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Abstract 27 

We image the high-resolution velocity structures of the crust and uppermost mantle beneath the 28 
western part of the Himalayan-Tibetan orogen through tomographic inversion of local and 29 
regional earthquake data. We herein reconstruct and present the tomographic image of the 30 
variable configuration of the Moho boundary beneath the Himalayan-Tibetan orogen. The 31 
thickness of the crust varies between ~40-65 km from south beneath the sub-Himalaya to north 32 
beneath the Higher Himalaya. The thickest crust imaged as thick as ~85 km, located ~100 km 33 
from ITSZ towards north beneath the southwest Tibet. Our results also report significantly 34 
variable geometry of the Moho boundary along the tectonic trend of the Himalayan-Tibetan 35 
orogen, which may indicate that the Indian plate subducted/underthrusted beneath the Eurasian 36 
plate in a piecewise manner as a consequence of differential convergence rates, counter 37 
clockwise rotation of the Indian plate and episodic collision processes. We also image the 38 
geometry of the subducting/underthrusting Indian plate beneath the Himalayan-Tibetan orogen. 39 
We present the geodynamic model of the two subducted slabs, where the Indian plate 40 
subducts/underthrusts towards north and the Tibetan slab subducted southwards beneath the 41 
Tibetan plateau. We infer that the Indian plate is torn into pieces differing in its northern limits 42 
and angle of subduction/underthrusting. Where its westernmost end subducts/underthrusts below 43 
the Eurasian plate with a gentle dip crossing ITSZ and KKMF.  On the other hand, towards east 44 
the Indian plate subducts/underthrust the Eurasian plate with a relatively greater angle near ITSZ, 45 
approximately 250 km distant from HFT. 46 

Plain Language Summary 47 

Seismic images of the crust and uppermost mantle beneath the Himalayan-Tibetan orogen may 48 
provide an important insight into the complicated tectonic deformation mechanisms and 49 
underlying geodynamics. They may also provide an excellent opportunity to study and 50 
comprehend the responsible mechanisms for differential evolution of the Indo-Asia collision 51 
zone through geological time. Here, we reconstruct the high-resolution tomographic model for 52 
the western sector of the Himalayan-Tibetan orogen through high-resolution arrival time of local 53 
and regional earthquake data using widely implemented tomography algorithm LOTOS 54 
[Koulakov, 2009a]. We estimate the Moho depth map for the entire study area that has never 55 
been attempted before through seismic studies. We also present the tomographic evidence of 56 
along strike varying architecture of the crust as well as the Indian Lithosphere that underthrusts 57 
northward under the Himalayas and the southern Tibet. We also present evidence of the 58 
southward subducted Tibetan slab just beneath the southern Tibet. The along strike varying 59 
architecture of the crust reflects the varying deformation mechanisms and differential 60 
interactions of the geological units through geological time as a consequence of differential 61 
modes of evolutionary processes of Indo-Asia collision, several episodes of collision and 62 
rotations of the Indian plate with respect to the Eurasian plate. 63 

1 Introduction 64 

At ~80 Ma ago Indian plate was ~6,400 km south of the Eurasian plate but moving 65 
northwards at a very fast and episodes of accelerating/decelerating [Dewey et al., 1988; 66 
Capitanio et al., 2010; van Hinsbergen et al., 2011; Jagoutz et al., 2015] convergence rate ~14–67 
20 cm/year [Patriat and Achache, 1984; Besse et al., 1988; Klootwijk et al., 1992; Kumar et al., 68 
2007; Molnar and Stock, 2009; Copley et al., 2010; Cande and Stegman, 2011; van Hinsbergen 69 
et al., 2011; White and Lister, 2012] with varying vector of the movement and rotation of the 70 
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Indian Plate [Treloar and Coward, 1991], resulted in the onset of the continent–continent 71 
collision between the two plates [Le Fort, 1975; Molnar and Tapponnier, 1975; Seeber et al., 72 
1981; England and McKenzie, 1982; Ni and Barazangi, 1984] in the past ~ 60–45 Ma [Patriat 73 
and Achache, 1984; Besse et al., 1984; Dewey et al., 1989; Tapponnier et al., 2001; DeCelles et 74 
al., 2002; Najman et al., 2010]. This gives rise to the great Himalayan–Tibetan orogen and the 75 
associated deformation mechanisms. The cause of fast and rapid anomalous convergence rate 76 
was the result of reduced viscous pressure between the subducting slabs during ~90–80 Ma, and 77 
arrival of mantle plume below the Indian plate with emplacement of large igneous province on 78 
the Indian plate, and later this fast and rapid convergence rate decayed rapidly due to the 79 
collision of the Indian Plate with the southern subducting systems at ~50 Ma [van Hinsbergen et 80 
al., 2011; Jagoutz et al., 2015; Pusok and Stegman, 2020]. The number, timing and geometry of 81 
the subduction systems have profound influence on the plate convergence rates [Jagoutz et al., 82 
2015]. The initial geometry of the Indian plate, counterclockwise rotations, several episodes of 83 
collision [Treloar and Coward, 1991; Capitanio et al., 2015] and the acceleration/deceleration in 84 
the convergent rate [van Hinsbergen et al., 2011] also played an important role in the evolution 85 
of Indo-Asia collision zone through geological time. 86 

