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Abstract13

Flood disasters are among the most devastating natural disasters worldwide. The oc-14

currence of such disasters is often accompanied by strong precipitation and other weather15

factors, making it more difficult to identify the affected areas. Moreover, Synthetic Aper-16

ture Radar (SAR) technology can capture images in 24-hour window and penetrate through17

clouds and fog. The change detection technology, based on SAR images, is generally uti-18

lized to locate disaster-stricken areas by analyzing the differences between pre- and post-19

disaster images. However, this method mainly faces two challenges: the presence of speckle20

noise reduces the accuracy of the difference detection and the lack of a suitable SAR dataset21

for flood disaster change detection. Therefore, this research proposes a novel two-stage22

approach for locating the flood disaster area, named Denoising-Change Detection Ap-23

proach (D-CDA). The first stage consists of a nine-layer denoising network with an encoder-24

decoder structure, called SAR Denoising Network (SDNet). It utilizes a multi-residual25

block and parallel convolutional block attention module to extract features during the26

encoding process to suppress the noise component. In the second stage, a novel convo-27

lution neural network is proposed to detect the changes between bitemporal SAR im-28

ages, namely Coordinate Attention Fused Network (CAFNet), which combines the Siamese29

network and UNet++ as the backbone and fuses multi-coordinate attention modules to30

enhance the change features. Moreover, a change detection dataset (ZhengZhou Flood31

- ZZF-dataset) is constructed using Sentinel-1 SAR images based on the flood disaster32

in Zhengzhou of China in 2021. The simulations verify the effectiveness of the proposed33

method. The experimental results indicate that the D-CDA achieves favorable detection34

performance in locating flood disaster areas.35

1 introduction36

Flood disasters often cause serious social and economic devastations (Munawar et al., 2022).37

After a flood event, accurate and immediate locating of the flood disaster-stricken area is38

very important for post-disaster rescue and relief efforts (Priyatna et al., 2023). Flood39

disaster localization typically poses a significant challenge due to the complex interplay of40

multiple factors, such as rain, clouds, and fog. Synthetic Aperture Radar (SAR) sensors41

possess the capability to capture images in 24 hours, penetrate through fog and clouds42

(Tebaldini et al., 2022), and acquire long-term and large-scale observation data, facilitat-43

ing the monitoring of dynamic changes in water bodies and precise identification of water44

body areas. Therefore, SAR images are invaluable for emergency responders and disaster45

managers during crisis times.46

In the past few years, many Change Detection (CD) methods were proposed to detect47

bitemporal SAR images, and these methods generally contain unsupervised learning meth-48

ods and supervised learning methods (H. Chen et al., 2019). Most unsupervised learning49

methods usually consist of three steps: preprocessing, Difference Image (DI) generation,50

and DI classification with a focus on the last two steps. In the early stages of research,51

ratio-based methods were usually utilized to generate DI (Bazi et al., 2005), such as the52

Logarithmic ratio operator (Dekker, 1998), Gaussian ratio operator (B. Hou et al., 2014),53

and Neighborhood ratio operator (Gong et al., 2011). Moreover, several clustering algo-54

rithms were used for the DI classification, such as the K-means clustering algorithm (L. Liu55

et al., 2019), K-means++ clustering algorithm (Atasever & Gunen, 2021), Fuzzy C-Means56

(FCM) clustering algorithm (Kumar et al., 2020), etc... As for the flood events, they of-57

ten result in the destruction and alteration of ground features, rendering traditional DI58

classification techniques ineffective in accurately demarcating the boundaries of inundated59

areas.60

With the development of unsupervised deep learning, several convolutional neural61

network-based methods have been proposed to replace the traditional machine learning62

methods. For instance, Chen et al. proposed a parallel multi-scale spatial pooling Con-63
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volutional Neural Network (CNN) to exploit the changed information from the noisy DI64

(J.-W. Chen et al., 2020). Moreover, Gao et al. introduced a dual-domain network model65

for change detection of SAR images; the proposed approach combines spatial domain and66

frequency domain information to improve the accuracy of change detection. However, the67

mentioned methods were limited to the number of training samples, which affected the ac-68

curacy of the CD. Furthermore, references (H. Chen et al., 2022) and (Qu et al., 2021)69

generate false labels using the FCM clustering algorithm to increase the sample size based70

on DI and further improve the efficiency of change detection. The use of DI as a benchmark71

in CD methods, based on SAR images, weakens the preservation of the semantic information72

within the image, resulting in blurred boundaries and diminished accuracy of CD outcomes.73

Most supervised learning methods, based on accurately labeled samples, usually obtain74

more change information than unsupervised learning methods; hence, they are more suitable75

for the accurate detection of change areas (Dong et al., 2020)(Gao et al., 2021). Therefore,76

many scholars proposed supervised CD methods based on SAR. For example, Lanka et77

al. proposed a CD method for mapping the extent of drought in a lake using supervised78

classification; thus, pre-processing, thresholding, segmentation, and Random Forest Clas-79

sification (RFC) steps were applied to estimate the decay in water levels (Lanka & Puli,80

2023). Moreover, Ma et al. proposed an approach based on multi-grained cascade forest81

and multi-scale fusion for SAR images. This approach detects the changed and unchanged82

areas of the images by using the well-trained multi-grained cascade forest (Ma et al., 2019).83

