advancements in IIoT anomaly detection. It showcases 

the potential of DL techniques for detecting IIoT Anomalies, 

offering a solid foundation for further progress in this crucial 

domain. 

 

II. RELATED WORK 

Anomaly detection in edge IIoT (Industrial Internet of 

Things) systems has garnered considerable interest among 

researchers due to the increasing need to guarantee the depend- 

ability and safety of these systems. Researchers have investi- 

gated numerous ML-based methods to address this challenge. 

In this section, we examine existing research on detecting 

anomalies in edge IIoT systems, particularly emphasizing the 

models assessed in this paper. 

ML-based techniques employing CNNs find widespread 

application in anomaly detection within IIoT systems, offer- 

ing improved capabilities to capture spatial features in IoT 

datasets. A data-driven fault diagnosis approach utilizing deep 

learning, specifically a CNN model, has been presented in 

previous work [15]. The outcomes of this approach reveal its 

effectiveness in adequately addressing local and global pat- 

terns within time series data. This capability enables efficient 

analysis and anomaly detection across a spectrum of IIoT 

applications. 

A Long Short-Term Memory (LSTM) ML approach is 

proposed to address the training challenges in traditional Re- 

current Neural Networks (RNNs) [16]. The proposed LSTM 

approach demonstrated higher Performance in the experiments 

than other recurrent network algorithms, such as real-time re- 

current learning, back-propagation through time, and recurrent 

cascade correlation. As an enhanced LSTM-based approach, 

a new technique known as Encoder-Decoder architecture is 

introduced for anomaly detection in time series data, present- 

ing [17]. An Electrocardiogram (ECG), leveraging DL-based 

Short-Term Memory (DLSTM) networks, is proposed [18]. 

This research highlights the effectiveness of LSTM networks 

in anomaly detection within time series data, demonstrating 

adaptability across diverse domains and datasets. 

Another robust approach for anomaly detection is discussed 

in [19]. This method incorporates complete principal com- 

ponent analysis (PCA) into training deep autoencoders to 

enhance anomaly detection. This integration improves the 

model’s resilience to outliers and Performance in detecting 

anomalies. An enhanced research effort proposes a multivari- 

ate anomaly detection technique utilizing Generative Adver- 

sarial Networks (GANs) and Gated Recurrent Units (GRUs) 

in their MAD-GAN framework, as outlined in [20]. This 

innovative approach combines the strengths of GANs and 

GRUs to effectively learn the underlying structure of time 

series data and accurately detect anomalies. 

A new IIoT anomaly detection model, ESN-AE (Echo State 

Network - Autoencoder), is introduced in recent research [21]. 

As highlighted in the documentation, the ESN-AE effectively 

combines neural networks with Echo State Networks (ESNs), 

making it particularly suitable for edge devices with resource 

constraints. Additionally, a composite autoencoder model tai- 

lored for anomaly detection in IIoT systems is put forward in 

another study [22]. Diverging from conventional autoencoders, 

this model predicts and concurrently reconstructs input data, 
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leading to improved anomaly detection capabilities. 

An unsupervised machine learning method is introduced 

for Anomaly in a different version of time dataset [23]. 

This proposed unsupervised machine learning method utilizes 

a deep neural model that employs CNN and autoencoders 

to improve effectiveness across various real-world datasets, 

underscoring the potential to address anomaly detection tasks. 

In [24], a network intrusion detection system designed 

explicitly for imbalanced data is introduced. The proposed 

method innovatively combines XGBoost with a weighted loss 

function to effectively address the challenges of imbalanced 

datasets. 

Another research effort to enhance IIoT network intrusion 

detection is presented in [25]. This study introduces a deep 

hybrid learning model that integrates Attention-based Machine 

Learning with a Fully Convolutional Neural Network (FCN), 

along with Gradient Boosting techniques (XGBoost and Ad- 

aBoost) and Long Short Term Memory (LSTM). The results 

demonstrate the model’s efficiency in identifying anomalies in 

the traffic data of IoT devices, showcasing high Performance 

and efficacy in detecting various cybersecurity attacks. While 

the primary focus is on network intrusion detection, this 

approach holds the potential for adaptation to other anomaly 

detection tasks, including those related to IoT. 

An enhanced Intrusion Detection System (IDS) is pro- 

posed to secure IIoT applications by Douiba et al. [26]. The 

model utilizes decision tree (DT) algorithms and gradient 

boosting (GB), specifically with the open-source Catboost 

framework, for efficient IIoT anomaly detection. The IDS 

model is evaluated across multiple datasets and achieves high- 

performance metrics, including precision, recall, and accuracy. 

The results highlight the model’s effectiveness in detecting 

and characterizing anomalies within IoT devices. Furthermore, 

a comprehensive survey on various IIoT network anomaly 

detection techniques, including machine learning-based ap- 

proaches, is presented in the review by Ahmed et al. [2]. 

In this survey, the authors thoroughly discuss and compare 

different machine learning algorithms and their Performance in 

anomaly detection, providing valuable insights into this field. 

Detecting anomalies in encrypted Internet traffic has become 

a pivotal area of research, given the increasing reliance on 

encrypted services to safeguard consumer privacy. In a recent 

study closely related to our research, hybrid deep learning 

techniques are applied to identify anomalies in encrypted 

network traffic [27]. This research employed deep learning 

models with different publicly available datasets, including 

RNN, CNN, and LSTM. However, while valid, this approach 

suffers from the limitation of the combined model and the 

utilization of older datasets, not fully capturing the intricacies 

of contemporary cyber threats. In contrast, our research lever- 

ages a more robust hybrid deep learning solution with the most 

recent dataset, providing a solution proven to be more accurate 

and practical in detecting current cybersecurity threats. 

 

III. CONTRIBUTION OF RESEARCH 

In this section, we outline the critical contributions of our 

paper to the field of ML-assisted IIoT security. 

A. Problem Statement 

This study addresses the imperative need for robust anomaly 

detection in IIoT environments, where the convergence of 

diverse and dynamic data streams requires effective anomaly 

detection methods. The challenge lies in developing a model 

that can simultaneously capture spatial and temporal patterns 

to accurately distinguish between normal and malicious activ- 

ities, ensuring the security and reliability of IIoT networks. 

The research aims to devise a better solution that combines 

Gated Recurrent Units (GRU) and Convolutional Neural Net- 

works (CNN) to tackle these intricacies and enhance anomaly 

detection accuracy in Edge IIoT systems. 