The continued convergence of the Indian plate with respect to the Eurasian plate was 87 
likely accommodated by the subduction, underthrusting, shortening and thickening, 88 
extrusion/delamination, compression, faulting/thrusting [Dewey et al., 1988; Li et al., 2015; 89 
Molnar et al., 1993; Owens and Zandt, 1997; Tapponnier et al., 2001; DeCelles et al., 2002; 90 
Replumaz, et al., 2004; Replumaz et al., 2010; Guillot and Replumaz, 2013; Replumaz et al., 91 
2013; Capitanio et al., 2015] and resulted in more complex tectonic deformation mechanisms 92 
[De Franco et al., 2008; Capitanio et al., 2015], and lithospheric process involved in the 93 
intraplate tectonics [Replumaz et al., 2013]. The total amount of convergence of about ~2000–94 
3000 km has been taken place between the Indian and Eurasian plates [Molnar and Tapponnier, 95 
1977; Patriat and Achache, 1984; Tapponnier et al., 1986; Le Pichon et al., 1992; Guillot et al., 96 
2003]. The Indian continental subduction initiated at the northwestern margin of the Indian plate 97 
at ~35 ± 5 Ma along ~1500-km-long WNW–ESE striking zone (i.e., tectonic trend of the great 98 
Himalayan range), and ended up with a process of progressive slab break-off [Replumaz et al., 99 
2010c]. The process of slab break-off started most probably ~25 Ma at the western margin of the 100 
Indian slab and then propagated eastwards until the complete slab break-off ~15 Ma. [Replumaz 101 
et al., 2010c]. The thickening of the Himalayan-Tibetan region and initiation of intra-Tibetan 102 
subduction resulted between ~45 and ~35 Ma [Guillot and Replumaz, 2013; Replumaz et al., 103 
2014]. 104 

Several researchers reported differential amount of shortening e.g., ~1000–1400 km [Yin 105 
and Harrison [2000], ~1300 km [Replumaz et al., 2013], and ~1500 km based on a 106 
paleomagnetic study [Patzelt et al., 1996] and a tomographic study [Replumaz et al., 2004]. After 107 
the initial continental collision, the subducted Indian continental lithospheric slab broken off and 108 
a part of it got dragged down with the oceanic part before the break off event [Replumaz et al., 109 
2010]. The subduction of the continental lithosphere to a larger depth in the mantle have been 110 
reported by several workers [van der Hilst et al., 1997; van der Voo et al., 1999]. About ~600-111 
1,000 km of the Indian continental margin [Gaetani and Garzanti, 1991] was dragged down into 112 
the mantle, behind the sinking Tethyan oceanic lithosphere [van der Voo et al., 1999; Guillot et 113 
al., 2003; Replumaz et al., 2004], where it partly detached from the Indian plate once it reached 114 
mid-mantle depths [van der Voo et al., 1999; Replumaz et al., 2004]. Indian slab had several 115 
broke off events during the collision episode between the Indian and Eurasian plates [Replumaz 116 
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et al., 2014]. The stretched Indian slab had detached from the indenting Indian plate during the 117 
collision process between the Indian and the Eurasian plates, and remained stationary back in 118 
time underneath the northward-drifting Indian plate [Husson et al., 2014]. One major breakoff 119 
occurred between the Indian plate and the Tethys Ocean at ~45 Ma [Replumaz et al., 2013, 120 
2014]. The subduction process of high-strength Indian continental lithosphere dominates during 121 
the early Eocene (~55-45 Ma), and ended with the Indian slab breakoff [Guiillot and Replumaz, 122 
2013]. Replumaz et al. [2014] have shown a vertical slab continuous to the continent that 123 
override the deeper detached Tethyan sab and a similar structure with a detached slab, yet closer 124 
to the Tethys slab in the central region. Between ~40 and 50% of the Indian continental crust has 125 
been recycled into the mantle by the continental subduction. While just 3% of the Asian 126 
continental crust was recycled into the mantle that corresponds to one episode of the continental 127 
subduction, occurring most probably just after the start of the collision along the Bangong suture 128 
[Replumaz et al., 2010b]. 129 

