References
Annan, J. D., Hargreaves, J. C., Mauritsen, T., & Stevens, B. (2020). What could we learn about climate sensitivity from variability in the surface temperature record? Earth System Dynamics ,11 (3), 26-37. https://doi.org/10.5194/esd-11-709-2020Bowman, K. W., Cressie, N., Qu, X., & Hall, A. (2018). A Hierarchical Statistical Framework for Emergent Constraints: Application to Snow‐Albedo Feedback.Geophysical Research Letters , 45 (23). https://doi.org/10.1029/2018GL080082
Braconnot, P., Harrison, S. P., Otto-Bliesner, B., Abe-Ouchi, A., Jungclaus, J. & Peterschmitt, J. (2011). The Paleoclimate Modeling Intercomparison Project contribution to CMIP5. CLIVAR Exchanges No. 56 , 16 (2), 15-19. https://www.clivar.org/sites/default/files/documents/Exchanges56.pdf
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., et al. (2012). Evaluation of climate models using palaeoclimatic data. Nature Climate Change , 2(6), 417–424. https://doi.org/10.1038/nclimate1456
Brown, P. T., Stolpe, M. B., & Caldeira, K. (2018). Assumptions for Emergent Constraints. Nature , 553 , E1-E3. https://doi.org/10.1038/s41586-018-0638-5
Brient, F. (2020). Reducing Uncertainties in Climate Projections with Emergent Constraints: Concepts, Examples and Prospects. Advances in Atmospheric Sciences , 37 , 1-15. https://doi.org/10.1007/s00376-019-9140-8
Caldwell, P. M., Zelinka, M. D., & Klein, S. A. (2018). Evaluating Emergent Constraints on Equilibrium Climate Sensitivity. Journal of Climate , 31 (10), 3921-3942. https://doi.org/10.1175/JCLI-D-17-0631.1
Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., & Thompson, D. M. (2014). A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives, Climate of the Past , 10 , 825–841. https://doi.org/10.5194/cp-10-825-2014
Comboul, M., Emile-Geay, J., Hakim, G. J., & Evans, M. N. (2015). Paleoclimate Sampling as a Sensor Placement Problem. Journal of Climate , 28 (19), 7717-7740. https://doi.org/10.1175/JCLI-D-14-00802.1
Cropper, S., Thackeray, C. W., & Emile-Geay, J. (2023). Analysis Codes for Cropper et al. 2023. Figshare . https://doi.org/10.6084/m9.figshare.22570867
Crowley, T. J. (2000). Causes of Climate Change Over the Past 1000 Years. Science , 289 (5477), 270–277. https://doi.org/10.1126/science.289.5477.270
Crowley, T. J., Zielinski, G., Vinther, B. et al. (2008). Volcanism and the Little Ice Age. PAGES News , 16 (2). http://dx.doi.org/10.1029/2002GL0166335
Cox, P. M., Huntingford, C., & Williamson, M. S. (2018a). Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature , 553 , 319-322. https://doi.org/10.1038/nature25450
Cox, P. M., Williamson, M. S., Nijsse, F. J. M. M., & Huntingford, C. (2018b). Cox et al. reply. Nature , 563 , E10-E15. https://doi.org/10.1038/s41586-018-0641-x
Evans, M. N., Smerdon, J. E., Kaplan, A., Tolwinski-Ward, S. E., & Gonzalez-Rouco, J. F. (2014). Climate field reconstruction uncertainty arising from multivariate and nonlinear properties of predictors.Geophysical Research Letters , 41 (24), 9127-9134. https://doi.org/10.1002/2014GL062063
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development , 9 , 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016
Eyring, V., Cox, P. M., Flato, G. M., et al. (2019). Taking climate model evaluation to the next level. Nature Climate Change ,9 , 102-110. https://doi.org/10.1038/s41558-018-0355-y
Frost, C., & Thompson, S. G. (2000). Correcting for regression dilution bias: comparison of methods for a single predictor variable.Journal of the Royal Statistical Society: Series A (Statistics in Society) , 163 (2), 173–189. https://doi.org/10.1111/1467-985X.00164
Gao, C., Robock, A., & Ammann, C. (2008). Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. Journal of Geophysical Research , 113 (D23), 111. https://doi.org/10.1029/2008JD010239
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C., & Williams, K. D. (2004). A new method for diagnosing radiative forcing and climate sensitivity.Geophysical Research Letters , 31 (3), L03205. https://doi.org/10.1029/2003GL018747
Hall, A., Cox, P., Huntingford, C., & Klein, S. (2019). Progressing emergent constraints on future climate change. Nature Climate Change , 9 , 269-278. https://doi.org/10.1038/s41558-019-0436-6