 

B. Novelty 

In this section, we delve deeper into the novel contributions 

of our research. This research embodies a novel and holistic 

approach to anomaly detection, custom-tailored for Edge IoT 

environments. It pushes the boundaries of intrusion detection 

by addressing the unique challenges of this domain. It offers 

robust and accurate detection capabilities for known and 

emerging threats, thus significantly advancing IIoT security. 

The following are the main novel contributions of this work: 

1) Hybrid CNN+GRU Architecture: Our work introduces 

a novel integration of a hybrid CNN+GRU architec- 

ture for anomaly detection in Edge IoT environments. 

This innovative approach capitalizes on the strengths of 

Convolutional Neural Networks in extracting features, 

combined with ML algorithms like Gated Recurrent 

Units for temporal sequence analysis. This fusion of 

spatial and temporal analysis techniques represents a 

pioneering solution to enhance the accuracy and robust- 

ness of intrusion detection in complex IIoT settings. 

2) Tailored to Edge IoT: While many intrusion detec- 

tion systems are designed for traditional network en- 

vironments, our model is specifically tailored to the 

unique challenges of Edge IoT environments. This adap- 

tation addresses the inherent limitations of resource- 

constrained Edge devices, making our approach espe- 

cially relevant and impactful for emerging IoT applica- 

tions at the network’s edge. 

3) Diverse Attack Type Evaluation: We extend the novelty 

of our research through a comprehensive evaluation 

of the proposed model’s Performance across a broad 

spectrum of attack types. By assessing its ability to 

accurately detect common attacks and specific instances 

of novel and evolving threats, our study contributes 

to enhancing IIoT anomaly detection by pushing the 

boundaries of a hybrid DL-based detection approach. 

4) Robust Normal Sample Detection: Besides its prowess 

in identifying anomalies, our model excels in robustly 

detecting standard samples, a critical aspect of in- 

trusion detection often overlooked in previous works. 

This unique capability ensures that false positives are 

minimized, further enhancing our research’s practical 

relevance and real-world applicability. 

5) Practical Relevance: The practical relevance of our work 

is underscored by its potential to be deployed in real- 
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Fig. 2: Distribution of samples after preprocessing dataset 

 

world IIoT scenarios, where the accurate and timely 

detection of anomalies is paramount for maintaining 

system integrity and security. By addressing the pressing 

need for effective intrusion detection in Edge IoT, our 

research contributes to the advancement of IIoT security, 

making it highly relevant in today’s evolving technolog- 

ical landscape. 

C. Methodology or Approach 

Our methodology encompasses a carefully crafted pipeline 

that considers Edge IoT datasets’ specific challenges and 

constraints. It leverages a hybrid security approach to ex- 

tract spatial and temporal patterns efficiently. The extensive 

experimentation and use of performance metrics ensure a 

thorough evaluation of the model’s capabilities. Additionally, 

the comparison with XGBoost provides valuable insights into 

our approach’s novel contributions and potential advantages 

in anomaly detection within Edge IoT environments. The 

following are the main points of the followed methodology: 

1) Data Preprocessing: 

a) Feature Extraction: Data preprocessing is a crucial 

step in any machine learning task. In our study, we 

performed data preprocessing specifically tailored 

for Edge IoT datasets. This involved the extraction 

of relevant features from the raw data. Given the 

resource-constrained nature of Edge devices, we 

focused on extracting features that are essential for 

anomaly detection, ensuring efficiency and effec- 

tiveness. 

b) Dimension Reduction: To further optimize the 

model for resource-constrained Edge IoT environ- 

ments, we employed dimension reduction tech- 

niques. These techniques help reduce the feature 

space’s complexity while retaining important in- 

formation. Dimension reduction not only conserves 

computational resources but also aids in mitigating 

the curse of dimensionality, which is particularly 

pertinent in IoT data. 

2) The Proposed Hybrid Convolutional Neural Network 

(CNN) and Gated Recurrent Units (GRU) Architecture: 

a) To capture both spatial and temporal patterns 

within the data, we designed a novel hybrid ar- 

chitecture that combines CNN and GRU. 

b) CNN Component: The CNN component focuses 

on spatial feature extraction. It excels at detecting 

patterns and features within the data invariant to 

translation, essential for capturing spatial charac- 

teristics in IoT sensor data. 

c) GRU Component: The GRU component, on the 

other hand, specializes in analyzing temporal se- 

quences. It is well-suited for capturing time- 

dependent patterns and behaviors in IoT data, 

which is crucial for understanding the dynamics 

of IoT environments. 

3) Model Training and Evaluation: 

a) Extensive Experimentation: We conducted a rig- 

orous experimental phase involving diverse attack 

scenarios to ensure that the DL model Performance 

is thoroughly evaluated under various real-world 

conditions and could effectively detect a wide 

range of potential threats. 

b) ML Metrics: To assess the quality of our hybrid 

model, we used a comprehensive set of perfor- 

mance metrics. These included accuracy, recall, 

precision, and F1-score. These performance mea- 
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sures are needed to test the capabilities of identi- 

fying anomalies and minimizing false positives. 

4) Comparison with XGBoost: 

a) As part of our methodology, we compared the 

Performance of our hybrid CNN+GRU model with 

that of the gradient-boosting algorithm XGBoost. 

b) This comparative analysis aimed to identify the 

strengths and weaknesses of the hybrid model 

concerning anomaly detection. By contrasting it 

with XGBoost, a well-established and widely-used 

machine learning algorithm, we gained insights 

into the unique advantages our hybrid approach 

brings to the table. 

D. Impact and Significance 

The significance of this research lies in its pioneering 

approach to Edge IoT anomaly detection through the develop- 

ment of a hybrid CNN+GRU model. Its potential to enhance 

cybersecurity in real-world deployments, its adaptability to 

evolving threats, and its practical applicability across indus- 

tries underscore the far-reaching impact of this work. It serves 

as a beacon of innovation in IoT security, providing a valu- 

able asset for safeguarding our modern world’s increasingly 

interconnected and vital systems. 