The Indian plate is still underthrusting under the Himalayan-Tibetan orogen [Ni and 130 
Barazangi, 1984; Zhou and Murphy, 2005; Replumaz et al., 2014] leading to shortening in the 131 
Himalayas, whereas further east convergence is accommodated by extrusion of Burma 132 
microplate and Andaman–Nicobar region eastward [Replumaz et al., 2014]. The geotectonic 133 
units accreted in the Himalayan-Tibetan orogen represent that ~1020 km of the Greater Indian 134 
crust has consumed [DeCelles et al., 2001], whereas ~only 515 km of the lower crust remained 135 
to be entrained into the mantle. This consumed Indian lower crust has been sunk into the mantle 136 
at depth [Mattauer, 1986; Le Pichon et al., 1992; DeCelles et al., 2001] that follows the dipping 137 
Indian lithosphere beneath the Himalayas [Kosarev et al., 1999; Wu et al., 2022]. 138 

Presently, Indian plate is moving northward at an average convergence rate of ~4–5 139 
cm/year [DeMets et al., 1994, 2010; Paul et al., 2001; Sella et al., 2002; Copley et al., 2010], and 140 
underthrusting under the Himalayan-Tibetan orogen along a ~1000 km long, very shallow, 141 
gently dipping (0°–5°) detachment plane/decollement, referred as the Main Himalayan Thrust 142 
(MHT) that separates the subducted/underthrusted Indian plate crust with the overlying Tibetan 143 
crust [Molnar and Tapponnier, 1975; Zhao et al., 1993; Caldwell et al., 2013; Xu et al., 2017]. 144 
The Himalayan arc thrusts motion account for about ~1–2 cm/year of the total ~4-5 cm/year of 145 
convergence, whereas the remainder accounts for the thrusting, crustal extension, and strike-slip 146 
kinematics farther north within the Eurasian Plate [Freymueller et al., 1996; Bilham et al., 1997, 147 
1998; Powers et al., 1998; Wesnousky et al., 1999; Lavé and Avouac, 2000, 2001; Kumar et al., 148 
2001; Bilham and Ambraseys, 2005]. 149 

Many seismic imaging studies have been made in the study region and the adjoining 150 
regions during the last two decades in order to image the structure of the crust and mantle at 151 
different scales and understand the geodynamics of the region. Results derived from the previous 152 
studies have played an important role in understanding the mechanisms and the evolutionary 153 
processes of the Indo-Asian collision zone and the associated deformation mechanisms but still 154 
unable to answer few questions related to varying complicated architecture and its tectonic 155 
implications. A high-resolution image reconstructed through S-to-P converted seismic waves 156 
reveals south to north thickening of the Indian lithosphere from ~130–160 km just beneath the 157 
Himalayas to a depth of ~200–220 km beneath the Tibet just south of the Bangong suture 158 
[Kumar et al., 2006; Xu et al., 2017]. Doubling of the Asian crust during the collision is 159 
evidenced by doubling of the Moho depth beneath the Himalayan-Tibetan orogen which is found 160 
to be as deep as ~70 km [Mathews and Hirn, 1984; Kind et al., 2002; Tan et al., 2023], ~75 km 161 
[Rai et al., 2006; Gilligan et al., 2015], ~80–82 km [Royden et al., 2008; Xu et al., 2017], and up 162 
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to ~90 km [Wittlinger et al., 2004; Zhang et al., 2014], beneath the southern Tibet just south of 163 
the Bangong suture. 164 

