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Abstract—Smart cities have emerged to tackle life critical
challenges that can thwart the overwhelming urbanization pro-
cess, such as expensive health care, increasing energy demand,
traffic jams, and environmental pollution. This paper proposes
efficient and high-quality cloud-based machine-learning solutions
for safe urban smart city environment. For that, supervised ML-
based models, i.e., regression and classification, are developed
utilizing cloud-based solutions to forecast high performance in
execution time and enhanced quality of the solution in terms of
the accuracy of the implemented cloud-based ML solution. To
predict AQI, i.e. air quality index, ML models utilize pollutants
in the air data sets. The mean absolute error, mean squared
error, root means the squared error, R2 score are used to
validate and test the designed models. As classification models,
we perform the support vector machine and random forest
algorithms, which are measured using the accuracy score and
confusion matrix. Execution times and accuracy of the developed
models are computed and contrasted with the times for the
cloud-based versions of these models. The results show that
among the regression algorithms, lasso regression has an r2
score of 80 percent, while linear regression has an r2 score of
75 percent. Furthermore, among the classification models, the
random forest algorithm performs better with an accuracy of
99 percent than the support vector machine approach with 95
percent accuracy. In conclusion, our findings demonstrate that
run-time is minimized when models are executed on a cloud
platform compared to a desktop machine. Moreover, the accuracy
of our models is maintained with reduced execution time.

Index Terms—Urban Cities Smart Safety and Security, Dis-
tributed Cloud Services, Artificial Intelligence (AI), Machine
Learning (ML), Random Forest (RF), Lasso Regression (LASSO),
Liner Regression (LINER), Support Vector Machine (SVM).
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Fig. 1: Challenges in an urban smart city environment

MART cities have several definitions and cannot be

wrapped into a single phrase. The principal purpose of this
approach is to enable sustainable life for the masses through
digital interconnections in a more efficient and environmen-
tally friendly urban area. To provide individuals with a good
standard of living, it manages the resources and services of
a city using data from sensors and electrical gadgets. Smart
cities use ICT (information and communication technology)
to reduce costs and resource consumption [1]. Artificial in-
telligence, IoT (Internet of Things), extensive data analysis,
and machine learning are some techniques implemented in
smart cities. Smart city applications rely on four critical
features: sustainability, comfort, quality of life, urbanization,
and intelligence [2]. Cities must overcome several obstacles
during the design and development phases to incorporate these
features. Al-assisted distributed computing developments can
help to efficiently address the research challenges in urban
smart cities environment listed in Figure 1.

This study aims to address the safety issues in smart cities
environment focusing on smart air pollution for a safe and
clean urban intelligent city environment. Air pollution is the
contamination of the air with gases, biological molecules, and
poisonous particles. Natural calamities like volcanic eruptions
and manufactured activities, including automobile emissions
and industrial by-products, are the fundamental causes of air
pollution [3].
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Fig. 2: Overview of the development of machine learning models

These causes provoke severe threats for urban cities, like
chronic diseases in human bodies, i.e., lung cancer, skin
infections, bronchitis, asthma, etc. They may also harm an-
imals, plants, and other species [4]. Air pollutants are gases,
chemicals, and other polluting elements in the atmosphere.
These include nitric oxide, sulfur dioxide, toluene, ozone,
nitric x-oxide, particulate matter, ammonia, xylene, nitrogen
dioxide, benzene, and carbon monoxide [5]. As a result, one
of the primary problems affecting intelligent urban cities is the
issue of safety and pollution of the air. For that, the quality of
the air index (target feature), calculated based on atmospheric
pollutants, can be used to determine air pollution [6].

Smart cloud services devices including IoT devices are
strategically deployed throughout urban areas to collect
massive amounts of data [7]. Because analyzing and pre-
processing this data takes more time, computing plays a vital
role. Cities are already adopting high-performance computing
(HPC) to help them achieve objectives such as resource
conservation, social safety, and an overall better quality of life.
Distributed computing, cloud computing, parallel processing,
edge computing, and fog computing are high-performance
computing (HPC) [8]. In this work, we employ cloud machine
learning. Machine learning accuracy relies heavily on devel-
opment robust model with big data training. Therefore, the
largest the dataset, the better the ML model accuracy for the

prediction, optimization, and classification applications. Cloud
computing can enhance the execution time and the quality of
the solution of the developed ML models using the cloud.

The next sections of this paper are organized as follows.
Section II covers the previous papers dealing with this field of
research, analyzing these papers to improve this work. Section
IIT shows the previous articles related to this research field
and analyzes these papers to enhance this work. Section IV
provides information about data collection, data pre-processing
of the data, and a detailed description of the development
of the ML models and the experimental setup. Section V
examines developed ML cloud computing models’ measure,
evaluation, and validation. Experimental results are shown and
explained in Section VI. Finally, Section VI discusses the
finding and lays out the conclusions and future work.

II. BACKGROUND
A. Pollution of the Air in Urban Smart Cities

Pollution of the Air is a severe problem in various cities,
especially smart cities. Based on World Health Organization
(WHO) research, air contamination has developed as a leading
danger to human health, accounting for one fatality out of
every eight in a year [9]. The difficulty of regulating air pol-
lution still exists in intelligent cities, despite using technology



to manage infrastructure and resources effectively. Smart cities
can handle air pollution in various ways [10]. One approach
uses sensors’ data and processing to measure air quality and
detect pollution sources. By using this information, appropriate
policies and initiatives can be developed to decrease pollution
levels. Air pollution in smart urban centers must be controlled
through a combination of technical solutions, policy initiatives,
and public outreach [11]. In this paper, we mainly focus
on developing efficient distributed ML-assisted solutions that
can be utilized to estimate the pollution of the air in smart
cities. Because the data is time-based, the model should be
constructed with a shorter processing time. As a result, we
are utilizing a cloud platform.

1) Air Quality Index Calculation: Another name for the
air quality index (AQI) in several nations is air pollution
index (API) [12]. The number of pollutants varies according
to the area or location based on the computed AQI. For
that, common pollutants factors include specific matter, nitric
x-oxide, ammonia, carbon monoxide, benzene, nitric oxide,
sulfur dioxide, toluene, xylene and nitrogen dioxide found in
the atmosphere [13]. With the concentration of the pollutants,
the AQI is computed with the use of the below formula 1 [14].

1 high — I low

I= Chigh — Clou; (C Ilo’w) + Ilow (1)
Where,
I =AQI
C = Pollutant Concentration
Cjow = the break-point concentration < C
Chign = the concentration break-point > = C
114 = the break-point index related to Cjyy,
Inign = the break-point index related to Chign

The one with the highest AQI value among all pollutants is
considered the final AQI. This computed value becomes the
target feature for our regression model. There is no specific
upper limit for the AQI; however, it may be categorized, and
this classification varies depending on the country, and we
are considering the AQI range used in India [15]. The AQI
category includes the AQI range, where AQI values are divided
into specific classes. The AQI range is the target variable of
the classification model, represented in our datasets by the AQI
bucket.

B. Machine Learning

In machine learning, strategies are utilized for training
machines to discover patterns and relationships in datasets.
Machines produce predictions based on these patterns [16].
We have both supervised and unsupervised machine learning
models. If there are no labels for the data, unsupervised
machine learning is applied, which can process raw data. For
labeled data, supervised models are preferable [17]. We have
two significant subcategories of supervised machine learning:
classification and regression. Regression yields a continuous
numerical value, whereas classification produces an output
with defined labels, a value belonging to a predefined group.

