References
Annan, J. D., Hargreaves, J. C., Mauritsen, T., & Stevens, B. (2020).
What could we learn about climate sensitivity from variability in the
surface temperature record? Earth System Dynamics ,11 (3), 26-37. https://doi.org/10.5194/esd-11-709-2020Bowman, K.
W., Cressie, N., Qu, X., & Hall, A. (2018). A Hierarchical Statistical
Framework for Emergent Constraints: Application to Snow‐Albedo Feedback.Geophysical Research Letters , 45 (23).
https://doi.org/10.1029/2018GL080082
Braconnot, P., Harrison, S. P., Otto-Bliesner, B., Abe-Ouchi, A.,
Jungclaus, J. & Peterschmitt, J. (2011). The Paleoclimate Modeling
Intercomparison Project contribution to CMIP5. CLIVAR Exchanges
No. 56 , 16 (2), 15-19.
https://www.clivar.org/sites/default/files/documents/Exchanges56.pdf
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., et al. (2012). Evaluation of climate
models using palaeoclimatic data. Nature Climate Change , 2(6),
417–424. https://doi.org/10.1038/nclimate1456
Brown, P. T., Stolpe, M. B., & Caldeira, K. (2018). Assumptions for
Emergent Constraints. Nature , 553 , E1-E3.
https://doi.org/10.1038/s41586-018-0638-5
Brient, F. (2020). Reducing Uncertainties in Climate Projections with
Emergent Constraints: Concepts, Examples and Prospects. Advances
in Atmospheric Sciences , 37 , 1-15.
https://doi.org/10.1007/s00376-019-9140-8
Caldwell, P. M., Zelinka, M. D., & Klein, S. A. (2018). Evaluating
Emergent Constraints on Equilibrium Climate Sensitivity. Journal
of Climate , 31 (10), 3921-3942.
https://doi.org/10.1175/JCLI-D-17-0631.1
Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M.,
& Thompson, D. M. (2014). A probabilistic model of chronological errors
in layer-counted climate proxies: applications to annually banded coral
archives, Climate of the Past , 10 , 825–841.
https://doi.org/10.5194/cp-10-825-2014
Comboul, M., Emile-Geay, J., Hakim, G. J., & Evans, M. N. (2015).
Paleoclimate Sampling as a Sensor Placement Problem. Journal of
Climate , 28 (19), 7717-7740.
https://doi.org/10.1175/JCLI-D-14-00802.1
Cropper, S., Thackeray, C. W., & Emile-Geay, J. (2023). Analysis Codes
for Cropper et al. 2023. Figshare .
https://doi.org/10.6084/m9.figshare.22570867
Crowley, T. J. (2000). Causes of Climate Change Over the Past 1000
Years. Science , 289 (5477), 270–277.
https://doi.org/10.1126/science.289.5477.270
Crowley, T. J., Zielinski, G., Vinther, B. et al. (2008). Volcanism and
the Little Ice Age. PAGES News , 16 (2).
http://dx.doi.org/10.1029/2002GL0166335
Cox, P. M., Huntingford, C., & Williamson, M. S. (2018a). Emergent
constraint on equilibrium climate sensitivity from global temperature
variability. Nature , 553 , 319-322.
https://doi.org/10.1038/nature25450
Cox, P. M., Williamson, M. S., Nijsse, F. J. M. M., & Huntingford, C.
(2018b). Cox et al. reply. Nature , 563 , E10-E15.
https://doi.org/10.1038/s41586-018-0641-x
Evans, M. N., Smerdon, J. E., Kaplan, A., Tolwinski-Ward, S. E., &
Gonzalez-Rouco, J. F. (2014). Climate field reconstruction uncertainty
arising from multivariate and nonlinear properties of predictors.Geophysical Research Letters , 41 (24), 9127-9134.
https://doi.org/10.1002/2014GL062063
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experimental design and
organization. Geoscientific Model Development , 9 ,
1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
Eyring, V., Cox, P. M., Flato, G. M., et al. (2019). Taking climate
model evaluation to the next level. Nature Climate Change ,9 , 102-110. https://doi.org/10.1038/s41558-018-0355-y
Frost, C., & Thompson, S. G. (2000). Correcting for regression dilution
bias: comparison of methods for a single predictor variable.Journal of the Royal Statistical Society: Series A (Statistics in
Society) , 163 (2), 173–189.
https://doi.org/10.1111/1467-985X.00164
Gao, C., Robock, A., & Ammann, C. (2008). Volcanic forcing of climate
over the past 1500 years: An improved ice core-based index for climate
models. Journal of Geophysical Research , 113 (D23), 111.
https://doi.org/10.1029/2008JD010239
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P.
A., Thorpe, R. B., Lowe, J. A., Johns, T. C., & Williams, K. D. (2004).