Though previous tomographic/receiver function studies improve our understanding, but 165 
either they are local, sparse or along very few transects and therefore they are lacking in 166 
constructing and conceptualizing a generalized geodynamic model for the entire Himalayan-167 
Tibetan orogen. Utilizing the high-resolution local and regional earthquake data, here we intend 168 
to reconstruct the high-resolution tomographic image through 3-D inversion of arrival time data 169 
with our three-fold objectives: (1) to image, investigate and study the nature and geometry of the 170 
crust-mantle boundary (Moho); (2) to image the subducting/underthrusting Indian plate under the 171 
Himalayan-Tibetan orogen and understand the geodynamics of the study region; (3) to prepare 172 
the Moho depth map for the entire area, study the lateral variations in Moho-depth and 173 
comprehend the responsible tectonic processes, and corroborate this variation with the 174 
seismogenesis in the study region (Figure 1). 175 
 176 
 177 
 178 
Figure 1:  Tectonic map of the Uttarakhand Himalayas and its adjoining tectonic segments with major 179 
tectonic features, showing epicenters of significant historical and recent large-magnitude earthquakes 180 
since 1501 CE. Red stars - epicenters of great earthquakes Mw ≥ 8 with the magnitude and year of 181 
occurrence; Cyan stars - epicenters of major earthquakes with Mw 7–8 with the magnitude and year of 182 
occurrence; Yellow dots - epicenters of earthquakes with Mw 6–7; Blue dots – epicenters of earthquakes 183 
with Mw 5–6 [Data Source: NCS; USGS; ISC; NGDC; Bilham and Ambraseys, 2005; Kumar et al., 184 
2006, 2010; Szeliga et al., 2010; Mukhopadhyay and Dasgupta, 2013; Bungum et al., 2017; Bilham, 185 
2019]. Arrows indicate GPS velocities in different regions along the great Himalayan arc [after Stevens 186 
and Avouac, 2015; Yadav et al., 2019]. Pink polygon shows the subducting/underthrusting Delhi-187 
Haridwar basement Ridge [after Gahalaut and Kundu, 2012; Godin and Harris, 2014; Hetényi et al., 188 
2016]. Abbreviations: ITSZ: Indus–Tsangpo–Suture Zone; STDS: South-Tibetan-Detachment System; 189 
MCT: Main Central Thrust; MBT: Main Boundary Thrust; HFT: Himalayan Frontal Thrust (also referred 190 
as MFT: Main Frontal Thrust); SAT: South Almora Thrust; NAT: North Almora Thrust; RGT: Ramgarh 191 
Thrust; KLT: Krol Thrust; JMT: Jwalamukhi Thrust; KKMF: Karakorum Fault; SDNF: Sunder Nagar 192 
Fault; RPMF: Ropar-Manali Fault; KSWF: Kishtwar Fault; GBF: Great Boundary Fault; MBF: 193 
Moradabad Fault; MGDF: Mahendgarh-Dehradun Fault; KK-CGR: Kaurik-Chango Rift [after Dasgupta 194 
et al., 2000; Gahalaut and Kundu, 2012; Jayangondaperumal et al., 2018; Thakur et al., 2019; Jain, 2020; 195 
Malik et al., 2023]. Background topography is shown. 196 

2 Geotectonic Framework of the Study Region 197 

The study region geographically lying between 27–34° N and 75–83 °E, can be broadly 198 
categorized as Uttarakhand Himalayas (also known as Garhwal–Kumaon Himalayas), Himachal 199 
Himalayas including Kangra Re–entrant and Nahan Salient regions to its west, westernmost 200 
Nepal Himalayas to its east, Ladakh Range to its northwest, southern Tibetan Plateau to its 201 
North, and Indo–Gangetic Plain (IGP) and Delhi–Haridwar Ridge (DHR) to its south (Figure 1). 202 