Figure 2 depicts a general machine learning model. The
model explains how available machine learning models work.
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Fig. 3: The notion of ML linear regression models

We can see the steps required to make predictions from the
input data. Also, different algorithms are listed in the figure,
along with the evaluation metrics needed for testing these
models. The optimal splitting of the data frame into testing
and training sets is given in the diagram [18]. We use all these
steps to make predictions in our work which are explained in
detail in the below chapters.

1) Regression: The procedure of identifying a relationship
between a specific dependent parameter and numerous inde-
pendent parameters is referred to as “regression.” In plainer
terms, it implies fitting a function from a specified group of
tasks to the collected input data under some error function
[19]. Regression is a technique that is generally utilized in the
areas of finance and economics. Some of the best applications
of this technique include estimating housing costs, stock
market prices, and an employee’s salary. The most prevalent
regression techniques include linear regression, support vector
regressor, decision trees regressor, lasso regression, and ran-
dom forest. Regression would be suitable for this work because
the target variable (Air Quality Index) is a constant numeric
value [20]. We are implementing lasso regression and linear
regression techniques.

o Lasso Regression: LASSO is an acronym for Least Ab-
solute Selection Shrinkage Operator. In general, shrink-
age is described as a limitation on features or variables.
This algorithm functions by identifying and implementing
a constraint on the model parameters that causes the
regression coefficients for certain features to shrink until
they are equal to zero. The model does not include char-
acteristics such as a regression coefficient of zero. Due
to this reason, lasso regression modeling is essentially
a shrinkage and feature-choosing approach, and it aids
in identifying the essential predictors. While it prevents
over-fitting, it will only choose one attribute from a
collection of correlated features, and the selected attribute
may be strongly biased.

o Linear Regression: This regression algorithm belongs
to supervised machine learning that predicts a depen-
dent variable using various independent variables. [21] It
is less complicated to implement than other regression
methods. To predict air pollution, the AQI is the de-
pendent attribute, and the independent characteristics are
the sub-indices of the pollutants nitric oxide, particulate
matter, ammonia, nitrogen dioxide, toluene, ozone, xy-
lene, sulfur dioxide, nitric x-oxide, benzene, and carbon
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monoxide. As illustrated in Figure 3, this regression
model provides a relationship between the dependent pa-
rameter termed as y and various independent parameters
termed as series of x, and this relationship is linear.

2) Classification: The classification strategy is a supervised
machine learning strategy employed to recognize the class of
new findings based on training data. When classifying data,
a software program first learns from the original datasets
or observations before categorizing new results into a range
of clusters or categories, such as zero or one and yes or
no [22]. Categories are sometimes known as labels, targets,
or groups. In contrast to regression, the target parameter
of classification is the name of a category rather than a
value. The classification algorithm uses labeled input data; this
implies that it includes input with appropriate output because
it is a supervised learning process. The best applications of
classification algorithms are diabetes detection, email spam
detection, emotion prediction, and cat breed detection [23].

The classification algorithm’s primary objective is to iden-
tify the class of the original data, and these techniques are pri-
marily utilized to predict the outcome for categorical variables.
With the help of Figure 4 below, classification techniques can
be clearly explained. There are two groups in the diagram:
Group A and Group B. These groups have attributes related to
one another but not other groups. Classification can be further
divided into two: binary and multi-class [24]. When it comes
to multi-class classification, the algorithm predicts more than
one category as opposed to binary classification, where it just
predicts yes or no, 0 or 1.

o Support Vector Machine (SVM): SVM technique’s
fundamental objective is to discover a hyperplane with
n dimensions (where n denotes the total range of param-
eters) which distinctly labels the data items. Numerous
feasible planes could be utilized to segregate the two
groups of data items. The plane which has the highest
margin, that is, the longest distance needed in both the
classes to separate the points, is what we are aiming for.
To enhance ML classification accuracy, in terms of the
data points, the margin distance should be maximized.
For classifying the data points, hyperplanes serve as
decision boundaries. Data points on both ends of the
plane can be assigned to distinct categories.

In addition, the size of the hyperplane is determined by
the count of features. When the count of input parameters
is two, the hyperplane becomes just a line. When the

count of input parameters is increased to three, the
hyperplane changes into a plane with two dimensions.
When there are more than three features, it is not easy
to imagine a hyperplane. Data points not far from the
hyperplane or close to the two dimensions plane are
known as support vectors. These support vectors impact
both the orientation and the position of the plane, and
by using these support vectors, the classifier’s margin is
increased. When the support vectors are deleted, the plane
will change its orientation.

« Random Forest (RF): A smaller decision tree that work
collaboratively to complete tasks is referred to as a
“random forest.” This Algorithm can deal with the input
data comprising either continuous variables, concerning
regression, or categorical variables, concerning classifica-
tion; this is considered one of its most significant features
[25]. Classification problems produce valuable outcomes.
Understanding the ensemble technique is essential before
learning how the random forest algorithm functions.
Ensemble refers to the combination of various models.
In Ensemble, we have bagging and boosting. As Figure
5 shows, random forest works on the bagging principle.
In this principle, different subsets are obtained using the
original training data set as the replacement, and the final
output is decided by voting [26]. As a result, rather than
a single model, a set of models is employed to generate
predictions. A category prediction is provided by every
individual tree in the random forest. The category with
the highest majority becomes the model’s final prediction.
The crucial factor is the low correlation of the models.
Uncorrelated models have the ability to provide ensemble
predictions that are more precise when compared to any
of the particular predictions, similar to the assets with
weak correlations merging to form a collection that is
larger than the sum of the parts of this collection. The
trees protect each other from their different individual
errors, which results in this impressive effect.

C. Cloud Computing

The concept of offering widespread, accessible, on-demand
system access to a distributed pool of customizable comput-
ing services is known as “cloud computing.” It allows for
rapid deployment and release of these resources with much
less organizational operations or service operator involvement
[27]. A transition in the computing framework occurs when
the responsibility of computing is transferred from personal
desktop computers, single server applications, or personal data
centers to a cloud of computers. The fundamental mechanisms
of how computing is performed in the cloud are concealed, so
clients are concerned only about the computing function being
requested.

The majority of cloud-based computing services are cate-
gorized into four major classes: serverless, infrastructure as a
service (IaaS), platform as a service (PaaS), and software as
a service (SaaS). Since the architecture of these servers show
that they are stacked on top of each other, it is typically known
as the “cloud computing stack” architecture. It is simpler
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to achieve the business’s goals when one knows what these
categories are and how they differ.

1) Infrastructure as a Service: The laaS offers a computing
platform as a service upon request. In an entirely outsourced,
on-demand framework, the user buys software data storage,
network infrastructure, or servers and rents those resources.
These resources are supplied as a service, and flexible scal-
ability is enabled. Multiple users are usually handled on an
individual hardware platform. Choosing resources efficiently
and in accordance with needs is entirely up to the consumer.
It also facilitates billing management.

2) Software as a Service: The SaaS is a type of software
delivered like a hosting service and obtained across Output
Rephrased or Re-written Text on the internet. It also refers
to a method of software delivery in which software and its
relevant information are hosted securely and retrieved by
their user, generally a web browser, through the internet.
The development and implementation of present applications
leverage SaaS services. A reliable internet connection and a
browser permit access to software and its functionalities from
any location. Users from diverse backgrounds can also access
an application through the internet because it is centrally
hosted.