A new method for diagnosing radiative forcing and climate sensitivity.Geophysical Research Letters , 31 (3), L03205.
https://doi.org/10.1029/2003GL018747
Hall, A., Cox, P., Huntingford, C., & Klein, S. (2019). Progressing
emergent constraints on future climate change. Nature Climate
Change , 9 , 269-278. https://doi.org/10.1038/s41558-019-0436-6
Hope, C. (2015). The $10 trillion value of better information about the
transient climate response. Phil. Trans. R. Soc. A. ,373, 20140429. https://doi.org/10.1098/rsta.2014.0429
IPCC, 2021: Chapter 7. In: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change [Forster, P.,
T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J.
Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang,
2021: The Earth’s Energy Budget, Climate Feedbacks, and Climate
Sensitivity. In Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P.
Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews,
T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].
Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, pp. 923–1054]
IPCC, 2022. Impacts of 1.5°C Global Warming on Natural and Human
Systems. In Global Warming of 1.5°C: IPCC Special Report on Impacts of
Global Warming of 1.5°C above Pre-industrial Levels in Context of
Strengthening Response to Climate Change, Sustainable Development, and
Efforts to Eradicate Poverty (pp. 175–312). chapter, Cambridge:
Cambridge University Press. https://doi.org/10.1017/9781009157940.005
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini,
L. P., et al. (2017). The PMIP4 contribution to CMIP6 – Part 3: The
last millennium, scientific objective, and experimental design for the
PMIP4 past1000 simulations. Geoscientific Model
Development , 10 (11), 4005–4033.
https://doi.org/10.5194/gmd-10-4005-2017
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus,
J. H., Otto-Bliesner, B. L., et al. (2018). The PMIP4 contribution to
CMIP6 – Part 1: Overview and over-arching analysis plan.Geoscientific Model Development , 11 (3), 1033–1057.
https://doi.org/10.5194/gmd-11-1033-2018
Klein, S. A. & Hall, A. (2015). Emergent Constraints for Cloud
Feedbacks. Current Climate Change Reports , 1 , 276-287.
https://doi.org/10.1007/s40641-015-0027-1
Knutti, R., Rugenstein, M. A. A., & Hegerl, G. C. (2017). Beyond
equilibrium climate sensitivity. Nature Geoscience , 10 ,
727-736. https://doi.org/10.1038/ngeo3017
Knutti, R. & Hegerl, G. C. (2008). The equilibrium sensitivity of the
Earth’s temperature to radiation changes. Nature Geoscience ,1 , 735-743. https://doi.org/10.1038/ngeo337
Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible
Processes. I. General Theory and Simple Applications to Magnetic and
Conduction Problems. Journal of the Physical Society of Japan ,12 , 570-586. https://doi.org/10.1143/JPSJ.12.570
Leith, C. E. (1975). Climate Response and Fluctuation Dissipation.Journal of the Atmospheric Sciences , 32 (10), 2022-2026.
https://doi.org/10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf,
R., et al. (2019). Developments in the MPI‐M Earth System Model version
1.2 (MPI‐ESM1.2) and Its Response to Increasing CO 2. Journal of
Advances in Modeling Earth Systems , 11 (4), 998–1038.
https://doi.org/10.1029/2018MS001400
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B.,
Mitchell, J. F. B., et al. (2007). THE WCRP CMIP3 Multimodel Dataset: A
New Era in Climate Change Research. Bulletin of the American
Meteorological Society , 88 (9), 1383–1394.
https://doi.org/10.1175/BAMS-88-9-1383
Meehl, G. A., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H.,
Kay, J. E., et al. (2013). Climate Change Projections in CESM1(CAM5)
Compared to CCSM4. Journal of Climate , 26 (17),
6287–6308. https://doi.org/10.1175/JCLI-D-12-00572.1
Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones (2012),
Quantifying uncertainties in global and regional temperature change
using an ensemble of observational estimates: The HadCRUT4 dataset,J. Geophys. Res. , 117 , D08101.
https://doi.org/10.1029/2011JD017187.
Nijsse, F. J. M. M., Cox, P. M., Huntingford, C., & Williamson, M. S.
(2019). Decadal global temperature variability increases strongly with
climate sensitivity. Nature Climate Change , 9 (8),
598–601. https://doi.org/10.1038/s41558-019-0527-4
Otto-Bliesner, B. L. , Brady, E. C., Fasullo, J., Jahn, A., Landrum, L.,
Stevenson, S., Rosenbloom, N., Mai, A., & Strand, G. (2016). Climate
Variability and Change since 850 C.E. : An Ensemble Approach with the
Community Earth System Model (CESM). Bulletin of the American
Meteorological Society, 735-754.
https://doi.org/10.1175/BAMS-D-14-00233.1
PAGES2k Consortium. (2017). A global multiproxy database for temperature
reconstructions of the Common Era. Scientific Data , 4 ,
170088 (2017). https://doi.org/10.1038/sdata.2017.88
PAGES2k Consortium. (2019). Consistent multidecadal variability in
global temperature reconstructions and simulations over the Common Era.Nature Geoscience , 12 (8), 643–649.
https://doi.org/10.1038/s41561-019-0400-0
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A.