1) Innovative Hybrid CNN+GRU Model: 

a) At the heart of this research lies developing a 

hybrid CNN+GRU model specifically tailored for 

Edge IoT anomaly detection. This model represents 

a novel fusion of deep learning techniques, com- 

bining (CNNs) for spatial feature extraction and 

(GRUs) for temporal sequence analysis. 

b) The significance of this innovation cannot be over- 

stated. Edge IoT environments often present com- 

plex, heterogeneous data streams that require a 

multifaceted approach for accurate anomaly de- 

tection. Our model addresses this challenge head- 

on by seamlessly integrating spatial and temporal 

analysis, offering a more holistic understanding of 

the data. 

2) Enhanced Cybersecurity in Real-World IoT Deploy- 

ments: 

a) One of the most striking outcomes of this research 

is the model’s ability to accurately detect com- 

mon attack types and various novel and evolving 

threats. Our proposed solutions aim to advance the 

knowledge and have implications for enhancing 

cybersecurity in real-world IoT deployments. 

b) As IoT continues to increase across industries, the 

security of these interconnected systems becomes 

increasingly critical. Our model’s capacity to iden- 

tify emerging threats, combined with its ability 

to distinguish regular traffic, offers a formidable 

defense mechanism for safeguarding these deploy- 

ments. 

3) Practical Relevance and Industry Applications: 

a) Beyond academic achievement, the practical rel- 

evance of this research cannot be overstated. Its 

impact extends to a wide range of industry appli- 

cations. 

b) For industries reliant on Edge IoT, such as man- 

ufacturing, healthcare, and utilities, this research 

provides a reliable and versatile tool for early 

detection and prevention of cyber intrusions in 

many industry applications where any disruption 

can have far-reaching consequences, including fi- 

nancial losses and threats to public safety. 

4) Mitigating Evolving Security Threats: 

a) The constantly evolving nature of cybersecurity 

threats necessitates adaptable and robust solutions. 

Our hybrid CNN+GRU model is well-suited to this 

dynamic landscape. 

b) By continuously improving the accuracy and effec- 

tiveness of anomaly detection in Edge IoT envi- 

ronments, this research contributes to the ongoing 

battle against cyber threats. It empowers organiza- 

tions to stay ahead of adversaries and proactively 

protect their critical systems and sensitive data. 

 

E. Future Directions 

Future directions of this work could explore the applica- 

bility of more advanced deep learning architectures, such as 

Transformers, to capture complex temporal relationships and 

patterns in Edge IoT data. Investigating ensemble techniques 

that combine multiple models could enhance overall anomaly 

detection robustness. 

 

IV. METHODOLOGY AND EXPERIMENTAL SETUP 

A. Dataset Description 

This study employed a comprehensive dataset to detect 

anomalies within Industrial Internet of Things (IIoT) networks, 

as documented in [28]. This dataset encompasses a wide array 

of network traffic data, containing regular traffic and various 

attack scenarios such as Port Scanning, XSS, Ransomware, 

Fingerprinting, and MITM. Data samples are collected from a 

real-world industrial environment, featuring multiple devices 

and communication protocols commonly encountered in IIoT 

networks to ensure the representativeness and reliability of the 

data. Through the utilization of this extensive dataset, we were 

able to effectively test the quality of different DL models for 

detecting and mitigating cybersecurity threats within the IIoT 

domain.[29-34]. 

The dataset comprises 2,219,201 instances and 63 features, 

all meticulously collected to investigate and analyze cyberse- 

curity threats within edge computing for IIoT applications. 

It encompasses a wide array of information, including at- 

tributes related to network traffic, protocol-specific parame- 

ters, and various attack types. These features exhibit diverse 

data types, encompassing numerical (float64) and categori- 

cal (object) data. Key features include network communi- 

cation attributes like IP addresses (ip.src host, ip.dst host), 

ARP protocol details (arp.opcode, arp.hw.size), ICMP protocol 

characteristics (icmp.checksum, icmp.seq le), HTTP protocol 

fields (http.content length, http.request.method, http.referer), 
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and TCP/UDP protocol properties (tcp.flags, tcp.len, udp.port, 

udp.stream). 

Additionally, the dataset contains features associated 

with domain name system (DNS) queries (dns.qry.name, 

dns.qry.type) and the MQTT protocol, Message Queu- 

ing Telemetry Transport (mqtt.conack.flags, mqtt.hdrflags, 

mqtt.topic). The dataset’s target variable, labeled ”At- 

tack type,” is a categorical attribute that represents 15 distinct 

classes of cybersecurity threats. These classes encompass var- 

ious threats, including Distributed Denial of Service (DDoS), 

ransomware, man-in-the-middle (MITM) attacks, and port 

scanning. Before analysis, the dataset undergoes preprocessing 

steps, including eliminating unnecessary columns, addressing 

missing and duplicate values, and randomizing the data order. 

Figure 2 provides a detailed breakdown of the attack types and 

the corresponding number of instances for each attack class 

before applying oversampling techniques. 

For data transformation, categorical variables are subjected 

to one-hot encoding, while the target variable undergoes label 

encoding. To tackle the class imbalance issue, we employ the 

RandomOverSampler method, which involves oversampling 

the minority classes. This technique generates synthetic in- 

stances for the underrepresented classes to match the sample 

count of the majority class. The dataset attains a more balanced 

distribution by introducing additional instances, allowing ma- 

chine learning models to gain insights from a broader range 

of instances. 

We utilize the RandomOverSampler from the learning li- 

brary to implement random oversampling. The rationale be- 

hind this approach is to provide the model with a more rep- 

resentative view of the minority classes, facilitating enhanced 

anomaly detection within these less frequent categories. The 

introduction of synthetic instances enables the model to cap- 

ture the distinctive patterns and characteristics specific to the 

minority classes, leading to improved overall Performance 

and accuracy. However, it’s crucial to exercise caution when 

employing oversampling techniques, including random ones, 

as they must be carefully evaluated to prevent potential issues 

like overfitting or introducing biases. Alternative methods may 

need to be considered depending on the dataset’s specific 

characteristics and research objectives. 

Following oversampling, our dataset consists of two main 

parts: (training and testing sets). Subsequently, feature scaling 

is performed using MinMaxScaler, and the input data and 

target variables are reshaped to meet the prerequisites of deep 

learning models. 

 

B. Proposed Hybrid CNN+GRU model: 

Our deep learning (DL) model leverages the strengths 

of both Convolutional Neural Networks (CNNs) and Gated 

Recurrent Units (GRUs) to excel in IIoT anomaly detection. 

This architectural fusion effectively captures inherent spatial 

and temporal information in datasets suitable for analyzing 

intricate sequences, as encountered in industrial IoT applica- 

tions. 