The great Himalayan–Tibetan orogen can be categorized and characterized by six 203 
orogen–parallel, fault–bounded litho–tectonic zones along its entire length [Heim and Gansser, 204 
1939; Gansser, 1964; Le Fort, 1975; Hodges, 2000; Najman and Garzanti, 2000; Yin and 205 
Harrison 2000; Jayangondaperumal et al., 2018; Thakur et al., 2019]. These zones are 206 
longitudinally separated from successively deeper crustal levels towards north [Yin, 2006; 207 
Hubbard et al., 2021] by principal intra–continental, north–dipping, crustal scale thrust faults, 208 
and all the principal thrust faults root in a mid–crustal, gently northward dipping detachment or 209 
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decollement, the Main Himalayan Thrust (MHT) [Zhao et al., 1993; Nelson et al., 1996; Bilham 210 
et al., 1997; Hauck et al., 1998; Avouac, 2003; Nabelek et al., 2009; Stevens and Avouac, 2015; 211 
Thakur et al., 2019]. From south to north, major bounding faults and the classic litho–tectonic 212 
zones are: the Himalayan Frontal Thrust (HFT) also referred as Main Frontal Thrust (MFT), 213 
Sub–Himalaya (or outer Himalaya or Siwaliks), Main Boundary Thrust (MBT), Lesser 214 
Himalaya, Main Central Thrust (MCT), Greater (or Higher) Himalaya, South Tibetan 215 
Detachment System (STDS) also known as Tethyan Thrust (TT), Tethyan Himalaya (or Tibetan 216 
Himalaya), Indus–Tsangpo Suture Zone (ITSZ) delimiting the northern boundary of the Indian 217 
plate subducting/underthrusting under the Tibet, and the Trans Himalayan Zone (Figure 1) 218 
[Allégre et al., 1984; Bendick and Bilham, 2001; Burg and Chen, 1984; Chemenda et al., 2000; 219 
DeCelles et al., 2016; Gansser, 1964; He et al., 2015, 2016; Heim and Gansser, 1939; Hodges, 220 
2000; Kohn, 2014; Le Fort, 1975; Searle and Treloar, 2019; Larson et al., 2015; Najman and 221 
Garzanti, 2000; Schelling and Arita, 1991; Srivastava and Mitra, 1994; Thakur, 1987; Thakur et 222 
al., 2019; Upreti, 1999; Valdiya, 1980; Webb et al., 2007, 2011; Yin and Harrison 2000; Yin et 223 
al., 2010]. As a result of continued convergence/collision of the Indian and Asian plates, the 224 
great Himalayan–Tibetan orogen evolved and hence the convergence accommodated as a 225 
progressive southward propagating major thrust faults system by the increasing shortening 226 
induced, in a way that the MCT activated in Early Miocene, the MBT in the Middle Miocene and 227 
the HFT in the Quaternary [Ahmad et al., 2000; Hodges 2000; Robinson et al., 2006; Thakur et 228 
al., 2019; Webb et al., 2007; Yin, 2006]. This suggests that the earliest deformation zone is 229 
preserved in the Tethyan Zone to the north, while the most recent deformation zone where most 230 
of the ongoing crustal shortening accommodated in the Sub–Himalaya is associated with the 231 
seismically active HFT [Ahmad et al., 2000; DeCelles et al. 2002; Dey et al., 2016; Godin and 232 
Harris, 2014; Jade et al., 2017; Jouanne et al., 2004; Kumar et al. 2001, 2006; Lav'e and Avouac 233 
2000; Mugnier et al., 1999; Nakata, 1989; Thakur et al., 2019]. Shortening was substantially 234 
accommodated by movement along the MCT in the early phases of thrusting, which resulted in 235 
the uplift and erosion of the Higher Himalayan Crystalline Series as well as the deposition of the 236 
Sub–Himalayan succession in the foreland basin [Ahmad et al., 2000]. A hinterland–dipping 237 
duplex was produced by synchronous folding and faulting, which culminated in the form of out–238 
of–sequence thrust faults [Ahmad et al., 2000]. 239 