3) Platform as a Service: The PaaS is a cloud deployment
platform for projects that consist of resources controlled by a
third party. It offers elastic scaling for the application, allowing
programmers to develop programs and services through the
internet, with deployment methods including private, public,
and hybrid. Simply put, it refers to a platform where a third-
party enterprise offers cloud computing access to hardware and
software tools. Developers use the software and hardware tools
that are offered. An alternative name for PaaS is “application
PaaS.” With its support, we can manage and handle valuable
applications and services. It is less expensive than [aaS and
includes a robust management platform.

ITI. RELATED WORK
A. Machine Learning-based Smart City Applications

In the majority of earlier studies, machine learning is used
for forecasting air quality in smart cities. Deep machine learn-
ing and regression models are the most commonly utilized
machine learning techniques. At the same time, some studies
also employ the support vector machine approach because
these models function better than the other machine learn-
ing methods [28]. The previous section contains a complete
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Fig. 6: Example of ML-based applications in smart cities

overview of regression models and the support vector machine
technique. AI/ML algorithms have grown more significant in
a variety of industries [29].

The safety in urban cities can be improved by utilizing Al in
IoT applications [30]. The main emphasis is on enhancing the
urban infrastructure to improve living standards. It emphasizes
the significance of machine learning in fields such as supply
chain management, cybersecurity, smart grids, and healthcare
associated with smart cities, as illustrated in Figure ?? [31].
This research highlights the relevance of machine learning
(ML) in various essential enabling technologies, such as logis-
tics management, smart metering, medical care, and intelligent
transportation. In addition, this paper evaluates different data
intrusions for smart cities and outlines the primary elements
impacting the development of urban smart cities.

A broader class of machine learning strategies based on
representation learning and artificial neural networks is called
deep learning [32]. Deep learning integrates different layers
to extract highly complex features from the raw input data
gradually. In deep learning, every level gains the capability to
convert its input data into a composite form that is a little more
abstract [33]. The learning process can determine how to place
the features at different levels. For many years, DL has made
essential advancements in artificial intelligence by utilizing
machine learning techniques to address significant issues [34].
The ANNs are popular neural systems that are composed
of neurons triggered by connections that are weighted based
on prior activation [35]. Deep Neural Network (DNN) ar-
chitecture processes ML data sets and more profoundly and
appropriately classy or predicate the data set in complex
applications.

1) Regression models: Regression is one of the best
machine-learning techniques for predicting air pollution. This
is because the variable to be predicted is a continuous value.
In a study by Saba Ameer et al., they compare four distinct
sophisticated regression techniques (Gradient Boosting, Ran-
dom Forest, Decision Tree, and Ann Multi-Layer perceptron)
to examine which technique is most accurate at estimating air
quality given the amount of information and the time required
for processing the data [36]. The model’s conclusions suggest
that random forest regression is the most accurate approach
for predicting pollution levels for datasets that differ in size,
location, and other properties.
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The computation time was remarkably lower than that of
both gradient boosting techniques and multi-layer feedforward
neural networks, according to the results. However, this study
is limited to regression techniques, although other machine
learning algorithms also perform better at predicting air qual-
ity. The research in [37] addresses the before-mentioned limi-
tation by comparing multi-layer convolution and random forest
methods on a Malaysian air pollution dataset. The findings
suggest that Random Forest outperformed MLP in forecasting
the PM2.5 air pollution index in Malaysia’s smart city. Another
study presented in [38] demonstrates how support vector
regression (SVR) enables precise forecasts of hourly pollution
concentrations in California using a radial basis function
kernel (RBF). Though the outputs achieved are satisfactory,
this paper lacks a concise explanation of the methodology. The
authors hope to advance their work in the future by optimizing
the SVR parameters.

2) Classification Model: There has been very little research
done to predict air pollution in smart cities using deep
machine-learning classification models. Support vector ma-
chines are a common technique used in studies that use clas-
sification models. In their research [39], the authors forecast
the AQI using neural networks and support vector machines.
For different decision functions, other kernel functions may
be utilized, and by combining multiple kernel functions, more
complicated types of planes can be generated. Two vectors
can be applied using the kernel function, and a transformation
can be used to map each point into a high-dimensional space.
Results demonstrated that in the case where the "MG-SVM”
function is employed, the best accuracy of 97.3% is achieved.
In our work, we are using more classification models as a
result of the small contributions made in this sector.

B. Deep Learning Approaches

The authors of paper [40] proposed an IoT-based air quality
prediction and evaluation procedure that measures pollution
using a machine learning method known as a recurrent neural

6

TABLE I: Features of the datasets with description.

FEATURES DESCRIPTION
AQI Air quality index
AQI bucket Air quality index bucket
PM2.5 Particulate matter 2.5-micrometer in ug / m3
PM10 Particulate matter 10-micrometer in ug / m3
NO Nitric oxide in ug / m3
Benzene Benzene in ug / m3
CO Carbon monoxide in mg / m3
Toluene Toluene in ug / m3
NOx Nitric x-oxide in ppb
Xylene Xylene in ug / m3
SO2 Sulphur dioxide in ug / m3
03 Ozone in ug / m3
NH3 Ammonia in ug / m3
NO2 Nitric dioxide in ug / m3
City Cities of India

network (RNN). Online monitoring is continuously performed
on the components necessary to predict pollution levels using
a recurrent neural network. All sensor readings are uploaded to
a cloud server. A DHT11 sensor is used in this investigation to
collect continuous digital temperature and humidity data. The
system collects this information utilizing air detectors, which
is then transmitted to a microcontroller. The microcontroller
uploads the data to a web service after it has been gathered.

A new approach known as Long Short-Term Memory
(LSTM) is proposed [41]. It is found that the approach is
unstable to build an accurate ML prediction model. The
approach enables rapid convergence while reducing training
times with high-precision RNNs. However, they commonly
experience disappearing and shattering variations that cause
the training model to steady down or terminate all at once.
In processing the time, standard LSTM and RNN frequently
overlook the future information, whereas Bi-LSTM has the
ability to make the best of future information.

A new method is proposed to create a heuristic method
based on CNN and LSTM and use it to anticipate PM2.5
levels in Beijing’s urban area [42]. Consequently, they choose
to employ the CNN, CNN-LSTM, GRU, LSTM, and Bi-LSTM
to predict the PM2.5 concentrations. The key conclusions of
this research are based on effectiveness and comparison of
results: the model effectively identifies the spatial and temporal
features of the information by employing CNN and LSTM,
which have high precision and stability. A related study is
documented in the paper [43], however, it is confined to
one technique, whereas the article discussed above compares
several techniques. When compared to other existing learning
methodologies, the LSTM model (APNet) offers the highest
predicting efficiency. This technology may help improve air
pollution estimation in smart cities.

Air quality in Delhi is forecasted utilizing machine learning
approaches which is provided in the research conducted in
[39]. The authors employ neural networks and support vector
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machine approaches in this project. Depending on the training
database, the neural network in this study classifies samples
as severe, very poor, poor, satisfactory, or good levels of air
pollution. According to the results, both SVMs and neural
networks are effective at accurately predicting the air quality
index, with the former having an efficiency of 91.62 percent
and the latter of 97.3 percent.