In the CNN segment of the model, convolutional layers 

are employed to extract features from datasets. These layers 

 
 

Algorithm 1: Proposed Hybrid Deep Learning Archi- 
 tecture  

Define the Convolutional Neural Network (CNN) model 

cnn input ← Input(shape = input shape) 

cnn layer ← Conv1D(′relu′)(cnn input) 
cnn layer ← MaxPooling1D 
Define the Gated Recurrent Unit (GRU) model 
gru input ← Input(shape = input shape) 

gru layer ← GRU (′tanh′)(gru input) 
Concatenate the outputs of the CNN and GRU models 

concat layer ← concatenate([cnn layer, gru layer]) 
Classification layer 

output layer ← 

Dense(num classes,′ softmax′)(concat layer) 
Combined CNN and GRU Model 

model ← Model(inputs = 

[cnn input, gru input], outputs = output layer) 

 

use filters to identify structures and patterns from datasets, 

enabling the model to acquire meaningful representations. The 

proposed model adeptly captures hierarchical representations 

of the input by stacking multiple layers of the DL network 

with increasing filter sizes. 

Conversely, GRUs, recurrent neural networks (RNN), in- 

corporate gating mechanisms that selectively update and reset 

their internal states dedicated to modeling data dependencies. 

This functionality allows the model to retain and propagate 

crucial information across time steps, capturing long-term 

dependencies in the sequence. The GRU layer within the 

model utilizes these gating mechanisms to learn and represent 

temporal patterns within the data. 

Combining CNN and GRU models through concatenating 

their output layers permits the fusion of both spatial and 

temporal features. This fusion affords comprehensive data 

comprehension, enabling the model to make precise predic- 

tions. Algorithm 1 provides a high-level overview of the 

model. By harnessing the complementary strengths of CNNs 

and GRUs, the CNN+GRU architecture strikes a balance be- 

tween capturing local spatial features and modeling temporal 

dynamics. 

Through rigorous experimentation and evaluation, our work 

has substantiated the efficacy of the CNN+GRU model. It has 

consistently performed with high accuracy, precision, recall, 

and F1 score in detecting anomalies within the industrial IoT 

dataset. The ability to discern intricate spatial and temporal 

patterns empowers it to accurately identify abnormal instances, 

facilitating proactive security measures in industrial IoT sys- 

tems. Below, we provide pseudocode, and Figure 3 illustrates 

the architecture of this hybrid model. 

 

C. Model Descriptions 

1) 1D-CNN Model Overview: The 1D-CNN model pro- 

posed in this study uses the Keras Sequential API. It comprises 

multiple layers designed to learn using valuable features from 

our dataset and generate predictions. This model commences 

with an input layer configured to accommodate data in a 
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Fig. 3: The Architecture of the Proposed CNN+GRU Hybrid Deep Learning Model 
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Fig. 4: Autoencoder-based Models Architecture 

 

shape aligned with the dataset’s dimensions. Subsequently, 

five Conv1D layers are added, each equipped with a distinct 

number of filters and a ReLU activation function. These layers 

are instrumental in extracting information using the dataset via 

filtering. Following each CNN layer, a MaxPooling1D layer 

with a size of 2 is applied to mitigate data dimensionality 

and capture significant features. Subsequently, a flattened 

layer converts the feature maps into a one-dimensional vector. 

Furthermore, the model incorporates two dense layers: the first 

dense layer, comprising 64 neurons and a ReLU activation 

function, focuses on learning global features, while the second 

dense layer, featuring the same number of neurons as the 

dataset’s class count, utilizes a softmax activation function to 

yield class probabilities, enabling the final prediction. 

2) GRU Model: The proposed GRU model is constructed 

using the Keras Sequential API. It encompasses two GRU 

layers, with the initial layer comprising 32 units and the sub- 

sequent layer comprising 64. These GRU layers utilize a blend 

of tanh and sigmoid activation functions to update and reset 

gates. The model also integrates two dense layers, employing 

ReLU activation functions, with 32 and 16 units, respectively. 

The ultimate external layer uses a softmax activation function 

with a number of units aligned with the dataset’s class count. 

This GRU-based model effectively captures short- and long- 

term dependencies within sequential data, which is well-suited 

for diverse classification tasks. 

3) Overview of Hybrid CNN-GRU Model: The proposed 

model represents a hybrid neural network, integrating Convo- 

lutional Neural Networks (CNNs) and Gated Recurrent Units 

(GRUs) to proficiently process and learn from sequential data. 

Constructed using the Keras Functional API, it is designed 

with two distinct branches: the CNN branch and the GRU 

branch. The model’s architectural framework is outlined as 

follows: 

CNN Branch: 

1) Input Layer: The model ingests data with dimensions 
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Class 2 
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x3 

x4 

y1 

y2 

Data 
Preprocessing 

Sampling 
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Maxpool layer 

CNN1D 

Upsampling layers 

Encoder 
Compressed 

Representation Decoder 

Test 
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aligned to the dataset’s structure. 

2) Convolutional Layers: The CNN branch comprises two 

convolutional layers, one with 64 and 128 filters, each 

utilizing a ReLU activation function. 

3) MaxPooling Layers: Max-pooling layers with a pool size 

of 2 are strategically placed between the convolutional 

layers to reduce spatial dimensions and enhance com- 

putational efficiency. 

4) Flatten Layer: Following the final max-pooling layer, a 

flattened layer converts the 3D output from the convo- 

lutional layers into a 1D vector. 

5) Dense Layer: The concluding layer within the CNN 

branch is a dense layer with 64 units and a ReLU 

activation function, enabling the model to grasp higher- 

level features derived from the spatial data. 

GRU Branch: 

1) Input Layer: Similar to the CNN branch, the GRU 

branch’s input layer accommodates data of the same 

dimensions. 

2) GRU Layer: The GRU layer, featuring 32 units, employs 

a ’tanh’ activation function for gate updates and a 

’sigmoid’ activation function for reset gates. Recurrent 

dropout is disabled (set to 0), and the layer avoids 

unrolling the recurrent loop for efficiency. Bias terms are 

integrated into the update and reset gate computations, 

and the hidden states reset after each sequence. 

3) Dense Layer: After the GRU layer, a dense layer with 

32 units and a ’tanh’ activation function is added, 

facilitating the model in discerning intricate patterns and 

features from temporal data. 