Hope, C. (2015). The $10 trillion value of better information about the transient climate response. Phil. Trans. R. Soc. A. ,373, 20140429. https://doi.org/10.1098/rsta.2014.0429
IPCC, 2021: Chapter 7. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, 2021: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054]
IPCC, 2022. Impacts of 1.5°C Global Warming on Natural and Human Systems. In Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (pp. 175–312). chapter, Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009157940.005
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., et al. (2017). The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geoscientific Model Development , 10 (11), 4005–4033. https://doi.org/10.5194/gmd-10-4005-2017
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., et al. (2018). The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan.Geoscientific Model Development , 11 (3), 1033–1057. https://doi.org/10.5194/gmd-11-1033-2018
Klein, S. A. & Hall, A. (2015). Emergent Constraints for Cloud Feedbacks. Current Climate Change Reports , 1 , 276-287. https://doi.org/10.1007/s40641-015-0027-1
Knutti, R., Rugenstein, M. A. A., & Hegerl, G. C. (2017). Beyond equilibrium climate sensitivity. Nature Geoscience , 10 , 727-736. https://doi.org/10.1038/ngeo3017
Knutti, R. & Hegerl, G. C. (2008). The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geoscience ,1 , 735-743. https://doi.org/10.1038/ngeo337
Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan ,12 , 570-586. https://doi.org/10.1143/JPSJ.12.570
Leith, C. E. (1975). Climate Response and Fluctuation Dissipation.Journal of the Atmospheric Sciences , 32 (10), 2022-2026. https://doi.org/10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., et al. (2019). Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO 2. Journal of Advances in Modeling Earth Systems , 11 (4), 998–1038. https://doi.org/10.1029/2018MS001400
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., et al. (2007). THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society , 88 (9), 1383–1394. https://doi.org/10.1175/BAMS-88-9-1383
Meehl, G. A., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H., Kay, J. E., et al. (2013). Climate Change Projections in CESM1(CAM5) Compared to CCSM4. Journal of Climate , 26 (17), 6287–6308. https://doi.org/10.1175/JCLI-D-12-00572.1
Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones (2012), Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset,J. Geophys. Res. , 117 , D08101. https://doi.org/10.1029/2011JD017187.
Nijsse, F. J. M. M., Cox, P. M., Huntingford, C., & Williamson, M. S. (2019). Decadal global temperature variability increases strongly with climate sensitivity. Nature Climate Change , 9 (8), 598–601. https://doi.org/10.1038/s41558-019-0527-4
Otto-Bliesner, B. L. , Brady, E. C., Fasullo, J., Jahn, A., Landrum, L., Stevenson, S., Rosenbloom, N., Mai, A., & Strand, G. (2016). Climate Variability and Change since 850 C.E. : An Ensemble Approach with the Community Earth System Model (CESM). Bulletin of the American Meteorological Society, 735-754. https://doi.org/10.1175/BAMS-D-14-00233.1
PAGES2k Consortium. (2017). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data , 4 , 170088 (2017). https://doi.org/10.1038/sdata.2017.88
PAGES2k Consortium. (2019). Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era.Nature Geoscience , 12 (8), 643–649. https://doi.org/10.1038/s41561-019-0400-0
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., & Budd, W. F. (2011). The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation. Geoscientific Model Development , 4 (2), 483–509. https://doi.org/10.5194/gmd-4-483-2011
Phipps, S. J., Rotstayn, L. D., Gordon, H. B., Roberts, J. L., Hirst, A. C., & Budd, W. F. (2012). The CSIRO Mk3L climate system model version 1.0 – Part 2: Response to external forcings. Geoscientific Model Development , 5 (3), 649–682. https://doi.org/10.5194/gmd-5-649-2012
Po-Chedley, S., Proistosescu, C., Armour, K. C., & Santer, B. D. (2018). Climate constraint reflects forced signal. Nature ,563 (7729), E6–E9. https://doi.org/10.1038/s41586-018-0640-y
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., & Taylor, K. E. (2007). Climate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press , Cambridge, United Kingdom and New York, NY, USA.