With the development of deep learning, many scholars have focused their research on the84

field of deep learning to improve the accuracy of CD. For instance, Li et al. proposed a non-85

smooth Nonnegative Matrix Factorization (nsNMF) nonlinear network to build for learning86

hierarchical, nonlinear, and localized data representations. Meanwhile, an extreme learning87

machine is integrated into the nonlinear nsNMF model to construct a deep nsNMF network88

for satisfactory classification (H.-C. Li et al., 2020). For instance, Wang et al. proposed89

a supervised Principal Component Analysis Network (PCA-Net) method, the pixels near90

the boundary between two classes are exploited to guide network training (R. Wang et al.,91

2018). Moreover, paper (Samadi et al., 2019) proposed a supervised deep belief network92

acting as the architecture and provided a dataset with an appropriate data volume and93

diversity. The network used the input images and the morphological operator results of the94

images to train the deep learning model to detect the changes in SAR images.95

Based on the study of the aforementioned techniques, several researchers employed CD96

methods in SAR images to detect water expansion and submerged areas caused by floods97

(Abijith & Saravanan, 2022). For example, Li et al. integrated the fully-connected condi-98

tional random field model with long-range pairwise potential connections for the detection99

of flood disasters based on Sentinel-1 SAR images (Y. Li et al., 2018). In addition, He et100

al. constructed a flood dataset based on optical images of Sentinel-2 and the SAR images101

obtained from Sentinel-1, and proposed a cross-model change detection network to extract102

the flood area (He et al., 2023). Furthermore, Zhao et al. employ dual-time SAR images103

for detecting changes in flood disasters and used a transfer learning framework to improve104

the detection accuracy for flood-affected areas (Zhao et al., 2023a). However, the system-105

inherent speckle noise in SAR images superimposed the disturbing salt-and-pepper pattern106

on the real information, which had an undesirable effect on locating disaster areas. There-107

fore, in the task of locating flood disasters, many studies focused on denoising first and108

carrying out CD subsequently to improve the accuracy of disaster area positioning (Dong109

et al., 2022)(Duan et al., 2021).110

In recent years, denoising methods primarily are categorized into three types: Spa-111

tial Domain Filtering-based Methods (SDFM), Frequency Domain Filtering-based Methods112

(FDFM), and Deep Learning-based Methods (DLM) (Thakur & Maji, 2022b). SDFM is113

relatively simple because it processes the grayscale values of the image directly. So, it has114

been widely used in early SAR image denoising, such as the Frost filter (Frost et al., 1982a),115

Lee filter (Frost et al., 1982b), Kuan filter (Kuan et al., 1985), and SAR-BM3D (X. Liu et116
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al., 2020). However, SDFM is limited by window size generally, which results in blocking117

effects and artifacts in the denoised image. To solve these problems, FDFM is introduced118

to suppress the speckle noise of SAR images through inverse transformation (Parrilli et119

al., 2011),(S. Q. Liu et al., 2014). Therefore, Liu et al. (S. Liu et al., 2017) converted120

speckle noise to additive noise using shearlet transform. Reference (Jakka et al., 2019) used121

discrete wavelet transforms for image fusion and applied an improved gray wolf optimiza-122

tion algorithm for an adaptive optimization of the coefficients. In papers (X. Zhang et al.,123

2022) and (Chunhua & Fangchao, 2022), an improved wavelet denoising algorithm, based124

on fast non-local mean filtering and a threshold function, is proposed to improve the effec-125

tiveness of denoising. As a result, FDFM performs better in preserving image edge details126

than SDFM. However, after frequency domain transformation and inverse transformation,127

information loss often occurs, reducing theregore the denoising accuracy.128

With the development of remote sensing technology and deep learning method, much129

more scholars apply CNNs to denoise SAR images. In paper (Chierchia et al., 2017), a novel130

SAR denoising network deployed logarithmic and exponential transformations in residual131

CNNs to denoise SAR images. Paper (Thakur & Maji, 2022a) proposed an attention and132

gradient-based SAR denoising network to remove speckle noise from SAR images and pre-133

serve finer details. The gradient information of the noisy image was concatenated with its134

features, and then an intermediate feature denoising block and two attention blocks were135

employed to reduce the noise in the feature mapping. Furthermore, reference (Ko & Lee,136

2021) proposed a continuous attention module for speckle denoising and usesd a data-driven137

approach with the gradient descent algorithm to train, where the context blocks were de-138

ployed at the minimum scale to capture multi-scale information. In addition, paper (Z. Liu139

et al., 2020) proposed a spatial and transform domain CNN, which applies a spatial channel140

attention module to enhance the boundaries between noise-related and non-noise-related141

features to improve denoising performance. Finally, in reference (S. Liu et al., 2021), the142