A deep learning model is proposed to help mitigate air
pollution in South Carolina [44]. According to the results of
the experiments, the authors initially configured the system
with the appropriate hyperparameters. Following that, the
proposed algorithm is trained/tested/validated utilizing the
popular RMSE and MAEE error function metrics [44]. Overall
outputs suggest that regardless of the basic network structure,
an LSTM-based forecasting model can enhance prediction
performance by memorizing large amounts of historical data.
Authors aim to work on more complex models that employ
a variety of DL techniques to better analyze IoT data in the
long run [45].

C. Cloud Enabled Al Approaches

The research [46] described a cloud-enabled technique of
measuring emissions related to vehicular flow, and the outputs
were analysed by adding up the emissions from each individ-
val car. The fluctuations in the emission lines are identified
by analysing the recurring data obtained by the sensor units
strategically placed throughout the area, as well as the raw
CCTYV footage of the site. The pollution problem in the city
of Manipal, Karnataka, has been taken into account in this
proposed work. The data from the Transportation Department
has been uploaded to the cloud. The proposed effort might
be utilized as well to examine the contaminants in the air in
residential areas, public spaces, and commercial buildings.

A new method is proposed to build an intelligent predictor
of airborne pollutant measures for the following two days with
the help of DL techniques, using the RNN approach [47]. For
that PSO technique is used to determine the ideal value for
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the developed model. The smart air quality prediction model
(SAQPM) is a predictor related to intelligent computation
that relies on unsupervised machine learning, that is, LSTM
and development, that is, particle swarm optimization. Big
data technology is used to analyze data obtained through
transactions, interactions, and observations to discover patterns
and draw conclusions.

IV. DATA AND EXPERIMENTAL SETUP

The experiments are carried out on a personal laptop as well
as on the Amazon cloud platform. To conduct the experiments
using the Amazon Cloud Platform, we are utilizing the Ama-
zon SageMaker service. We are building two models, one for
regression and another for classification. Figure 7 shows the
flowchart for our machine learning model.

A. Data Collection

The datasets we utilized for this research were obtained
from Kaggle, which consists of air pollution data from India.
We’re using three separate datasets from India, each for a
different period: 2015-2019, 2020, and 2021-2022. We are
dividing the datasets due to the fact that the year 2020 was
locked down, and the pollutant levels were deficient at that
time, which are considered outliers and affect the predictions.
As a result, using three different datasets from 2015 to
2022 would yield better predictions. The datasets consist of
atmospheric pollutants data and the Air Quality Index (AQI)
at hourly and day-to-day levels for different positions across
several municipalities in India.

The data is made public by the Central Pollution Control
Board, the official website of the Government of India. The
cities included in the datasets are Hyderabad, Jorapokhar,
Delhi, Amaravati, Bengaluru, Jaipur, Amritsar, Guwabhati,
Ahmedabad, Chennai, Aizawl, Gurugram, Bhopal, Talcher,
Thiruvananthapuram, Brajrajnagar, Kolkata, Chandigarh, Shil-
long, Coimbatore, Mumbai, Ernakulam, Kochi, Patna, Luc-
know, and Visakhapatnam. Table I lists the key features
considered in the model, along with their descriptions.



B. Data Pre-processing

For cleaning the unprocessed data, several techniques are
available known as pre-processing approaches. We use ex-
ploratory data analysis (EDA) to clean the raw data and
prepare it for training. The datasets contain values of the
integer, float, and object types. The data has null or missing
values, denoted as NaN, in the datasets. This data cannot be
processed because the system generates an error as invalid
input. These empty spaces are handled by filling these null
spaces with the mean of the entire feature. After managing the
invalid data, box plots are used to find anomalies. An outlier
is a data point that varies from the entire set of other data
points in a feature by a large margin. A few outliers in these
datasets can be identified and treated using the interquartile
range.

o The 25th percentile is represented by QI.

o The 50th percentile is represented by Q2.

o The 75th percentile is represented by Q3.

The datasets are divided into four equal portions by the three
quartiles (Q1, Q2, and Q3). The interquartile range (IQR) is
the difference between Q3 and Q1. The lower bound is 1.5
times the IQR subtracted from QI1, whereas the upper bound
is 1.5 times the IQR added to Q3. Outliers are values that are
outside of this threshold. Instead of dropping these values, we
replace them with the lower and higher bound values in our
work.

C. Feature Selection

This selection strategy is a critical procedure in which
features from the dataset strongly correlated to the target
feature are selected. The correlation values generated by the
correlation matrix are used in this process. The closer the
values are to 17, the stronger the relationship between them.
In Figure 8, a heat map depicts the correlation values for the
features selected in our research. We can observe that the target
variable has a positive value for all the components used in
this work because these attributes are air contaminants utilized
to compute the air quality index (the target variable).

D. Splitting Data

The train_test_split() is a function that divides the dataset
into testing and training data in a 80:20 proportion. This
ratio is usually regarded as the best ratio for partitioning the
datasets, but it can be altered depending on the number of
records in the dataframe. The training set is operated to create
the model, and the testing set is employed to estimate the
model’s accuracy. After partitioning the datasets into training
and testing, we take the X and y sets, where y is the AQI in
case of regression. In case of classification, the AQI bucket
is created based on AQI values. This y is the target or the
dependent variable, and X consists of all the pollutants known
as the independent variables.

E. Balancing the Data

The values of the target variable (AQI Range) in the datasets
are not uniform or balanced. This unbalanced dataset decreases

the functioning of the model and affects its accuracy. Using the
bar plots, we have depicted the imbalanced nature as shown
in Figure 9.

To balance the target variable, we are using SMOTE ap-
proach. Synthetic Minority Over-sampling Method (SMOTE)
is a commonly used data augmentation strategy that is em-
ployed to balance class distributions in unbalanced records
for a classification algorithm. These unbalanced records have
considerably more values in one class than others, resulting
in inaccurate model predictions favoring the majority class.
SMOTE creates new data examples among current minority
class examples to generate synthetic instances of the minority
category. SMOTE aims to normalize the category labels in the
dataset by creating synthetic illustrations, which decreases the
probability of a model preferring the majority class.

F. Machine Learning Techniques

Machine learning algorithms are applied upon the com-
pletion of the pre-processing of the dataset. This study uses
regression models (linear regression and lasso regression) and
classification models (support vector machine and random
forest). The parameters are further divided into X and y after
the data has been split into testing and training sets. In total,
we now have four data frames: X_test, X_train, y_test, and
y_train.

1) Linear Regression: Linear regression is utilized to esti-
mate a dependent feature (y) related to a set of independent
features (X). Thus, the term “linear regression” was proposed.
The line that fits the model the best is the regression line.

Hypothesis function:

Yy =01+ 60X 2

Where,

01 = intercept.

0, = coefficient of X.
Cost Function:

e %Z (ym _ h(xm))z 3)

Where,

n = complete number of training samples in the dataset.
h(x(i)) = hypothetical function for prediction.
y(i) = value of target variable.