Integration of Branches: Upon processing input data 

through the CNN and GRU branches, the outputs undergo con- 

catenation using the concatenate layer. This amalgamated rep- 

resentation encompasses spatial and temporal features gleaned 

from both branches, enriching the final decision-making pro- 

cess. 

Output Layer: The ultimate layer consists of a dense 

layer with (num classes) units and a softmax activation func- 

tion. The softmax function furnishes a probability distribution 

across classes, enabling the model to make a final prediction 

based on the highest probability. Figure 1 illustrates the 

structure of the unified CNN-GRU model. 

 

D. Autoencoder Models Overview 

Hybrid Models: The proposed models are hybrid neural 

networks combining an autoencoder with CNN, LSTM, and 

GRU networks to process and learn from input data efficiently. 

Each model is designed using the Keras Functional API and 

consists of two primary components: the encoder-decoder 

(autoencoder) module and the CNN, LSTM, or GRU mod- 

ules. The employed autoencoder type is a basic convolutional 

autoencoder, utilizing convolutional layers for both encoding 

and decoding. These layers excel in capturing spatial patterns 

and features in the input data. 

Encoder-Decoder (Autoencoder) Module: The encoder 

section of the autoencoder employs convolutional layers with 

decreasing filters to extract essential features from the input 

data and reduce its dimensionality. The decoder section uses 

upsampling and convolutional layers to reconstruct the original 

input from the encoded representation. Figure 4 provides an 

architectural overview of the autoencoder models. 

Model 1: 

Encoder: 

1) Input Layer: The model takes input dimensions aligned 

with the dataset. 

2) Convolutional Layers: Three convolutional layers with 

32, 64, and 128 filters are used, each with a kernel size 

3 and ReLU activation. 

3) MaxPooling Layers: Max-pooling layers with a pool size 

of 2 are placed between convolutional layers to reduce 

dimensions. 

Decoder: 

1) Convolutional Layers: The decoder comprises three con- 

volutional layers with 128, 64, and 32 filters, using 

ReLU activation. 

2) UpSampling Layers: Upsampling layers with a size of 

2 restore spatial dimensions. 

Autoencoder: The autoencoder combines the encoder and 

decoder models with the same input as the encoder and output 

from the decoder. 

Classifier: 

1) The autoencoder serves as the initial classifier layer. 

2) Conv1D and MaxPooling1D layers perform feature ex- 

traction and dimensionality reduction. 

3) The last MaxPooling1D output is flattened. 

4) Dense layers with ReLU activation process features. 

5) A final Dense layer with softmax activation provides 

class probabilities. 

Model 2: 

Classifier: 

1) LSTM layers replace Conv1D and MaxPooling1D layers 

for sequence processing. 

2) LSTM layers return sequences, extracting features from 

them. 

3) A Dense layer with softmax activation is used for 

classification. 

Model 3: 

Classifier: 

1) Instead of Conv1D and MaxPooling1D layers, a GRU 

(Gated Recurrent Unit) layer is employed for sequence 

processing. 

2) The GRU layer comprises 32 units and utilizes ’tanh’ 

activation for gate updates and ’sigmoid’ activation for 

reset gates. 

3) A Dense layer with ’tanh’ activation further processes 

features. 

4) The final Dense layer with softmax activation provides 

a class probability distribution for classification. 

1) Overview of the LSTM Model: The proposed model is 

an LSTM-based classifier designed specifically for time series 

classification tasks. This architecture comprises a sequence of 

LSTM layers followed by dense layers for the classification 

task. The key components of the model’s architecture are 

outlined below: 
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Fig. 5: CNN Loss 

 

Fig. 6: CNN Accuracy 

 

 

 

1) LSTM Layer 1: The first LSTM layer serves as the 

input layer, necessitating the specification of the in- 

put shape. It incorporates 128 units and employs the 

’tanh’ activation function for transformations within the 

LSTM units. Notably, this layer is configured to return 

sequences, ensuring it outputs a sequence of the same 

length for the subsequent layer’s use rather than just the 

last timestep’s output. 

2) LSTM Layer 2: The second LSTM layer comprises 256 

units and adopts the ’tanh’ activation function. Unlike 

the preceding layer, it does not return sequences, out- 

putting only the final output of the LSTM sequence. This 

design facilitates seamless connectivity with a traditional 

dense layer. 

3) Dense Layer (Output Layer): The ultimate layer in 

the model is a dense layer with several units equiva- 

lent to the number of classes in the classification task 

(num classes). This layer incorporates a softmax activa- 

tion function, generating a probability distribution across 

the classes. This characteristic makes it particularly well- 

suited for multi-class classification tasks. 

 

This model effectively harnesses the capabilities of LSTM 

layers for processing and learning from sequential data, es- 

tablishing an efficient and robust solution for time-series 

classification endeavors. 

Fig. 7: GRU Loss 

 

Fig. 8: GRU Accuracy 

 

 

V. EVALUATION AND RESULTS 

This section comprehensively evaluates the Performance 

of various deep-learning models employed for anomaly de- 

tection within encrypted IoT traffic. It involves an in-depth 

examination of the outcomes, emphasizing the strengths and 

weaknesses of each model while drawing comparisons based 

on performance metrics such as accuracy, precision, recall, 

and F1-score. The section also delves into the convergence 

patterns of the models and scrutinizes noteworthy observations 

or trends. The evaluation incorporates multiple performance 

metrics: Loss, Accuracy, Recall, Precision, F1-Score, and 

False Alarm Rate (FAR). 

 

A. Assessing Model Performance 

The XGBoost model is the top performer in accuracy, recall, 

precision, and F1 score. It attains an accuracy rate of 96.41% 

, indicating its proficiency in correctly categorizing most sam- 

ples. A recall rate of 96.50% underscores its effectiveness in 

identifying actual positive instances, while a precision rate of 

98.57% signifies its ability to maintain a low false positive rate. 