The Sub–Himalaya (or Siwaliks): delimited by the HFT to the south and the MBT to the 240 
north, this zone is primarily comprised of foreland basin sedimentary rocks, product of 241 
Paleogene and Neogene molassic sediments eroded from early collisional topography or the 242 
rising orogen and deposited at least since 16 Ma in front of the mountain belt [Critelli and 243 
Garzanti, 1994; DeCelles et al., 1998a,1998b,2001; Harrison et al., 1993; Johnson et al., 1985; 244 
Najman and Garzanti, 2000; Najman et al., 1993; Najman, 2006; Parkash et al., 1980]. Due to 245 
continued convergence of Indian plate, this Sub–Himalayan sequence was severely folded and 246 
thrusted during the late Holocene, and the continued underthrusting of the Indian plate under the 247 
Himalayas resulted in the development and activation of HFT [Mugnier et al., 1999; Sinha et al., 248 
1987; Valdiya, 1988]. The HFT demarcates the tectonic/physiographic boundary between the 249 
southern margin of the Sub–Himalayan sequence and the recent Indo–Gangetic Plains (IGP, also 250 
known as alluvial plains) [Gansser, 1981; Jayangondaperumal et al., 2018; Nakata et al., 1991; 251 
Sinha et al., 1987; Thakur et al., 2019; Valdiya, 1988]. 252 

The Lesser Himalaya: structurally emplaced over the Sub–Himalaya, delimited by the 253 
MBT to the south and MCT to the north, this zone is primarily comprised of Middle Proterozoic 254 
to Mesozoic non–metamorphic to lower metamorphic–grade sedimentary rocks, deposited on the 255 
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Indian continental margin, belongs to the southernmost facies of the Tethyan Sea, and thrusted 256 
granitic and gneissic rocks of Indian continental crust [Celerier et al. 2009; DeCelles et al., 2004; 257 
Hodges, 2000; Martin, 2017; Parrish and Hodges, 1996; Robinson et al., 2006; Srivastava and 258 
Mitra 1994; Thakur et al., 2019; Upreti, 1999; Valdiya, 1980], and Paleogene sedimentary rocks 259 
of foreland basin [Srikantia and Bhargava, 1967; Srikantia and Sharma, 1970; Sakai, 1989; 260 
DeCelles et al., 1998a; Najman and Garzanti, 2000]. This sequence underwent considerable 261 
neotectonic activity during the mid–late Miocene [Valdiya, 1988; DeCelles et al., 2001; 262 
Robinson et al., 2006], maybe with some recent motion as young as Pliocene–Quaternary 263 
[Mugnier et al., 1994; Meigs et al., 1995; Mukherjee et al., 2015] in a form of foreland–264 
propagating fold and thrust belt sequence due to differential movements along the MBT. 265 
Additionally, the Precambrian–Cambrian autochthonous bodies are exposed within the tectonic 266 
windows in the Lesser Himalaya, stretching west to east from the Himachal to the western Nepal 267 
Himalaya. Examples of these tectonic windows are the Almora nappe, the Ramgarh nappe, and 268 
the Krol nappe. The Almora nappe is a result of the tectonic transfer of rocks from the Higher 269 
Himalayan Metamorphic Belt to the Lesser Himalaya by the MCT during Eocene–Oligocene 270 
[Ahmad et al., 2000; DeCelles et al., 2001]. The largest Klippe/nappe distributed along the 271 
Himalayan arc is the Almora nappe [Mandal et al., 2015]. The northern and southern flanks of 272 
the Almora nappes are referred as the North Almora Thrust (NAT) and the South Almora Thrust 273 
(SAT) respectively [Heim and Gansser, 1939; Gansser, 1981]. The northern limb is thinner and 274 
steeply inclined (45°–75°, SSW/SW direction) whereas the southern limb is thicker and gently 275 
dipping (20°–30°, NNE/NE direction) [Valdiya and Kotlia, 2001]. The presence of the mylonitic 276 
sequence is another factor that distinguishes a large–scale shear zone of the NAT [Joshi et al., 277 
2016; Joshi and Tiwari, 2009]. Ramgarh Thrust (RGT) is one of the main fault systems of the 278 
Himalayan fold and thrust belt in Uttarakhand and the western Nepal Himalayas. The RGT is 279 
about 0.2 to 2 km thick sheet may be traced running parallel to the strike of the Himalaya over its 280 
entire length in the Uttarakhand and western Nepal. The fault generally places the younger 281 
Lesser Himalayan rocks or lower Miocene foreland basin deposits over the oldest 282 
Paleoproterozoic rocks in the Lesser Himalayan group [Pearson and DeCelles, 2005]. 283 