By determining the best 6 and 0, values, the model obtains
the best regression fit line. The model is focused on predicting
the y value with the best-fit regression line so that the error
dissimilarity between the forecasted and actual values is as low
as possible. So, it is necessary to update the #; and 6, values
in order to discover the value that decreases the difference
between the anticipated y value and the true y value. The
model uses gradient descent to adjust 67 and 65 to lower the
cost function and get the line that fits the best. The concept
is to iteratively modify the values until they are close to the
minimum cost, starting with random values for 6; and 6,
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Fig. 10: Support Vector Machine

2) Lasso Regression: Lasso regression is another linear
model obtained from linear regression that employs the same
hypothetical function for prediction. The linear regression
model treats all parameters as equally crucial for prediction.
When the dataset contains many features, even when some
are irrelevant to the predictive model, this complicates the
model and results in an inaccurate prediction on the test set
(or over-fitting). A high-variance model of this kind cannot
be generalized to the new data [48]. For solving this problem,
Lasso regression is used, which includes an L1 penalty in the
linear regression cost function.

Where,

w; = weight of jth feature.

A = regularisation strength.

m = number of features in dataset.

The additional 11 penalty during gradient descent optimiza-
tion shrunk weights to nearly zero or zero. The features in
the hypothetical function are eliminated when the weights are
shrunk to zero. As a result, irrelevant features are excluded
from the prediction model. The penalization of weights sim-
plifies the hypothesis, which favors sparsity. The intercept
remains unaffected when it is added. Bias increases with
increasing lambda, whereas variance increases with decreasing
lambda. A feature of the model is eliminated as lambda
increases because more and more weights are reduced to zero.

3) Support Vector Machine: The fundamental objective of
this technique is to discover a hyperplane with n dimen-
sions (where n denotes the total range of parameters) which
distinctly labels the data items. Numerous feasible planes
could be utilized to segregate the two groups of data items.
The optimal hyperplane is the one with the most significant
distance or margin between all the classes, which is shown in
Figure 10.

4) Random Forest: The random forest strategy is a bagging
method extension that employs both bagging and attribute
randomness to develop an uncorrelated forest of decision trees.
Steps involved in the random forest algorithm are shown in

Choosmg n rundom
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records

An output is obtained

Step 2 from each decision

tree.
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Fig. 11: Steps in Random Forest Algorithm

Figure 11. Random forests select only a subset of the available
feature splits, whereas decision trees involve all. As the model
grows the trees, a random forest adds more randomness. When
splitting a node, instead of looking for the essential parameter,
it seeks out the best feature among the random selection of
attributes. As a result, there is a greater variety, which leads to
a better model. The procedure for dividing a node in a random
forest only assumes a random subset of the parameters.

An overview of Distributed Cloud Services in Smart Cities
is depicted in Figure 12 (a), while the Implementation and
Testing of ML-assisted Distributed Framework using the
Amazon SageMaker Platform is illustrated in Figure 12 (b).
As seen in Figures our Al-assisted cloud machine learning
service termed Amazon SageMaker allows users to develop,
train, and use machine learning techniques. It comes with
various machine-learning algorithms that programmers can
use on their data. Amazon SageMaker Studio extends the
capabilities of JupyterLab with new tools that enhance ma-
chine learning operations by leveraging AWS’s computational
capacity. Amazon SageMaker has high scalability and can
easily handle large datasets and modeling strategies. As a
result, it is feasible to analyze vast amounts of data more
efficiently, which can significantly minimize processing time.
Amazon SageMaker provides high-performance computing
instances for tasks related to machine learning. These instances
are equipped with powerful CPUs and GPUs, which can
considerably speed the implementation of machine learning
models. As shown in the Figure 12, IoT devices of the
smart city, such as smart buildings, IoT/health devices, and
smart vehicles, etc., are connected to the cloud using wireless
connections, i.e., Wi-Fi, to provide efficient cloud services. the
developed ML cloud architecture includes data gathering and
storage, data pre-processing, training the model, and model
deployment for air quality prediction using machine learning,
as shown in Figure ??. As seen in the model Amazon has
a big market share among cloud computing service providers
because of its low-cost structure and flexible toolsets. It offers
services ranging from infrastructure technologies like storage,
computation, and databases to emerging technologies like
machine learning, artificial intelligence, and IoT. It has been
designed as a flexible and safe cloud computing environment.
The central infrastructure has been constructed to meet the
security standards of the military, significant banks, and other
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Fig. 12: The Proposed Al-assisted Distributed Cloud Services Framework for Enhanced Safety in Urban Smart Cities
Environment: a) Overview of Distributed Cloud Services in Smart Cities, b) Implementation and Testing of ML-assisted
Distributed Framework using the Amazon SageMaker Platform.

susceptible organizations. We use the Amazon SageMaker
Service to deploy our machine-learning models from all the
provided services. Individuals without much knowledge of
machine learning can also use this service to execute their
models, which is a significant advantage.

5) Amazon SageMaker: A cloud platform for machine
learning called Amazon SageMaker enables programmers to
build, train, and implement machine learning models in the
cloud. SageMaker delivers pre-trained machine learning algo-
rithms that may be deployed as-is at the highest degree of
abstraction [49]. Furthermore, SageMaker includes a number
of built-in machine learning techniques that programmers can
use on their data. Moreover, SageMaker offers maintained
instances of Tensor Flow and Apache MXNet so that pro-
grammers can build custom machine learning algorithms from
scratch [50]. We don’t need to manage servers because it
includes an integrated Jupyter Notebook instance for quick
access to the datasets for analysis and exploration. It also
contains standard machine learning methods that have been
designed to perform efficiently on massive datasets in a
distributed context.

Amazon SageMaker Studio is a machine learning integrated
development environment (IDE) that allows you to construct,
train, debug, deploy, and monitor machine learning models
[51]. SageMaker Studio has everything users need to move
their models from data pre-processing to experimenting to
deployment while increasing productivity.

Amazon SageMaker Studio expands JupyterLab’s capabil-
ities with custom resources that can enhance the machine
learning operation by leveraging AWS compute capacity.
JupyterLab 1 and JupyterLab 3 are now supported by Studio,
where JupyterLab 3 is the default JupyterLab version in
Studio.

6) SageMaker Architecture: This SageMaker Architecture
consists of built-in features and abilities make it a highly
flexible and adaptable platform for creating and implementing
machine learning models. The following aspects would be
included in the architecture for forecasting air quality in smart
cities using Amazon SageMaker:

o The datasets collected from kaggle which are air quality
data from India from 2015 to 2022 can be stored in
Amazon S3 bucket.



o We use the SageMaker’s Jupyter Notebook to build the
models.

o To make the collected data suitable for machine learning,
pre-processing is required. For this purpose, it is neces-
sary to clean the data and prepare it for applying the
machine learning techniques.

o After pre-processing the data, we apply our four models
on the training set.

« We evaluate these models using the testing set.

Furthermore, for this research, we embarked on an in-depth ex-
ploration of [52]-[58] employing a comprehensive approach
that encompassed research methodologies and algorithms.

V. EVALUATION METRICS

The concept of developing machine learning or artificial
intelligence models is based on the principle of constructive
feedback. We develop a model, get insights from metrics,
improve, and repeat until we obtain the needed accuracy.
Evaluation standards explain the model’s performance. The
capability of evaluation metrics to distinguish between model
outputs is an important segment. In this field, we evaluate
machine learning instances using a variety of measures. The
evaluation metric chosen is entirely dependent on the kind
of model and the model’s implementation strategy. When
we speak of predictive models, we are referring to either a
classification approach (binary result) or a regression standard
(continuous outcome). Each of these measures uses a different
set of evaluation metrics.