The high F1-score, standing at 96.03%, indicates a harmonious 

balance between precision and recall, reflecting the model’s 

overall Performance. In a related research endeavor that im- 

plemented the Catboost model for intrusion detection in IoT 

systems [26], the reported results indicated a training accuracy 

of 100% and a validation accuracy of 99.27%. Furthermore, 



10 
 

TABLE I: Performance of the models 
 

Model Loss Accuracy Recall Precision F1-Score FAR Training Time (min) Training Epochs 
CNN 0.10211 0.94839 0.92303 0.98384 0.95196 0.00108 18 23 
GRU 0.12445 0.93981 0.91766 0.97027 0.9428 0.002 35 17 

GRU+CNN 0.09985 0.9494 0.92288 0.98494 0.95239 0.001 97 73 
LSTM 0.12607 0.93939 0.91288 0.97455 0.94219 0.0017 36 14 

Autoencoder+GRU 1.26009 0.71425 0.71425 0.71425 0.71425 0.02041 12 7 
Autoencoder+CNN 0.11195 0.94695 0.92194 0.98104 0.95009 0.00127 32 30 

Autoencoder+LSTM 0.23309 0.91507 0.87954 0.97054 0.92207 0.0019 37 12 

XGBoost 0.0672 0.9641 0.965 0.9857 0.9603 0.0023 16 25 

 

 

 

Fig. 9: CNU+GRU Loss 

 

Fig. 10: CNN+GRU Accuracy 

 

 

they achieved commendable values for precision (98.42%) 

and recall (98.78%), signifying outstanding Performance in 

intrusion classification. 

Comparing the two models, it becomes evident that Cat- 

boost and XGBoost attained impressive accuracy rates and 

excelled in classifying intrusions. The Catboost model reported 

a slightly higher accuracy during training, but both models 

exhibited robust precision and recall scores. It is imperative 

to consider a variety of evaluation metrics, assess potential 

overfitting, and analyze the problem context before concluding 

that high accuracy alone signifies a superior model. 

In our comprehensive assessment of various machine learn- 

ing models designed for IoT security anomaly detection, the 

XGBoost algorithm leads the way, closely followed by the 

impressive CNN+GRU model. The CNN+GRU model, which 

combines CNN GRU, stands out in multiple aspects. Notably, 

it demonstrates an accuracy rate of 94.94% and a recall rate of 

Fig. 11: LSTM Loss 

 

Fig. 12: LSTM Accuracy 

 

 

92.28% , highlighting its proficiency in accurately identifying 

anomalies, particularly in the nuanced context of IoT data. 

Additionally, a precision rate of 98.49% and an F1-score of 

95.24% further underscore its capacity to categorize anoma- 

lies while effectively minimizing false positives. Moreover, 

the meager False Alarm Rate (FAR) of 0.001% signifies 

the model’s skill in avoiding unnecessary alerts, a critical 

characteristic in practical applications. Integrating spatial and 

temporal features through the incorporation of CNN and GRU 

layers plays a pivotal role in the exceptional Performance of 

this model. The CNN+GRU model demonstrates the synergy 

between these two architectural components and showcases 

its adaptability to intricate, multi-dimensional datasets such 

as IoT traffic. These performance metrics firmly establish 

the CNN+GRU model as a potent tool for fortifying IoT 

environments against cyber threats. 

Shifting the focus to the other models, namely CNN, GRU, 
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Fig. 13: Autoencoder+CNN Loss 

 

Fig. 14: Autoencoder+CNN Accuracy 

 

 

and LSTM, these models consistently achieve high accuracy 

levels ranging from 93.94% to 94.94%. While they may not 

surpass the Performance of XGBoost, their accuracy rates 

affirm their capability to classify most samples accurately. 

The recall rates, ranging from 91.29% to 92.29% , indicate 

their efficacy in capturing actual positive instances, while 

the precision rates, ranging from 97.03% to 98.49% , reveal 

their proficiency in minimizing false positive instances. Ad- 

ditionally, the F1 scores, ranging from 94.22% to 95.24%, 

further underscore the overall Performance of these models in 

achieving a harmonious balance between precision and recall. 

Conversely, the Autoencoder + GRU model exhibits the 

poorest Performance among all the models across the metrics, 

with an accuracy rate of 71.43%. These metrics reveal a 

significant disparity compared to the other models, suggesting 

a reduced capability in classifying diverse attack types. A more 

in-depth analysis is warranted to investigate the underlying 

causes of this subpar Performance and explore potential av- 

enues for enhancing the model’s effectiveness. 

It is essential to assess the strengths and limitations of each 

model thoroughly. XGBoost, utilizing its gradient boosting al- 

gorithm, consistently demonstrates robust Performance across 

all metrics. Notably, it greatly benefits from oversampling the 

data for minority classes, rendering it a suitable choice for 

anomaly detection. Figure 22 depicts the confusion matrix 

of the XGBoost model, the top-performing model in our 

study. This matrix offers valuable insights into the model’s 

Fig. 15: Autoencoder+GRU Loss 

 

Fig. 16: Autoencoder+GRU Accuracy 

 

Fig. 17: XGBoost Loss 

 

 

classification capabilities across various attack types. Each row 

in the matrix represents the actual labels, while each column 

corresponds to the predicted labels. The numbers within the 

matrix denote the count of samples falling into each category. 

The XGBoost model impressively exhibits accuracy and preci- 

sion in classifying diverse attack types. It effectively identifies 

a substantial number of samples belonging to categories such 

as DDoS TCP, DDoS HTTP, DDoS ICMP, MITM, Finger- 

printing, DDoS UDP, Password, Port Scanning, Ransomware, 

SQL Injection, Uploading, Vulnerability Scanner, and XSS. 

Nonetheless, there are instances of misclassifications evi- 
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Fig. 18: Autoencoder+LSTM Loss 

 

Fig. 19: Autoencoder+LSTM Accuracy 

 

 

dent in the confusion matrix. For example, the model may 

encounter challenges when precisely distinguishing samples 

belonging to the Backdoor category, resulting in a few cases 

needing to be misclassified. Additionally, a small number 

of samples in the Normal category are erroneously labeled 

as other types of attacks. The XGBoost model showcases 

exceptional Performance by accurately classifying a broad 

spectrum of attack types and boasting outstanding precision 

and recall. Its minimal false alarm rate underscores its ability 

to effectively minimize false positives, thereby ensuring high 

accuracy in detecting anomalies within encrypted IoT traffic. 

The deep learning models, including CNN, GRU, 

GRU+CNN, and LSTM, consistently exhibit commendable 

accuracy rates and demonstrate their effectiveness in captur- 

ing anomalies. Notably, the CNN model’s Performance was 

solid on the original dataset. In contrast, the Performance 

of the other models improved significantly when the sample 

count for smaller classes was augmented using oversampling 

techniques. These techniques indicate that the CNN model’s 

Performance is slightly degraded when confronted with an 

increased sample count for smaller classes. The Autoencoder 

+ GRU model, although not performing at the same level as 

the others, still provides valuable insights into the potential of 

combining autoencoder-based feature extraction with the GRU 

architecture. 