The Greater Himalaya (or Higher Himalaya): structurally emplaced over the Lesser 284 
Himalaya, delimited by the MCT to the south and the STDS to the north, this zone also known as 285 
the core of the Himalayan Range, this zone is primarily comprised of the Indian continental 286 
crust, meta–sedimentary and meta–igneous rocks of Proterozoic–Ordovician age, regionally 287 
metamorphosed and deformed at mid-crustal depths during Oligocene–early Miocene, and 288 
intruded by crustal melts of leucogranite during early Miocene in the uppermost part [Parrish and 289 
Hodges, 1996; Deniel et al., 1987; Le Fort et al., 1987; Sinha, 1987; Guillot and Le Fort, 1995; 290 
Guillot et al., 1994, 2008; de Sigoyer et al., 2000; Treloar and Searle, 1993; Scaillet et al., 1995; 291 
Searle, 1999; Upreti, 1999; Ahmad et al., 2000; Najman and Garzanti, 2000; Godin et al., 2001; 292 
Searle and Treloar, 2019; Larson et al., 2010; Streule et al., 2010; Thakur et al., 2019]. The 293 
movement along the MCT that carried a hot slab of Higher Himalayan rocks over the cold Lesser 294 
Himalayan sequence is typically responsible for the well-known inverted metamorphism of the 295 
Himalaya and the late orogenic magmatism [Harrison et al., 1998, 1999; Upreti, 1999; Yin and 296 
Harrison, 2000]. In the early Miocene (22–19 Ma), roughly synchronous with the MCT that 297 
lifted the Greater Himalayan sequence above the Lesser Himalayan sequence, the STDS was 298 
active between the Tethyan sedimentary sequence and the Greater Himalayan sequence. STDS is 299 
a north-dipping, top-to-the-north normal system of steeper brittle faults and low–angle ductile 300 
shear zones [Yin and Harrison, 2000; Yin, 2006; Godin and Harris, 2014]. 301 
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The Tethyan Himalaya (or Tibetan Himalaya): structurally overlies the Greater 302 
Himalaya, delimited by the STDS to the south and the ITSZ to the north, this zone is primarily 303 
comprised of Tethyan sedimentary succession of Proterozoic to Eocene age, represents the 304 
fossiliferous shelf deposits on the northern Indian continental margin [Gansser, 1964; Gaetani 305 
and Garzanti, 1991; Hodges; 2000; Upreti, 1999; Najman and Garzanti, 2000; Murphy and Yin, 306 
2003; Murphy and Copeland, 2005; Gao et al., 2016; Thakur et al., 2019] interbedded with mafic 307 
volcanic rocks [Yin, 2006]. The distal Indian continental margin is made up of mafic lavas and 308 
plutonic rocks of Permian, Triassic, lower Cretaceous, Eocene–Miocene, and Cambrian–Eocene 309 
age (Garzanti et al., 1987; Hodges, 2000; Martin, 2017). From the Cambro–Ordovician pre–rift 310 
stage to the ultimate Early Cretaceous breakup of Gondwana, it documents the evolution of the 311 
Palaeo–Tethys and Neo–Tethys seas [Garzanti, 1999]. Additionally, lower Palaeozoic rocks at 312 
some locations near the Himalayan peaks have regional metamorphic assemblages that are 313 
consistent with intermediate to lower amphibolite–facies conditions [Coleman, 1996; Hodges et 314 
al., 1996]. The Himalayan orogen’s highest structural position, also referred to as the 315 
superstructure [Godin, et al. 2006, 2011], is currently occupied by the weakly metamorphosed 316 
Tethyan sedimentary sequence fold and thrust belt system [Ratschbacher et al., 1994; Godin, 317 
2003]. With ophiolite obduction [Ahmad et al., 2008; Searle et al., 1997; H'ebert et al., 2012] and 318 
following early crustal thickening in the Oligocene, the Tethyan sedimentary series likely 319 
preserves the earliest Himalayan deformation [Godin et al., 1999; Godin et al., 2001; Godin and 320 
Harris, 2014]. The generally recognized geological/tectonic boundary between the rock of Indian 321 
and Asian affinities, the ITSZ separates the Tibetan Plateau to the north from the Tethyan 322 
Himalaya orogenic wedge to the south [Gansser, 1980; Yin and Harrison, 2000; Zhang et al., 323 
2012; Yang et al., 2017, 2019], represents the zone of collision between the India and Eurasian 324 
plates and is connected to the pre–continental collision obduction of the Tethyan ophiolites onto 325 
the leading edge of the Indian continental margin during the Late Cretaceous (~70 Ma) [Searle et 326 
al., 1997; Ahmad et al., 2000; H'ebert et al., 2012]. 327 