Renoult, M. (2022). Paleoclimate perspective on Earth’s climate sensitivity and feedbacks (PhD dissertation, Department of Meteorology, Stockholm University). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-211778
Rypdal, M., Fredriksen, H.-B., Rypdal, K., & Steene, R. J. (2018). Emergent constraints on climate sensitivity. Nature ,563 (7729), E4–E5. https://doi.org/10.1038/s41586-018-0639-4
Sanderson, B. M., Pendergrass, A. G., Koven, C. D., Brient, F., Booth, B. B. B., Fisher, R. A., & Knutti, R. (2021). The potential for structural errors in emergent constraints. Earth System Dynamics ,12 (3), 899–918. https://doi.org/10.5194/esd-12-899-2021
Schlund, M., Lauer, A., Gentine, P., Sherwood, S. C., & Eyring, V. (2020). Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth System Dynamics ,11 (4), 1233–1258. https://doi.org/10.5194/esd-11-1233-2020
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. (2020). An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics , 58 (4). https://doi.org/10.1029/2019RG000678
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society , 93 (4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., et al. (2020). Past climates inform our future.Science , 370 (6517), eaay3701. https://doi.org/10.1126/science.aay3701
Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, M., & Rajaratnam, B. (2012). Piecing together the past: statistical insights into paleoclimatic reconstructions. Quaternary Science Reviews ,35 , 1-22. https://doi.org/10.1016/j.quascirev.2012.01.012
Toohey, M., & Sigl, M. (2017). Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth System Science Data , 9 (2), 809–831. https://doi.org/10.5194/essd-9-809-2017
Williamson, M. S., Thackeray, C. W., Cox, P. M., Hall, A., Huntingford, C., & Nijsse, F. J. M. M. (2021). Emergent constraints on climate sensitivities. Reviews of Modern Physics , 93 (2), 025004. https://doi.org/10.1103/RevModPhys.93.025004
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po‐Chedley, S., Caldwell, P. M., Ceppi, P., et al. (2020). Causes of Higher Climate Sensitivity in CMIP6 Models. Geophysical Research Letters , 47 (1). https://doi.org/10.1029/2019GL085782
Zhang, J., Li, L., Zhou, T. et al. (2013). Variation of surface temperature during the last millennium in a simulation with the FGOALS-gl climate system model. Advances in Atmospheric Sciences ,30 , 699–712. https://doi.org/10.1007/s00376-013-2178-0
Zhou T. J., Wang B., Yu Y. Q. et al. (2018). The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview.Earth and Planetary Physics , 2 (4), 276–291. http://doi.org/10.26464/epp2018026
Zhu, F., Emile‐Geay, J., Hakim, G. J., King, J., & Anchukaitis, K. J. (2020a). Resolving the Differences in the Simulated and Reconstructed Temperature Response to Volcanism. Geophysical Research Letters ,47 (8). https://doi.org/10.1029/2019GL086908
Zhu, J., Poulsen, C.J., & Otto-Bliesner, B.L. (2020b). High climate sensitivity in CMIP6 model not supported by paleoclimate. Nature Climate Change , 10 , 378–379. https://doi.org/10.1038/s41558-020-0764-6
Zhu, F., Emile-Geay, J., Anchukaitis, K. J., McKay, N. P., Stevenson, S., & Zilu Meng. (2023). The pseudoPAGES2k Dataset v1.0 [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.7652534