A. Regression

When estimating a numeric value, such as a length or a
sales price, we are not interested in knowing if the model
anticipated the value precisely (this may be impractical in
practice); rather, we would like to determine how closely the
predictions matched the actual data values. Error handles this
directly and highlights, in general, how close forecasts were
to their predicted values. There are four evaluation measures
that are commonly used for assessing and presenting the
performance of a regression algorithm as listed below. Though
these are the four most frequently utilized regression metrics,
there are many others.

e Mean Absolute Error

e Mean Squared Error

e Root Mean Squared Error
e R2 Score

1) Mean Absolute Error (MAE): Mean absolute error is
a simple and direct metric that computes the fundamental
difference between the actual and estimated measures. Now,
we must determine our standard’s mean absolute error, a
misconception caused by the method and regarded as an error.
Then, we will estimate the difference between the true and
estimated measures; this would be an absolute mistake, though
we must determine the mean absolute of the whole testing
set. Therefore, add each error and split those by the complete
number of instances. Since this is a loss, we must get the
lowest mean fundamental error possible.

>

MAE =

1
N> -9

®)

Where,

y = actual values.

1 = predicted values.

N = total data values.

from sklearn.metrics import mean_absolute_error
mae = mean_absolute_error(y_test,y_pred)

The MAE value you received belongs to the identical type as
the result parameter. It is the most invulnerable to outliers, but
the chart of mean absolute error cannot be distinguishable, so
we must utilize different techniques, such as gradient descent,
which is distinguishable.

2) Mean Square Error: MSE is a prominent error measure
for regression challenges. Additionally, it is a significant loss
function for techniques that fit or optimize regression problems
that use the least squares framework. In this context, least
squares reduce the mean square error between true and esti-
mated values. The average or mean of the squared differences
between a dataset’s calculated and actual numerical values is
used to calculate the MSE. It is a regularly used and extremely
simple statistic that changes the mean absolute error. Calcu-
lating the squared difference between the true and estimated
weight is necessary according to the mean squared error.
Hence, we discovered the fundamental difference above and
the squared difference here. It denotes the squared difference
between the real and expected measurements.

To the benefit of MSE, we square terms in order to prevent
the cancellation of negative words. The graph of mean square
error is distinguishable; hence, it can be utilized as a loss
function. The result of calculating the mean square error is
a squared measure of output. If the collected data includes
outliers, they are penalized more than the null values, and the
evaluated mean square error is high. To outline, the model is
not potent to outliers that were advantageous in mean absolute
error.

_ 1 Py
MSE = — % (y=19) ©6)

Where,

y = actual values.

y = predicted values.
n = total data values.

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test , y_pred)

3) Root Mean Squared Error: As the name indicates, it
is basically the square root of the mean squared error. It is
simple to comprehend a failure since the outcome we receive
falls into the identical unit as the required outcome feature. In
contrast to the mean absolute error, it is less robust to outliers.
Root mean squared error is commonly employed as a testing
measure.

RMSE = VMSE 7)
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Fig. 13: Actual vs Predicted graph for Air Quality in
India(2015-2019) dataset using linear regression
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rmse = np.sqrt(mean_squared_error(y_test,y_pred))

4) R2 Score: The R2 value is a measure that indicates the
effectiveness of the prototype rather than the complete loss. As
seen above, MSE and MAE are dependent on context, while
the R2 value is independent of context. Hence, by employing
R2, we can resemble baseline models, something that neither
of the other measures enables. In classification problems, we
have what is known as a fixed threshold of 0.5. This evaluation
metric estimates how considerably better the line of regression
stands than a mean line. It is hence correspondingly referred
to as the coefficient of determination or, alternatively, as the
goodness of fit.

SSr
SSm

R2 Score = 1 — &)

Where,
SSr = Squared sum error of regression line.
SSm = Squared sum error of mean line.

The R2 score increases as the regression line approaches
perfection and the prototype’s implementation enhances. The
common situation exists when the R2 score is between zero
and one, like 0.8, implying that the instance can justify 80
percent of the variance in the information.
from sklearn.metrics import r2_score
12 = r2_score(y_test,y_pred)

B. Classification

The primary measures used to examine a classification
model are F1 score, accuracy, recall, and precision. The
percentage of accurate predictions for the testing data is known
as accuracy. It is simple to calculate by splitting the number
of correct forecasts by the entire number of forecasts. The
accuracy measure contains no information on false positives
or false negatives. As a result, there is a significant loss of
data, as some may help evaluate and improve our model.

Predicted Values

3 4 5 6 7
Actual Values

Fig. 14: Actual vs Predicted graph for Air Quality in
India(2015-2019) dataset using lasso regression

1) Confusion Matrix: This matrix measures the effective-
ness of a classification model and is just a N x N matrix (here,
N refers to the numeral of labels). For a confusion matrix,
every row signifies a real category, whereas every column sig-
nifies an anticipated category. The confusion matrix() method
from the SkLearn library can be used to create this matrix
instantly.

o True positive (TP) denotes that the real and forecasted

values are correct.

« False positive (FP) means that the true value must be false

whereas the predicted value is true, indicating an error.

o True negative (TN) implies that both true and predicted

values, are untrue.

« False negative (FN) signifies that the real value must be

true, while the predicted value is false.

2) Precision: Precision is described as the ratio of the
technique’s true positive value and its overall true positive
value. Precision could be simply computed using the SkLearn
library’s precision score() function. Precision will not be
enough because a model can only make one true positive pre-
diction while returning the others as negative. As a result, the
precision would be 1/(1 + 0) = 1. Precision, in combination
with another measure known as “recall,” is required.

TP
(TP + FP)

3) Recall: This metric is referred to as the proportion of
the digit of true positives to the complete number of actual
positives. The terms “true positive rate” and “sensitivity” are
other names for recall. The recall score() procedure in the
SkLearn library makes it simple to compute recall.

TP
(TP + FN)

4) FI Score: Another classification measure that combines
recall and accuracy is the recall-precision metric which is
known as the f1 score. It is the harmonic average of recall and
precision. The harmonic average is much more vulnerable to
low values, so the fl score will be great only after precision

Precision (P) = (10)

Recall (R) (11)



and recall are both high. The SkLearn library’s fl score()
function makes it simple to compute the fl score.

PR
Fi S R) = 12
1 Score (R) IR (12)
Where,
P = Precision.
R = Recall.

VI. RESULTS AND DISCUSSION

We use regression and classification models to forecast air
quality in Indian smart cities. The fl score, recall, accuracy,
and precision are used to assess the SVM and random forest
algorithms. The mean square error, R2 score, mean absolute
error, and root mean square error are utilized to estimate
linear regression and Lasso regression models. We are also
calculating the execution time for each model separately. The
process is repeated on the Amazon SageMaker service, and
the results are compared in order to determine which method
predicts air quality in smart cities better.

The outcomes of air quality prediction employing a re-
gression algorithm would be determined by the model used
and the data collected. The regression analysis results could
provide insight into the elements most strongly connected
with fluctuations in air quality. This research could inform
decisions on public policy and other actions that enhance
air quality. In general, the outcomes of regression-based air
quality prediction can offer valuable data for monitoring and
improving air quality, in addition to guiding public health
decision-making and policy. The results for all three datasets
are provided in the section below. We are presenting the
outputs in the form of graphs and tables.