In conclusion, the XGBoost model emerges as the top 

performer, while the CNN, GRU, CNN+GRU, and LSTM 

models consistently exhibit strong Performance in anomaly 

detection. Table I and Figure 20 present an overview of the 

performance metrics for each model, while Figure 23 offers 

a comparative analysis of the models across each metric. The 

Autoencoder + GRU model shows room for improvement and 

warrants further investigation. These findings contribute to a 

deeper understanding of model performance and can serve as 

a guide for selecting appropriate models for anomaly detection 

in encrypted IoT traffic. 

The confusion matrix depicted in Figure 21 provides valu- 

able insights into the CNN+GRU hybrid model’s Performance 

in categorizing various types of attacks. In this matrix, the rows 

represent the actual values, and the columns show the pre- 

dicted values, with the numerical values indicating the sample 

count for each category. The CNN+GRU model demonstrates 

a high accuracy level in correctly identifying most attack types. 

Notably, it effectively classifies a significant portion of samples 

from categories such as Vulnerability scanning, DDoS TCP, 

Uploading, DDoS HTTP, Ransomware, DDoS ICMP, XSS 

MITM, Fingerprinting, DDoS UDP, Password, SQL injection, 

and Port Scanning. However, it’s essential to acknowledge 

that the model does experience some misclassifications. For 

instance, misclassified samples are in the Backdoor category, 

indicating a challenge in accurate distinction. Similarly, a few 

samples in the Normal category are misclassified as other types 

of attacks. 

Figure 22 displays the confusion matrix for the XGBoost 

model, which emerged as the top performer in our study. 

This matrix provides insights into the model’s classification 

capabilities across various attack types. Each row corresponds 

to the actual labels, and each column represents the predicted 

labels, with the matrix entries denoting sample counts within 

each category. The XGBoost model exhibits high accuracy 

and precision in classifying various attack types. It effectively 

identifies a substantial number of samples from categories in- 

cluding Vulnerability scanning, DDoS TCP, Uploading, DDoS 

HTTP, Ransomware, DDoS ICMP, XSS MITM, Fingerprint- 

ing, DDoS UDP, Password, SQL injection, and Port Scanning. 

However, there are instances of misclassifications within the 

confusion matrix. Figure 22 provides valuable insights into 

the XGBoost model’s classification capabilities for various 

attack types, making it evident that the model excels in 

accurately categorizing many attack types. Each row in the 

matrix corresponds to the actual labels, while each column 

represents the predicted labels, and the matrix entries indicate 

the sample counts for each category. The XGBoost model 

demonstrates exceptional accuracy and precision in classifying 

various attack types, successfully identifying a significant 

number of samples belonging to categories such as Vulner- 

ability scanning, DDoS TCP, Uploading, DDoS HTTP, Ran- 

somware, DDoS ICMP, XSS MITM, Fingerprinting, DDoS 

UDP, Password, SQL injection, and Port Scanning. Nonethe- 

less, some misclassifications are observed within the confusion 

matrix. 

When comparing the quality of the XGBoost, CNN, and 

GRU hybrid models in anomaly detection, it becomes apparent 

that each model possesses distinct strengths for different 

attack types. The XGBoost model detects Normal and MITM 
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Fig. 20: Performance Comparison 

 

 

 

Fig. 21: Confusion matrix for CNN+GRU model 

 

 

 

attacks, demonstrating impressive accuracy and a reduced 

false positive rate. However, it faces challenges in accu- 

rately classifying Backdoor and Password attacks, indicating 

room for improvement. In contrast, the CNN+GRU hybrid 

model exhibits outstanding precision in detecting Backdoor, 

DDoS TCP, and DDoS UDP attacks, highlighting its potential 

for handling network-based attacks effectively. Additionally, 

it achieves high accuracy in identifying DDoS HTTP and 

XSS attacks, showcasing its proficiency in recognizing web- 

based threats. Nevertheless, the CNN+GRU model may require 

further fine-tuning to address misclassifications related to 

Fingerprinting and Password attacks. Overall, both models 

show promising results, with the CNN+GRU hybrid model 

excelling in network-based and web-based attack detection. In 

contrast, the XGBoost model performs exceptionally well in 

detecting Normal and MITM attacks with high precision. 

Fig. 22: Confusion Matrix of XGboost model 

 

 

B. Convergence of the Models 

The convergence behavior of the models plays a vital role in 

assessing their Performance, offering insights into the training 

process, convergence speed, stability, and overall efficiency. 

In this study, we investigated the convergence of several 

models, including CNN, GRU, LSTM, CNN+GRU, Autoen- 

coder+CNN, Autoencoder+GRU, Autoencoder+LSTM, and 

XGBoost. 

Figures 5–17 provide valuable information about each 

model’s training progress, illustrating the trends in Loss and 

accuracy across different epochs. Let’s delve into the individ- 

ual Performance of each model: 

For the CNN model (Figure 5 and Figure 6), we observe 

a gradual decrease in Loss and a simultaneous increase in 

accuracy as the number of epochs increases. The CNN archi- 

tecture exhibited relatively rapid convergence, with an average 

per-epoch runtime of 17.5 minutes and 23 training epochs. 
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Fig. 23: Individual Comparison of metrics for different models 

 

Such a finding suggests that the CNN model efficiently learned 

features from the dataset and quickly achieved convergence. 

The model’s ability to capture spatial information through 

convolutional layers and its simplicity contributed to its swift 

convergence. 