Multiscale Residual Dense Dual Attention Network (MRDDANet) with multi-scale mod-143

ules of different kernel sizes was presented to extract shallow features from noisy images and144

map them into a residual dense dual attention network to obtain the deep features of SAR145

images.146

Motivated by the influence of denoising methods, many scholars combine denoising and147

change detection technology to locate flood-affected areas. For instance, reference (Cao et148

al., 2019) designed an end-to-end deep denoising model to remove the noise of SAR images149

and utilized a three-layer CNN to divide the denoised image into change and unchanged150

regions. Moreover, paper (J. Wang et al., 2022) proposed two parallel paths to denoise151

images, one path dedicated to estimating the noise distribution of images whereas the other152

focused on identifying the relationship between noise and signal. Then, the proposed method153

used a multi-region convolution module to emphasize the changed area at two-time points154

and obtain the CD results. To sum up, all mentioned methods have effectively improved155

the accuracy of change detection by applying denoising. Nevertheless, these methods lack156

sufficient CD training data.157

Inspired by the above research, we propose, in this paper, a two-stage approach to158

locate the flood-stricken area that consists of denoising and CD, named Denoising-Change159

Detection Approach (D-CDA). In the denoising stage, a nine-layer encoder-decoder network160

is presented to suppress the speckle noise of SAR images, called SAR Denoising Network161

(SDNet). The Multi-Residual Block (MRB) and Parallel Convolutional Block Attention162

Module (P-CBAM) are designed in the encoder branch to extract features, focusing on163

the noisy and non-noisy information. In the CD stage, a novel deep learning network164

is described to locate the flood-affected areas by detecting the changes between the pre-165

disaster and the post-disaster denoising images, called Coordinate Attention Fused Network166

(CAFNet). It combines the Siamese network and UNet++ as the backbone to enhance167

the detection efficiency, employs the Coordinate Attention (CA) modules (Q. Hou et al.,168

2021) to focus on the boundary of the flood-stricken areas in the encoder part, and employs169
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Multi-level Damage-feature Aggregation Attention Module (MDAAM) (Y. Zhang et al.,170

2023) to capture global, diversity, and similarity information of the multilevel features. The171

contributions of our proposed method can be summarized as follows:172

1. We propose a two-stage approach D-CDA for locating disaster-stricken areas. In fact,173

D-CDA incorporates a denoising network and change detection network to remove174

the unwanted noise and improves therefore the locating accuracy;175

2. The denoising network SDNet employs a simple nine-layer encoder-decoder structure176

that combines MRB and P-CBAM to extract the ground objects and reduce the noise177

impact using spatial and channel features of SAR images;178

3. The change detection method CAFNet aggregates the siamese network, UNet++, CA179

modules, and MDAAM to extract change information caused by flood disasters and180

express the irregular edges of flood-affected areas;181

4. A ZhengZhou Flood dataset (ZZF-dataset) is simulated based on Sentinel-1 SAR182

images to verify the performance of the proposed approach. The database contains183

1900 pairs of images and covers various landmarks such as cities, bridges, rivers,184

beaches, etc. . .185

2 Dataset186

2.1 ZZF-dataset187

ZhengZhou of China’s Henan Province experienced flooding on July, 20th, 2021 resulting188

from heavy rainfall. The flood disaster caused 398 deaths, mountain floods, landslides,189

serious urban waterlogging, and significant damage to subways and underground spaces190

(Zhao et al., 2023b)(Vekaria et al., 2022). Moreover, the Zhengzhou flood disaster was191

characterized by a wide range of impact, a large affected area, and obvious flood features,192

which facilitated CD and flood mapping (Peter et al., 2020). Therefore, this paper collects193

the SAR images of the ZhengZhou flood based on the Level-1 Ground Range Detected194

(GRD) image of Sentinel-1 to construct the CD dataset. Compared to the existing images,195

we select one image 5 days before the flood and one image 7 days after the flood as the196

pre-disaster and post-disaster images, respectively. The information on the dual-temporal197

SAR images is shown in Table 1.198

Table 1. Data Information

Pre-temporal image Post-temporal image

Satellite Sentinel-1 Sentinel-1
Mode IW IW

Instrumen SAR-C SAR-C
Product type GRD GRD

Spatial resolution 10m 10m
Product level L1 L1
Ingestion Date 7/15/21 13:57 7/27/21 12:15

Mission datatake id 299935 301281
Upper Left Accuracy 113°07E ,36°22N 113°08E ,36°22N
Lower Right Accuracy 116°18E ,35°12N 116°18E ,35°12N

To obtain a dataset suitable for detecting changes to locate the flood-affected area,199

the dual-temporal images are first registered using OpenCV, and then they are utilized200

to generate the Difference Image (DI) by the logarithmic ratio operator to highlight the201

changing areas, which gives a preliminary observation of flood disaster-stricken. Then, a202

rigorous process of evaluation is adopted and the DI images are reviewed to determine the203
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edge areas of the affected regions. Finally, Labelme software is used to draw the polygons204

of the changing areas to generate the label map.205

To confirm the quality and reliability of the dataset, we invite five domain experts to206

evaluate it in terms of content, quality, and relevance to research questions. They were also207

asked to make subsequent modifications and improvements based on their feedback and208

suggestions. Meanwhile, an in-depth internal review was performed to ensure the accuracy,209

consistency, and usability of the dataset. Ultimately, after multiple rounds of evaluation210

and revision, we successfully label the flood-affected areas. Specifically, the five experts211

that were invited had a large knowledge in the field, including two professors with over ten212

years of experience in related fields, two senior researchers with over eight years of research213

experience in the field, and one technical expert with rich experience in dataset construction214

and evaluation. To sum up, the labeling process of changes in bi-temporal SAR images is215

shown in Figure 1 where the white regions represent the flooded areas, and the black regions216

indicate the non-flooded areas in the label image.217

Figure 1. The generation of label image in ZZF-dataset

Moreover, the labeled pre- and post-disaster images are cut into 5000 pairs of 32×32218

pixel small size with a certain repetition ratio between small scales by the sliding window.219