The actual vs. predicted graph for the Air Quality in
India(2015-2019) dataset using linear regression is depicted in
Figure 13, and the same graph for lasso regression is shown in
Figure 14. In these scatter plots, the actual values in the dataset
are graphed against the model’s predicted values. These graphs
are considered one of the richest forms of data visualization.
The diagonal blue line is the line of regression, and the yellow
and red dots are the data points. The line of regression is
determined from the regression function. This dataset has more
data than the other two datasets.

Hence, we can see more points in these two graphs. Com-
paring these two figures demonstrates that the data points in
the lasso model are closer to the regression line than the linear
model. These illustrations mean the lasso model has better
performance in our work. The R2 value is higher for the lasso
method because the nearer the points are to the diagonal line,
the greater is the R2 score.

The actual vs. predicted graph for the Air Quality in In-
dia(2020) dataset using linear regression is depicted in Figure
15, and the same graph for lasso regression is shown in Figure
16. We plot the true values that we have in the dataset against
the predictions made by our model. The blue line denotes
the regression line, and the orange and brown dots represent
the data points. The regression function determines the line
of regression. The points in these two graphs are fewer when
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Fig. 15: Actual vs Predicted graph for Air Quality in
India(2020) dataset using linear regression
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Fig. 16: Actual vs Predicted graph for Air Quality in
India(2020) dataset using lasso regression

compared to the above two graphs. The reason for this is the
amount of data we have in the dataset.

With the lasso model, the points are located nearer the
line of regression than in the linear model, as seen when we
analyze these two graphs. This analysis implies that the lasso
method operates better in our work. The R2 score for the lasso
model is higher since the points are nearer to the regression
line.

For all three datasets, the depictions are similar, and the
Figures 17 and 18 depict the actual vs predicted charts for
Air quality in India(2021-2022) dataset using linear and lasso
regression respectively. Purple and green dots are the data
points, and the blue diagonal line represents the regression
line. This dataset has very few values displayed in the figures
above. In the linear model, the points are almost in the form
of a horizontal line. These demonstrations can be because the
model is under-fitting. The results of this dataset are the same
as the other two datasets. That is, lasso regression outshines
linear regression.

The evaluation measures used for all three datasets for
testing regression models are listed in three tables. Lasso
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Fig. 17: Actual vs Predicted graph for Air Quality in
India(2021-2022) dataset using linear regression

TABLE II: Evaluation of Regression models for
India(2015-2019) dataset.

Evaluation Metrics | MAE MSE RMSE | R2 Score
Lasso Regression 0.2218 | 0.0866 | 0.2944 80.66
Linear Regression | 0.2502 | 0.1110 | 0.3332 75.22

regression performs better than linear regression according
to the evaluation metrics also. Among all the metrics, we
consider the R2 score in most cases. For all our datasets, the
R2 scores for lasso models are higher than for linear models.
All the other measure values should be low for a good model,
and in most situations, lasso regression does that; hence it is
considered a better approach for estimating air quality in smart
cities.

The first dataset’s evaluation results, the Indian Air Quality
from 2015-2019 dataset, are given in Table II. We are getting
an R2 score of around 80 percent for the lasso model, more
significant than the value obtained for linear regression. All the
other measures are higher for the linear model than the lasso
model. These measurements indicate that for this dataset, lasso
regression does well than linear regression. Above Table III
lists the evaluation metrics for the Air Quality in India(2020)
dataset. In this table, the values have less difference for lasso
and linear approaches. These results are similar to the dataset
above.

The evaluation metrics for the Air quality in India(2021-
2022) dataset are given in Table IV. Here, the R2 score for
the lasso algorithm is greater than the linear algorithm, though
the values have a minimal difference. But we can see that
the mean square error is more impressive for lasso regression
along with the root mean square error, which differs from the
other two datasets. This difference is due to the amount of
data that we have in the dataset.

Lasso regression is a linear regression variant that integrates
regularization to avoid over-fitting and enhance the model’s
predictive performance. Employing lasso regression is partic-
ularly beneficial when there are several variables, and a few
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Fig. 18: Actual vs Predicted graph for Air Quality in
India(2021-2022) dataset using lasso regression

TABLE III: Evaluation of Regression models for India(2020)

dataset.
Evaluation Metrics MAE MSE RMSE | R2 Score
Lasso Regression 0.1462 | 0.0343 | 0.1854 87.56
Linear Regression 0.1806 | 0.0522 | 0.2285 81.09

TABLE IV: Evaluation of Regression models for
India(2021-2022) dataset.

Evaluation Metrics | MAE MSE RMSE | R2 Score
Lasso Regression 0.2730 | 0.1292 | 0.3595 74.25
Linear Regression | 0.3458 | 0.1158 | 0.3403 71.42

of them might not be significant. While predicting air quality,
numerous possible variables, including all air pollutants, can
influence the results. In this case, lasso regression is preferable
to simple linear regression. The reasons for this are:

o The most significant variables can be found using lasso
regression, whereas irrelevant or minor factors can be
disregarded. This can result in a more compact and
interpretable model.

o Regularization is used in Lasso regression to reduce
over-fitting and enhance model generalization ability by
shrinking the coefficients of less significant variables
towards zero.

e The accuracy of the model can be increased by adding
polynomial or interaction variables in lasso regression
to identify non-linear interactions between variables and
outcomes.

In Figure 19, we use a bar graph to compare the R2 scores
obtained by linear regression and lasso regression techniques
for all three datasets. The green bars indicate linear model
values, and the pink bars indicate lasso model scores. The
graph shows that for all the datasets, the lasso model surpasses
the linear approach.
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Fig. 19: Comparison of R2 Scores for all Datasets

A. Classification

Classification is a different way to predict air quality than
regression analysis. Classification is the process of categoriz-
ing or classifying data based on its characteristics, whereas
regression includes estimating a set of continuous numeric
values. The classification model’s accuracy would be measured
using evaluation measures such as fl score, recall, accuracy,
and precision. Here, the model’s accuracy is computed as the
amount of correct forecasts divided by the complete amount
of estimations. In contrast, other metrics are computed using
the values from the confusion matrix. These measurements
indicate how effectively the model can correctly classify air
quality into various categories. However, it is crucial to note
that the classification algorithm’s accuracy relies on the data
quality utilized to construct the model, the features used for
classification, and the classification algorithm utilized.

A confusion matrix gives a prediction summary for a model.
It shows the amount of incorrect and correct predictions for
every class separately. The precision, F1 scores, and recall are
measured using the values obtained from the confusion matrix.
Figure 20 depicts the confusion matrix of the random forest
approach. Here, we have six columns and six rows because
the classes we have in our work are six. As we can see in
this diagram, the y label illustrates the true or actual values in
the dataset. In contrast, the x label represents the values the
random forest model predicted.

Figure 21 shows the confusion matrix of the support vector
machine model. In this, we have six columns and six rows
because the classes we have in our work are six. As depicted
in this diagram, the y label represents the true or actual values
in the dataset, whereas the values predicted by the random
forest model are represented by the x label.

The evaluation outcomes for the first dataset, the Indian Air
Quality from 2015-2019 dataset, are given in Table V. The
random forest algorithm outperforms the SVM algorithm, as
seen in the table. All four measures used for testing the model
give higher values for the random forest method than for the
support vector machine method. We have more relevant results
for this dataset than the other two datasets because the amount
of data here is more, which helps the models understand the
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Fig. 20: Confusion Matrix of Random forest model

1600
Good
1400

Moderate 1200

1000
Poor

True

800

Satisfactory
600

Severe 400

200
Very Poor

cevet®

600% Mode‘a‘e 900"

8 of
Pt act® NE

Predicted

Fig. 21: Confusion Matrix of Support vector machine model

TABLE V: Evaluation of Classification models for
India(2015-2019) dataset.