Likewise, the GRU model (Figure 7 and Figure 8) shows 

an overall decreasing loss trend. However, it’s worth noting 

some training and validation accuracy fluctuations during the 

training process. Despite these fluctuations, the GRU model 

exhibited efficient convergence, with an average per-epoch 

runtime of 35 minutes and 17 training epochs. The GRU 

architecture, belonging to the family of recurrent neural net- 

works (RNNs), excels at capturing temporal dependencies in 

sequential data. The model successfully learned the tempo- 

ral patterns in encrypted IoT traffic, leading to convergence 

within a reasonable number of epochs. The observed accuracy 

fluctuations may indicate the model’s sensitivity to specific 

data patterns. The CNN+GRU model, as depicted in Figure 

9 and Figure 10, displays a consistently decreasing loss 

curve paired with a corresponding increase in accuracy. This 

behavior indicates a steady convergence towards the optimal 

solution, underscoring the efficacy of merging CNN and GRU 

architectures for anomaly detection. The CNN+GRU hybrid 

model, leveraging the strengths of both architectures, exhib- 

ited a more extended convergence time than the individual 

models. It took 97 minutes and 73 training epochs to achieve 

convergence. The ample convergence time can be attributed to 

the combined complexity of both architectures and the model’s 

need to extract spatial and temporal features simultaneously. 

Nevertheless, despite the longer convergence duration, the 

hybrid model demonstrated superior Performance, highlighting 

the effectiveness of integrating both CNN and GRU. 

Conversely, the LSTM model follows a different trajectory, 

as shown in Figure 11 and Figure 12. While the Loss decreases 

gradually over time, there is a notable dip in accuracy during 

the initial epochs. This pattern may signify a slower conver- 

gence rate or difficulties in capturing temporal dependencies 

in the data. The LSTM model exhibited a slightly slower 

convergence rate than CNN and GRU, necessitating an average 

per-epoch runtime of 36 minutes and 14 training epochs 

to reach convergence. The LSTM’s proficiency in modeling 

long-term dependencies makes it suitable for handling intri- 

cate sequential data. However, the added complexity of the 

LSTM architecture and the extended sequence length present 

in encrypted IoT traffic likely contributed to the extended 

convergence duration. 

The Autoencoder-based models, namely Autoencoder+CNN 

and Autoencoder+GRU, displayed distinctive patterns in their 

training trajectories. As depicted in Figure 13 and Figure 

14, the Autoencoder+CNN model initially exhibited a gradual 

reduction in Loss over a few epochs, followed by a sharp 

decline, and eventually settled into a gradual decrease until 

convergence. Conversely, Figure 15 and Figure 16 demonstrate 

that the Autoencoder+GRU model maintained a consistent loss 
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curve without significant fluctuations. Interestingly, the Au- 

toencoder+LSTM model showed rapid convergence within six 

epochs, succeeded by a noticeable spike in loss values, indica- 

tive of overfitting. These models exhibited diverse convergence 

behaviors, as their objective is to acquire a compressed version 

of the dataset through an unsupervised learning approach. 

The convergence time and number of epochs required for 

convergence varied based on the autoencoder architecture’s 

intricacy and the reconstruction error optimization. Generally, 

the convergence time was shorter than the deep learning mod- 

els, with per-epoch runtimes ranging from 12 to 37 minutes 

and 7 to 30 training epochs. 

In contrast to the Autoencoder-based models, the XGBoost 

model exhibited a seamless convergence pattern, as depicted 

in Figure 17. The Loss consistently diminished over the 

epochs, mirroring the convergence behavior observed in the 

CNN+GRU model. It also underscores the effectiveness of 

the XGBoost algorithm in achieving a gradual reduction in 

Loss and fine-tuning the model’s Performance. The XGBoost 

model, renowned for its proficiency in handling tabular data 

and excelling in classification tasks, demonstrated efficient 

convergence with a per-epoch runtime of 16 minutes and a 

total of 25 training epochs. XGBoost harnesses the power of 

gradient boosting to optimize the objective function, resulting 

in rapid convergence and high predictive accuracy. 

Figure 24 provides insights into the number of epochs and 

corresponding training time required by each model, shedding 

light on their computational efficiency. Models with shorter 

training times generally exhibit higher efficiency and demand 

fewer computational resources. A shorter training duration can 

prove advantageous, especially when dealing with extensive 

datasets or conducting hyperparameter tuning. 

Overall, upon scrutinizing the training curves of the models, 

it becomes evident that both the CNN+GRU and XGBoost 

models showcase relatively stable and favorable convergence 

trends. The CNN+GRU model consistently reduces Loss, 

while the XGBoost model demonstrates a smooth and steady 

decline in loss values. These models can be regarded as 

top performers in convergence and optimization. Conversely, 

the Autoencoder-based models exhibit diverse convergence 

behaviors and may warrant further investigation to enhance 

their Performance and mitigate issues related to overfitting. 

In summary, the training curves offer valuable insights into 

the convergence tendencies of the models. The convergence 

behaviors of these models varied, influenced by their respec- 

tive architectures and the complexity of the task. The CNN and 

GRU models demonstrated comparatively swift convergence, 

whereas the LSTM, hybrid CNN+GRU model and XGBoost 

models demanded more time to reach convergence. However, 

it’s worth noting that both the CNN+GRU and XGBoost 

models displayed desirable convergence patterns. In contrast, 

the Autoencoder-based models exhibited distinctive patterns 

that warrant further investigation and attention. Understanding 

these convergence characteristics aids in evaluating the train- 

ing stability of the models and pinpointing areas with potential 

for improvement. 

VI. CONCLUSION 

In our exploration of deep-learning models for edge IIoT 

anomaly detection, we have assessed various neural network 

architectures, including CNN, GRU, CNN+GRU, LSTM, XG- 

Boost, and Autoencoder-based models. The top-performing 

model is XGBoost, consistently achieving high accuracy 

(96.41%), precision (98.57%), recall (96.50%), and F1 score 

(96.03%). The CNN+GRU hybrid model closely follows, with 

an accuracy of 99.94%. This hybrid model combines CNN’s 

spatial feature extraction with GRU’s temporal sequence mod- 

eling, proving its effectiveness in capturing the data’s local 

patterns and long-term dependencies. 

However, Autoencoder-based models exhibit lower Perfor- 

mance, with an accuracy of 71.43% and limited precision, 

recall, and F1 scores. This suggests that the unsupervised 

nature of Autoencoders may need to be revised to identify 

anomalies in complex edge IIoT data accurately. Further 

improvements are necessary for these models. 

Consideration of computational efficiency is vital for real- 

world implementation. The CNN model is the most efficient, 

with faster convergence and shorter training times. In con- 

trast, the CNN+GRU model demands more computational 

resources but excels in detection performance. Striking a 

balance between Performance and computational efficiency 

is crucial for resource-constrained edge IIoT environments. 

Future work will explore optimization techniques, including 

data augmentation, to enhance the efficiency and Performance 

of the CNN+GRU model. 
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