To enlarge the image number, the small images were handled by rotation and flipping220

adjustment whereas the ZZF-dataset contains 20000 pairs of images where almost 6000 pairs221

include affected area and the remaining (about 14000) cover various unaffected landmarks222

such as cities, bridges, rivers, beaches, etc... Moreover, the dataset is divided into a train223

set, test set, and validation set in a 3:1:1 ratio. Figure 2 shows some representative images224

of the ZZF-dataset.225
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Figure 2. The representative images of ZZF-dataset. The first row are pre-disaster images, the

second row are post-disaster images and the third row are label images.

2.2 Simulated denoise dataset226

To train and evaluate the proposed denoising method, a dataset with denoising labels227

is constructed. Considering the difficulty in obtaining effective denoising labels for SAR228

images, the UC Merced Land Use dataset (abbreviated as UC dataset) (Yang & Newsam,229

2010) is an optical remote sensing image dataset to simulate the denoise dataset. It consists230

of 2100 images, having mainly a size of 256x256 pixels and containing lots of ground ob-231

jects that are easily affected in flood disasters, such as streams, rivers, bridges, waterfront232

buildings, cities, farmland, etc. . .233

The construction procedure for the simulated denoise dataset includes four steps: First,234

we randomly select 1900 images from the UC dataset including streams, rivers, bridges,235

beaches, and buildings to simulate noise. Then, the high-resolution RGB image in the UC236

dataset is transformed into a grayscale image with a 10-meter resolution as a label image.237

To produce this dataset, we take a similar approach to the one presented in (Ko & Lee,238

2021), where the simulated speckle noise, formed by the Gamma function, is added to the239

transformed image to simulate the SAR image as the original one. Finally, the original and240

labeled images are transformed with cutting, rotation, flipping, contrast adjustment, etc. . .241

to enlarge the size of the simulated denoise dataset with 30400 pairs of 64×64 pixel images.242

Furthermore, the noise formula is constructed as follows:243

Y = N ·X (1)

where X is the optical image (denoising), Y is the simulated image, and N is the noise244

component. If N follows a Gamma distribution (Dong et al., 2020), with a unit mean and245

variance of 1/L, its probability density function would be defined as follows:246

p(N) =
LLNL−1e−LN

Γ(L)
, N ≥ 0, L ≥ 1 (2)

where L represents the number of lines of sight in the multi-view processing. In this method,247

L is set to four and represents the Gamma function. Figure 3 is a set of example images.248
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Figure 3. The representative images of the simulated noise image. The top row shows four

optical images, and the second row displays the corresponding simulated SAR images.

3 Method249

In this paper, we propose a two-stage approach to detect flood-stricken areas, named250

the D-CDA. In the first stage, a nine-layer encoder-decoder SDNet is proposed to suppress251

the speckle noise by extracting flood information using MRBs and P-CBAM. In the second252

stage, we design a CAFNet based on the Siamese network, UNet++, CA, and MDAAM to253

distinguish between flood pixels and non-flood pixels.254

3.1 SDNet255

To locate flood-stricken areas in SAR images, speckle noise seriously affects the locat-256

ing accuracy and efficiency (Cao et al., 2019). Therefore, a denoising network SDNet is257

developed to reduce the adverse effects of noise. SDNet adopts a typical nine-layer encoder-258

decoder structure as a backbone, utilizes convolution block, MRB, and long skip connection259

to extract and concatenate features, and employs P-CBAM to focus on both channel and260

spatial information of the feature maps to suppress noise and preserve real pixel. The261

architecture of SDNet is displayed in Figure 4, and the details are shown in Table 2.262

–8–



manuscript submitted to Radio Science

Figure 4. The architecture of SDNet

The encoder part of the SDNet utilizes a typical 3×3 convolution block to extract 128263

shallow feature maps and employs a simple max-pooling layer with a size of 2x2 (stride of264

1) to reduce the size of the feature map. Then, this latter interacts with our designed MRB265

to better capture the flood information. Moreover, the P-CBAM is designed to extract both266

channel and spatial features for suppressing the noise component to restore real information.267

In the decoding stage, the feature maps are initially restored to the input size, followed268

by the usage of three convolution layers to convert feature maps into denoised images. To269

preserve important features in the reconstruction process and extract deep-level features,270

a long skip connection is added between the encoder and decoder process. This helps271

the network learn better feature relationships between its different layers, thereby better272

capturing the correlations between them to provide better speckle noise removal.273

3.1.1 Multi-Residual Block274

In the decoding stage, the feature maps are initially restored to the input size, followed275

by the usage of three convolution layers to convert feature maps into denoised images. To276

preserve important features in the reconstruction process and extract deep-level features,277

a long skip connection is added between the encoder and decoder process. This helps278

the network learn better feature relationships between its different layers, thereby better279

capturing the correlations between them to provide better speckle noise removal.280

In SDNet, the objective is to enhance the effect of feature maps to suppress the influence281

of noise on SAR images and to design a residual structure as shown in Figure 5, which282

consists of a Residual Channel Attention Block (RCAB) (Xie et al., 2019) module to focus283

more on high-frequency features while using a 3×3 convolutional block RCBA as shown in284

Figure 6. Therefore, the equation of the multi-residual blocks is represented as follows:285

MRB (FRB) = FMRB + (W3×3 ∗RCAB (FMRB) + b) (3)

where the convolution block consists of a 3x3 convolution layer with a bias variable b, the286

operator represents the convolution operation, and MRB represents a multi-residual block.287

288
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Table 2. The details of SDNet. Input size and output size are in the form of C×W×H, where C

is the number of channels, W and H are the width and height of the image, respectively.