Evaluation

Metrics Recall

Accuracy | Precision F1 Score

Random

Forest 99.8595

99.8604 99.8672 99.8638

Support
Vector
Machine

95.4262 91.5197 97.2247 93.6382

trends in the dataset more and, in turn, helps them generate
accurate predictions.

Table VI lists the results for the Air Quality in India(2020)
dataset where classification models are evaluated using some
metrics. The results are similar to the above dataset, which
means the random forest approach has better values than
the SVM approach. The difference in the values for both



TABLE VI: Evaluation of Classification models for
India(2020) dataset.

Evaluation

Metrics Recall

Accuracy | Precision F1 Score

Random

Forest 98.8580

99.0174 90.7186 93.4667

Support
Vector
Machine

91.3539 88.1005 87.5075 85.1661

TABLE VII: Evaluation of Classification models for
India(2021-2022) dataset.

Eﬁlua.mm Accuracy | Precision Recall F1 Score
etrics
Random
93.5483 91.4814 94.4421 92.4836
Forest
Support
Vector 93.5483 72.2214 70.8334 71.5079
Machine
1001 BN Support Vector Machine

Random Forest

801

601

F1 Scores

404

201

India(2015-2019) India(2020)

Datasets

India(2021-2022)

Fig. 22: Comparison of F1 Scores for all Datasets

techniques is noticeable in this dataset. The accuracy and
precision values are very high for the random forest algorithm
compared to the recall and F1 scores, but this is not considered
problematic as the difference is inadequate.

Evaluation results of the classification models for the Air
quality in India (2021-2022) dataset are given in Table VII.
The outcomes are similar to the other two datasets, but the
values are lower here because of the data we have. This dataset
has fewer records than the other two datasets; therefore, the
models get to learn less. The accuracy is not calculated using
the values obtained from the confusion matrix. Hence, it is
much higher than the support vector model’s recall, precision,
and F1 score values.

The ability of random forests to handle high-dimensional
records, like datasets with numerous attributes, is advanta-
geous for predicting air quality. In contrast, SVMs may en-
counter difficulties with high-dimensional data. For predicting
air quality, there can be complicated relationships between

TABLE VIII: Execution Times.

Execution Time in secs
Models
Local Machine Cloud Platform
Linear Regression 0.0877 0.0301
Lasso Regression 0.0649 0.0228
Regression with
EDA 15.9758 5.6914
Random Forest 2.0584 1.7560
Support Vector 22.3402 17.8313
Machine
Classification with
EDA 33.6759 21.3631

the attributes and the target variables, which a random forest
algorithm can handle better than an SVM model. Compared
to SVMs, random forests are less vulnerable to outliers in
the dataset, which can be helpful when there are sometimes
extreme values for specific pollutant concentrations that might
affect the data.

Generally, from all the measures we have, the F1 score is
preferable. The results are listed in the form of a table for
each dataset separately. Additionally, a bar graph is generated,
which compares the F1 scores of all datasets. In Figure 22,
we compare the F1 scores obtained by the random forest
and the SVM algorithms for the three datasets using a bar
graph. The green bars indicate random forest model scores,
and the brown bars indicate the values of the SVM model.
Observations reveal that random forest outshines the support
vector machine technique for all the datasets.

B. Cloud Platform

The above-mentioned four regression and -classification
models are deployed on the cloud platform. We are using
Amazon SageMaker service to deploy the models on the cloud.
The Amazon SageMaker provides a Jupyter Notebook where
we can execute the same Python code. The results reveal that
the cloud platform helps reduce the execution time for all
four models, and the time required for data pre-processing can
also be reduced. The execution times using personal computer
Jupyter Notebook and SageMaker’s Jupyter Notebook are
given in Table VIII.

Amazon SageMaker offers high scalability, which means it
can efficiently address large datasets and modeling techniques.
As a result, it is possible to process vast amounts of data more
efficiently, which can drastically decrease the processing time.
For projects related to machine learning, Amazon SageMaker
offers high-performance computing instances. These instances
are equipped with powerful CPUs and GPUs, which can
considerably speed the implementation of machine learning
models, resulting in rapid predictions.

Prediction time can be significantly decreased by running in-
ference on large datasets parallelly using Amazon SageMaker
batch transform. This method is especially beneficial when



estimating air quality in smart cities, where a massive amounts
of information must be analysed. Overall, Amazon SageMaker
delivers a number of capabilities and features that can help
reduce the execution time for estimating air quality in smart
cities. By utilizing these capabilities, we can produce precise
air quality predictions quickly and economically.

A graph is plotted for the execution times in seconds of
all the models as shown in Figure 23. The x-axis represents
the machine learning models, and the y-axis represents the
time in seconds. The blue line portrays the execution on the
personal computer, and the pink defines execution in Amazon
SageMaker. We can see that the execution times are reduced
while using a cloud platform which is the key finding of this
work. Air quality data is a time series, meaning the values
change hourly. A reduced runtime will be beneficial for this
type of data. It is also challenging to manage the time series
data collected from smart cities because smart cities generate
numerous data that require processing time. Cloud computing
plays a significant role in situations like this, as it shortens the
runtime and aids in storing the vast amounts of data acquired.

VII. CONCLUSION

Smart cities aim to improve our lifestyles and solve many
problems for different applications. The primary goal of this
research is to design a model that can forecast air quality
in smart cities utilizing cloud computing and machine learn-
ing. To determine air quality, regression, and classification
techniques are employed. As regression models, both linear
regression and lasso regression are used. We apply the support
vector machine and random forest techniques as classification
models. We also compute the execution timings for each
of the four models and compare them to the times for
their cloud-deployed versions. The results demonstrate that
lasso regression outshines linear regression among regression
techniques, and the random forest algorithm outperforms the
support vector machine approach among classification models.

Furthermore, these findings show that when models are
executed on the Amazon SageMaker rather than a desktop
computer, run-time is reduced. Additionally, accuracy is main-
tained while execution time is reduced. Amazon SageMaker
offers a distributed computing architecture that includes many
compute instances that collaborate in a distributed manner,
which enables faster processing of large datasets than personal
computers. For example, to improve performance and shorten
execution times, use a cloud-based solution, Amazon Sage-
Maker, that can dynamically scale the computing resources
utilized according to the size of the dataset.

In conclusion, ML could provide an efficient and flexible
solution to easily modify the machine learning framework and
match their specific requirements despite having pre-defined
algorithms and built-in tools. Also, instance type selection
and the development of custom training algorithms are easily
attainable. We can minimize execution time and improve
quality by adapting distributed cloud-based infrastructure for
a safe and sustainable smart cities environment.

Personal Computer
—e— Amazon SageMaker

time in secs

et e
€ » ot o
s o e
3
qed o
o

machine learning models

Fig. 23: Execution Time in seconds

VIII. FUTURE WORK

As a future work, we will apply regression and classification
models and deploy them on other cloud-based platform. We
will employee other cloud based service to deploy secure
and privacy preserving efficient ML models on other cloud
platforms in addition to Amazon cloud. We aim to build secure
and efficient cloud platform to helps reduce the security risks
and enhance the performs, i.e. execution time for the developed
ML models and the time required for data pre-processing can
also be reduced.
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