C., & Budd, W. F. (2011). The CSIRO Mk3L climate system model version
1.0 – Part 1: Description and evaluation. Geoscientific Model
Development , 4 (2), 483–509.
https://doi.org/10.5194/gmd-4-483-2011
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A.
C., & Budd, W. F. (2012). The CSIRO Mk3L climate system model version
1.0 – Part 2: Response to external forcings. Geoscientific Model
Development , 5 (3), 649–682.
https://doi.org/10.5194/gmd-5-649-2012
Po-Chedley, S., Proistosescu, C., Armour, K. C., & Santer, B. D.
(2018). Climate constraint reflects forced signal. Nature ,563 (7729), E6–E9. https://doi.org/10.1038/s41586-018-0640-y
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe,
J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R.
J., Sumi, A., & Taylor, K. E. (2007). Climate Models and Their
Evaluation. In: Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M.
Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller
(eds.)]. Cambridge University Press , Cambridge, United Kingdom
and New York, NY, USA.
Renoult, M. (2022). Paleoclimate perspective on Earth’s climate
sensitivity and feedbacks (PhD dissertation, Department of Meteorology,
Stockholm University). Retrieved from
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-211778
Rypdal, M., Fredriksen, H.-B., Rypdal, K., & Steene, R. J. (2018).
Emergent constraints on climate sensitivity. Nature ,563 (7729), E4–E5. https://doi.org/10.1038/s41586-018-0639-4
Sanderson, B. M., Pendergrass, A. G., Koven, C. D., Brient, F., Booth,
B. B. B., Fisher, R. A., & Knutti, R. (2021). The potential for
structural errors in emergent constraints. Earth System Dynamics ,12 (3), 899–918. https://doi.org/10.5194/esd-12-899-2021
Schlund, M., Lauer, A., Gentine, P., Sherwood, S. C., & Eyring, V.
(2020). Emergent constraints on equilibrium climate sensitivity in
CMIP5: do they hold for CMIP6? Earth System Dynamics ,11 (4), 1233–1258. https://doi.org/10.5194/esd-11-1233-2020
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P.
M., Hargreaves, J. C., et al. (2020). An Assessment of Earth’s Climate
Sensitivity Using Multiple Lines of Evidence. Reviews of
Geophysics , 58 (4). https://doi.org/10.1029/2019RG000678
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of
CMIP5 and the Experiment Design. Bulletin of the American
Meteorological Society , 93 (4), 485–498.
https://doi.org/10.1175/BAMS-D-11-00094.1
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng,
R., Ford, H. L., et al. (2020). Past climates inform our future.Science , 370 (6517), eaay3701.
https://doi.org/10.1126/science.aay3701
Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, M., &
Rajaratnam, B. (2012). Piecing together the past: statistical insights
into paleoclimatic reconstructions. Quaternary Science Reviews ,35 , 1-22. https://doi.org/10.1016/j.quascirev.2012.01.012
Toohey, M., & Sigl, M. (2017). Volcanic stratospheric sulfur injections
and aerosol optical depth from 500 BCE to 1900 CE. Earth System
Science Data , 9 (2), 809–831.
https://doi.org/10.5194/essd-9-809-2017
Williamson, M. S., Thackeray, C. W., Cox, P. M., Hall, A., Huntingford,
C., & Nijsse, F. J. M. M. (2021). Emergent constraints on climate
sensitivities. Reviews of Modern Physics , 93 (2), 025004.
https://doi.org/10.1103/RevModPhys.93.025004
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po‐Chedley, S., Caldwell, P.
M., Ceppi, P., et al. (2020). Causes of Higher Climate Sensitivity in
CMIP6 Models. Geophysical Research Letters , 47 (1).
https://doi.org/10.1029/2019GL085782
Zhang, J., Li, L., Zhou, T. et al. (2013). Variation of surface
temperature during the last millennium in a simulation with the
FGOALS-gl climate system model. Advances in Atmospheric Sciences ,30 , 699–712. https://doi.org/10.1007/s00376-013-2178-0
Zhou T. J., Wang B., Yu Y. Q. et al. (2018). The FGOALS climate system
model as a modeling tool for supporting climate sciences: An overview.Earth and Planetary Physics , 2 (4), 276–291.
http://doi.org/10.26464/epp2018026
Zhu, F., Emile‐Geay, J., Hakim, G. J., King, J., & Anchukaitis, K. J.
(2020a). Resolving the Differences in the Simulated and Reconstructed
Temperature Response to Volcanism. Geophysical Research Letters ,47 (8). https://doi.org/10.1029/2019GL086908
Zhu, J., Poulsen, C.J., & Otto-Bliesner, B.L. (2020b). High climate
sensitivity in CMIP6 model not supported by paleoclimate. Nature
Climate Change , 10 , 378–379.
https://doi.org/10.1038/s41558-020-0764-6
Zhu, F., Emile-Geay, J., Anchukaitis, K. J., McKay, N. P., Stevenson,
S., & Zilu Meng. (2023). The pseudoPAGES2k Dataset v1.0 [Data set].
Zenodo. https://doi.org/10.5281/ZENODO.7652534