Layer Blocks Input size (C×W×H) Output size (C×W×H)

ENCODER L1 Convolution (3×3) 1×64×64 128×64×64
L2 Max-pooling (2×2) 128×64×64 128×32×32
L3 MRB 128×32×32 128×32×32
L4 Convolution (1×1) 128×32×32 128×32×32
L5 CBAM 128×32×32 128×32×32

DECODER L6 Up-sampling 128×64×64 128×64×64
L7 Convolution (3×3) 128×64×64 128×64×64
L8 Convolution (1×1) 128×64×64 128×64×64
L9 Convolution (3×3) 128×64×64 1×64×64

Figure 5. The structure of MRB

Figure 6. The structure of RCAB
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3.1.2 P-CBAM289

To focus on flood feature information and suppress speckle noise, this paper designs290

an attention module as shown in Figure 7. The input feature maps are simultaneously in-291

serted into the Channel Attention Mechanism (CAM) and the Spatial Attention Mechanism292

(SAM). The feature maps obtained from both the CAM and SAM are multiplied to obtain293

the spatial weights, which reduce the location differences between the feature maps at dif-294

ferent levels, focusing on the important regions and features, and reducing the influence of295

noise and interference.296

On one hand, the SAM performs the weighting process on the feature maps in the297

spatial dimension, giving higher weights to focus on flood information that has a larger298

proportion in the calculation of the overall feature representation; thus, it ignores irrelevant299

noise information in the input image. On the other hand, CAM performs the weighting300

process on the feature maps in the channel dimension, highlighting useful feature maps and301

reducing the impact of useless feature maps on network attention. Moreover, it focuses on302

extracting important feature information while considering optimal positions, enabling the303

network to pay more attention to critical details within the input image.

Figure 7. The structure of parallel CBAM

304

As a result, the SAM obtains the attention feature map by adaptively fusing the features305

within the local receptive field. This process helps the network to pay more attention to306

useful features while suppressing noise signals. The SAM structure is shown in Figure 8.

Figure 8. The structure of SAM

307

–11–



manuscript submitted to Radio Science

As for the CAM, it is used to extract features between different channels where the308

CAM structure is shown in Figure 9. This attention mechanism is integrated within the309

SDNet method, developed in this paper, without increasing the computational burden.

Figure 9. The structure of CAM

310

3.1.3 loss function311

This paper adopts the loss function proposed in (P. Wang et al., 2017), which is for-312

mulated as follows:313

LTV =

W∑
i=1

H∑
j=1

√
(x̂i+1,j − x̂i,j)

2
+ (x̂i,j+1 − x̂i,j)

2
(4)

314

LDG = log10

 W∑
i=1

H∑
j=1

∥x̂i,j − xi,j∥22
∥yi,j − xi,j∥22

 (5)

315

L(θ) = LDG + λTVLTV (6)

The loss function consists of two parts: the Total Variation (TV) loss (Lattari et al., 2019)316

and the Discriminative Gradient (DG) loss (Shen et al., 2020) where x and y represent the317

ground truth image and the denoised image, and the noise image, respectively. Moreover,318

i and j denote the pixel coordinates, and W and H represent the number of pixels in the319

width and the height dimensions, respectively. The value of is set to 2e-4.320

In the nine-layer SDNet, long skip connections capture features across different layers321

which enhances the ability to discriminate noise information. Moreover, the encoder pro-322

gressively reduces the spatial dimensions of the feature maps to capture global contextual323

information. In the decoder, when remapping the encoded features back to the original324

input space, leveraging the global contextual information is performed to better reconstruct325

the details and local the structures. The P-CBAM pays more attention to the flood informa-326

tion in SAR flood images and ignores noise. As the MRB combines low-level features with327

high-level features, it better handles noise problems in complex images and compensates for328

the shortcomings of shallow networks in removing image noise. Thus, MRB prioritizes flood329

information.330

3.2 Change Detection Phase331

In this paper, we design an encoder-decoder structure network by modifying the Siamese332

network and UNet++; this structure is named CAFNet. The CA architecture is shown in333

Figure 10 whereas the convolution block, used in the modification, is illustrated in Figure334

11 and Table 3.335
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Figure 10. The structure of CAFNet

Figure 11. The structure of Convolution Block

The main goal of the encoding stage is to extract fuse feature maps from the input336

images. Due to the problem of sample imbalance in the ZZF-dataset, the change detection337

phase network takes two dual-temporal SAR remote sensing images, T1 and T2, as input and338

processes them through the two share-parameter branches. The T1 branch passes through339

four convolution block and three down-sampling while the T2 branch goes through five340

convolution block and four down-sampling operations. The convolution is used to extract341

features between the two images, helping to improve the robustness of the samples. A342

connection structure is used to fuse the two features between the convolution blocks of the343

two branches and outputs a fuse feature map to ensure information integrity.344

Moreover, the SAR flood disaster areas exhibits strong spatial continuity and contains345

rich information. To capture the contextual relations in SAR images, the CA mechanism346

is used as it incorporates this contextual information into feature maps. CA uses two347

one-dimensional global pooling operations to aggregate the feature input along the vertical348

and horizontal directions, resulting in two separate direction feature maps. Then, these349

two-direction feature maps, with specific directional information, are encoded into two at-350

tention feature maps, each capturing correlations along a long spatial direction. Therefore,351
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Table 3. Details of CAFNet. Input size and Output size are in the form of C×W×H, where C

is the number of channels of the images, W and H are the width and height of the image

respectively.

Layer T1 T2 Input size (C×W×H) Input size (C×W×H)

ENCODER L1 Conv X1(0,0) Conv X2(0,0) 1×32×32 32×32×32
L2 CA CA 32×32×32 32×32×32
L3 Down-sample Down-sample 32×32×32 32×16×16
L4 Conv X1(1,0) Conv X2(1,0) 32×16×16 64×16×16
L5 CA CA 64×16×16 64×16×16
L6 Down-sample Down-sample 64×16×16 128×8×8
L7 Conv X1(2,0) Conv X2(2,0) 128×8×8 128×8×8
L8 CA CA 128×8×8 128×8×8
L9 Down-sample Down-sample 128×8×8 128×4×4
L10 Conv X1(3,0) Conv X2(3,0) 128×4×4 256×4×4
L11 Down-sample 256×4×4 256×2×2
L12 Conv X2(4,0) 256×2×2 512×2×2

DECODER L13 up-sample 512×2×2 512×4×4
L14 Conv X(3,1) 512×4×4 256×4×4
L15 up-sample 256×4×4 256×8×8
L16 Conv X(2,2) 256×8×8 128×8×8
L17 up-sample 128×8×8 128×16×16
L18 Conv X(1,2) 128×16×16 64×16×16
L19 up-sample 64×16×16 64×32×32
L20 Conv X(0,0) 64×32×32 32×32×32
L21 MDAAM 32×32×32 1×32×32

the location information is preserved in the generated attention feature map. Finally, the352

two attention feature maps are merged into one after multiplication. The structure of the353

CA attention mechanism is shown in Figure 12.354
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Figure 12. The structure of the CA

The CA module captures in a better way the spatial and texture information of flood355

disaster areas to refine the irregular edge information at the boundary between the changing356

and non-changing areas and improve the accuracy of change detection. In addition, since357

the CA module adaptively learns the relationships between different positions, it improves358

the robustness of the model and makes the network more adaptable to SAR flood disaster359

images.360

In the decoding stage, the feature maps are restored using the same size through con-361

tinuous up-sampling. To maintain the same resolution of the feature maps as well as the362

integrity of the detailed information, this paper adds a dense skip connection mechanism363

between the encoder and decoder. After down-sampling the dual-temporal images, the fuse364

features are transmitted to the decoder through skip connections to compensate for the loss365

of the deep features in the decoder. Finally, after passing through the decoder, the net-366

work generates four feature maps with different semantic levels, having the same size as367

the original image, and the prediction results are delivered through MDAAM to automat-368

ically integrates and refine the global contextual semantic and localization information in369

different-scale feature layers. While changing the detection task, the number of unchanged370

pixels is often far greater than the number of changed pixels. Furthermore, to reduce the371

impact of sample imbalance, this paper adopts a mix loss function in the change detection372

phase network; this latter is formulated as follows:373

L = Lwce + Ldice (7)

Lwce =
1

N

∑
P

[−wcRp log (Pp)− wu (1− Rp) log (1− Pp)] (8)

Ldice = 1− 2 · Y · softmax(Y )

Y + softmax(Y )
(9)

where represents the weight cross-entropy loss, and is the Dice coefficient loss. In addi-374

tion, and represent the changed and unchanged classes, respectively. Finally, and indicate375

the predict and ground truth labels of a pixel (i, j).376
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To detect changes in the SAR flood disasters image, CAFNet utilizes the CA attention377

mechanism to improve the accuracy of the change detection by focusing on the relationship378

between the positions in the input images. This method is applied to help the network379

in highlighting important features in the adoption of a position-aware approach to feature380

learning. Moreover, the CA attention mechanism explores the spatial correlation among381

different regions to effectively improve the representation of the input data and enhance the382

accuracy of the change detection, especially for complex scenes with small variations.383

4 Experiment384

4.1 experimental environment385

This paper conducts experiments on an NVIDIA 3090 GPU using the PyTorch frame-386

work to train and test the models. The operating environment for both stages of the network387

is CUDA 11.4 and PyTorch 1.7. In the SDNet, the batch size is set to two, and the Adam388

optimizer is used with an initial learning rate of 1e-4. The learning rate decreases by 1e-5389

per iteration, and the total number of iterations is set to 20. In the localization stage net-390

work, the batch size is set to 16 whereas the Adam optimizer is used with an initial learning391

rate of 1e-4. The learning rate decreases by 5e-5 per iteration, and the total number of392

iterations is set to 50.393

4.2 evaluation criterion394

In the denoising stage, this paper use two evaluation metrics: Peak Signal-to-Noise395

Ratio (PSNR) and Structural Similarity Index (SSIM). The formulas for calculating these396

metrics are as follows:397

PSNR = 10 · log10
(xmax)

2

MSE(x, x̂)
(10)

398

SSIM =
(2µx̂µx + c1) (2σx̂x + c2)

(µ2
x̂ + µ2

x + c1) (σ2
x̂ + σ2

x + c2)
(11)

where xˆ and x are the denoised image and the label image; xmax is the maximum value399

of x; xˆ and x are the mean of xˆ and x; xˆ and x are the standard deviations of xˆ and400

x; ˆxx is the covariance between xˆ and x; and c1 and c2 are constants for computational401

stability.402

The evaluation standards, used in the localization stage experiment through this work,403

mainly include six parts: mean Intersection over Union (mIoU), Precision, Recall, F1404

score, Kappa coefficient, and Pixel-wise Correct Classification (PCC). Precision refers to405

the ratio of true positive samples among all samples predicted as positive. Its formula is as406

follows:407

Precision =
TP

TP + FP
(12)

The recall represents the proportion of true positive samples among all real positive samples.408

It is calculated as follows:409

Recall =
TP

TP + FN
(13)

The mIOU is the overlap between two regions, represented by the following equation:410

mIOU =
TP

TP + FN+ FP
(14)

The F1 score is a metric that considers both precision and recall and consists of the har-411

monic mean of precision and recall. Moreover, it comprehensively considers the relationship412

between both variables, and a higher value indicates a more effective experimental method.413

It is calculated as follows:414

F1 =
2Precision ∗ Recall
2Precision + Recall

(15)
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The PCC represents the percentage of correctly classified pixels in the overall pixel count415

in CD. A higher value indicates a higher accuracy in change detection, and it is calculated416

as follows:417

PCC =
TP+ TN

TP+ FN+ FP + TN
(16)

The Kappa coefficient is a metric used for consistency tests; it measures whether the model’s418

predicted results are consistent with the actual classification results. Its calculation is based419

on the confusion matrix and ranges between -1 and 1 (it is usually greater than zero). Its420

expression is as follows:421

Kappa =
Po − Pe

1− Pe
(17)

where TP represents the true positive samples, TN represents the true negative samples,422

FN represents the false negative samples, and FP represents the false positive samples.423

Moreover, PCC is the sum of the correctly classified samples for each class, divided by the424

total number of samples, which represents the overall classification accuracy. represents425

the proportion of agreement, which indicates the percentage of algorithmic predictions that426

match the results of the manual annotations. Finally, Pe is the probability of consistency427

in CD results.428

4.3 experimental result429

In the denoising stage, experiments are conducted to compare our proposed method430

with U-Net (Lattari et al., 2019), the Spatial and Transform Domain Convolutional Neural431

Network (STD-CNN) (Z. Liu et al., 2020), and the SAR-CAM (Ko & Lee, 2021), as shown432

in Table 4. Referring to this table, our proposed method achieves a higher PSNR and SSIM433

for denoised images where the values are 28.89 and 0.836, respectively, compared to the434

other methods.435

Table 4. Comparison of denoising methods

Method PSNR (dB) SSIM

U-Net 24.95 0.4955
STD-CNN 28.29 0.7867
SAR-CAM 28.6 0.8092
Ours (SDNet) 28.57 0.8307

Figure 13. Experimental Comparison result in SAR image . From left to right: (a) original

image, (b) U-Net, (c) STD-CNN, (d) SAR-CAM, (e) Our proposed network.
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Figure 14. Experimental Comparison result in simulated noise dataset. From left to right: (a)

original image, (b)noise image, (c) U-Net, (d) STD-CNN, (e) SAR-CAM, (f) Our proposed network.

In the SDNet, PSNR achieve 28.57 and SSIM achieve 0.8307. Compare with the afore-436

mentioned methods, the denoise images by SDNet are smoother and effectively refine the437

edge information of flood areas while maintaining denoising performance. And highlights438

the flood characteristics within the images. This indicates that the MRB and parallel439

CBAM structures in SDNet can effectively extract flood-related information while disre-440

garding noise. We demonstrate the effectiveness of the proposed SDNet in this study by441

perform the aforementioned comparative experiments. Experimental comparison result as442

shown in Figs. 13-14.443

We introduce to verify the effectiveness of adding a denoising stage before the localiza-444

tion stage and incorporating the CA mechanism for change detection tasks, this paper con-445

duct ablation experiments. The experiments include backbone, SDNet+backbone, CAFNet446

and D-CDA, as shown in Table 5.

Table 5. Details of CAFNet. Input size and Output size are in the form of C×W×H, where C

is the number of channels of the images, W and H are the width and height of the image

respectively.

Method Precision Recall F1 PCC Kappa mIOU

backbone 0.9031 0.8920 0.8975 0.9590 0.8719 0.8041
SDNet+backbone 0.9114 0.9023 0.9072 0.9634 0.8843 0.8224
CAFNet 0.8965 0.9174 0.9068 0.9620 0.8830 0.8488
D-CDA 0.8935 0.9310 0.9120 0.9681 0.8860 0.8732

447

The mIOU of the backbone reaches 0.8041, indicating that the change detection back-448

bone is suitable for locating flood-disaster-stricken areas. Moreover, the addition of the449

CA mechanism to the backbone, the proposed CAFNet, and the mIoU increases by 0.0447.450

This indicates that the CA mechanism effectively integrates the positional information of the451

pixels to improve the accuracy of locating flood disaster-stricken areas. More importantly,452

after incorporating the denoising stage, the overall localization accuracy of F1 improves by453

0.0154, and mIOU improves by 0.0691. This demonstrates the effectiveness of the proposed454

two-stage approach for flood disaster-stricken areas localization.455

We aim to validate the superiority of the proposed method as we compare it with456

DDNet (Qu et al., 2021) and SAFNet (Gao et al., 2021) methods in the experimental457

section. In addition, this method aims to verify the effectiveness of the SDNet; therefore,458

we add SDNet before DDNet and SAFNet. Subsequently, we compare the results with our459
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proposed method. Since the aforementioned deep learning methods are designed for change460

detection of a single pair of SAR images, we use the test sets of the constructed dataset as461

input, and the experimental results are shown in Figure 15.

Table 6. Comparison of different methods on the ZZF-Dataset

Method Precision Recall F1 PCC Kappa mIOU

DDNet 0.7932 0.7925 0.7929 0.8666 0.5990 0.6070
SDNet+DDNet 0.7933 0.9008 0.8436 0.8587 0.6774 0.7341
SAFNet 0.9365 0.6195 0.7469 0.7773 0.831 0.5113
SDNet+SAFNet 0.8983 0.8315 0.8638 0.9122 0.8032 0.6989
Ours (CAFNet) 0.8965 0.9174 0.9068 0.9620 0.8830 0.8488
Ours (D-CDA) 0.8935 0.9310 0.9120 0.9681 0.8860 0.8732

Figure 15. Experimental Comparison result. From left to right: (a) predisaster image, (b) pre-

disaster image, (c) ground truth, (d) DDNet, (e) SDNet+DDNet, (f) SAFNet, (g) SDNet+SAFNet,

(h) Our proposed method.

462

From the experimental results displayed in Table 6, it is seen that the method proposed463

in this paper improves the various evaluation metrics when been compared to DDNet and464

SAFNet methods. After adding the denoise stage design, proposed in this paper, to the465

DDNet and SAFNet networks, the final results have a significant improvement in the recall466

rate, F1 score, and IOU. In more detail, in the D-CDA proposed in this article, F1 reaches467

0.9120, PCC reaches 0.9681, Kappa reaches 0.8860, and mIOU reaches 0.8732. Compare to468

other methods, D-CDA has a significant improvement. Therefore, it is concluded that the469

denoising stage, designed in this paper, has a good effect on improving the image quality and470

removing speckle noise, and the two-stage network, proposed in this paper, has an excellent471

performance in flood disaster detection accuracy.472

From the experimental results displayed in Figure 16, for the first and second row,473

the DDNet (d) and SAFNet (f) without the SDNet are directly affected by speckle noise,474

resulting in incomplete detection of flooded areas and many false and missed detections.475

After adding the SDNet to these methods (g)(e), the detection of disaster areas becomes476

more regular and continuous. In the third row, due to the different divergence of the477

gradients in the first-phase SAR images, i.e., the different distribution of gray value changes478
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between pixels in the SAR images and undamaged areas may be falsely classified as damaged479

areas. In the fourth row, the results detected by our proposed method are more continuous480

and a more complete detection of flood disaster-stricken areas is obtained. Therefore, the481

denoise stage improves the image quality and reduces the impact of noise on subsequent482

detection. Moreover, our proposed method has strong noise resistance and anti-interference483

ability, which improve the accuracy of CD tasks. Finally, the loss curve of the CAFNet in484

our proposed method is shown in Figure 16.

Figure 16. Loss curve of CAFNet.

485

5 Conclusion486

In this study, we propose a two-stage approach for locating flood disaster-stricken ar-487

eas in Sentinel-1, named D-CDA. In the first stage of this approach, SDNet with a nine-layer488

encoder-decoder structure is designed. In the encoder structure, P-CBAM and MRB are489

used to extract features effectively and suppress noise in SAR flood disaster images. In the490

second stage, the Siamese network and UNet++ are used as the backbone network and the491

CAFNet is implemented for CD. In the CAFNet, the CA mechanism is incorporated after492

each down-sampling stage to extract the positional information about features.493

We conducted a series of experiments on the ZZF-dataset through ablation experi-494

ments and compared the results with other advanced methods. The effectiveness of the495

proposed method was demonstrated through these experiments. Our empirical evidence496

indicates that the D-CDA has greatly improved the localization accuracy of flood disaster-497

stricken areas.498

As for the future work, we will attempt to combine multi-source remote sensing data499

and ground observation data to develop more refined and efficient flood disaster monitoring500

methods and provide more scientific and reliable support for disaster prevention, reduction,501

and post-disaster reconstruction. Although the efficiency of our proposed method in this502

paper is relatively low, in future work, we will attempt to improve the computational speed of503

the network.504
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Open Research Section505

The code and dataset are available at https://github.com/Luvinori/D-CDA.506
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