The Trans–Himalaya: this zone is comprised of deep–water Indian continental rise 328 
sediments, Trans–Himalayan accretionary prism complexes, forearc basin sedimentary rocks, 329 
obducted Neo–Tethys ophiolites and ophiolitic mélange, island arc volcanic rocks, upper 330 
Cretaceous to Eocene calc–alkaline island arc magmatic rocks related to subduction and 331 
collision, and post–collision molassic sediments [Ahmad et al., 2008; Buckman et al., 2018; 332 
Honegger et al., 1982; Searle, 1986; Coulon et al., 1986; Reuber et al., 1987; Garzanti and Van 333 
Haver, 1988; Reuber, 1986, 1989; Robertson and Degnan, 1993, 1994; Sharma, 1998; Najman 334 
and Garzanti, 2000]. 335 

The regional Himalayan strike (NW–SE), in the NW Himalaya bends along the Kangra 336 
re–entrant, and a transverse dextral–slip fault Ropar Manali Fault (RPMF) on the western margin 337 
of the Delhi–Haridwar Ridge (DHR) demarcates the boundary between the NW Himalaya and 338 
the central Himalaya segments [Heténeyi et al., 2016; Thakur et al., 2019]. Geological and 339 
geophysical observations demonstrate that the structural and seismic segmentation of the 340 
Himalayas is governed by lateral variations in geological structure, convergence, shortening rate, 341 
pre-orogenic sedimentary thickness, crustal thickness, erosion rates, thermal/exhumation 342 
patterns, stratigraphy, tectonic deformation pattern/style, lateral ramps along the main thrust 343 
faults, geometry of the MHT, cross–structures (e.g., DHR), and movements along the transverse 344 
faults/lineaments (e.g., RPMF, MGDF etc.) [Arora et al., 2012; Bai et al., 2019; Bollinger et al., 345 
2004; Célérier et al., 2009; DiPietro and Pogue, 2004; Eugster et al., 2018; Gahalaut and Kundu, 346 
2012; Gao et al., 2016; Gill et al., 2021; Gillian et al., 2015; Godin and Harris, 2014; Herman et 347 
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al., 2010; Heténeyi et al., 2016; Hubbard et al., 2021; Koulakov et al., 2015; Mandal et al., 2023; 348 
Murphy et al., 2014; Pandey et al., 1999; Prasad et al., 2011; Robert et al. 2011; Stevens and 349 
Avouac, 2015; Thakur et al., 2019; Vance et al., 2003; Whipp et al., 2007; Wu et al., 1998; 350 
Yadav et al., 2019, 2021; Yin, 2006]. Valdiya [1976] was one of the first who put up the idea 351 
that pre-Himalayan heterogeneities in the underplated Indian basement may be the primary 352 
reason for these along-strike variations. According to Valdiya [1976], transverse structures 353 
identified in the Himalaya could be the continuations of ancient faults and Ridges beneath the 354 
IGP that were reactivated during the evolution of the Himalayan orogen. Dasgupta et al. [1987] 355 
speculated that some transverse lineaments connected to the transverse ridges beneath the 356 
Himalayan foredeep, might be seismically active. Three notable subsurface faults identified 357 
south of the Himalayan front are the Great Boundary Fault (GBF), the Moradabad Fault (MBF), 358 
and the Mahendragrh-Dehradun Fault (MGDF). Segmentation is most obvious in the Kangra 359 
Renetrant and Nahan Salient regions of the NW Sub-Himalayan accretionary wedge, where the 360 
structure actively accommodates differential tectonic convergence across the two blocks due to 361 
left-lateral strike-slip mechanism with a component of uplift associated to thrusting along the 362 
HFT [Gill et al., 2021]. Dey et al. [2016] suggested that about 40–60% of the entire Sub-363 
Himalayan shortening is accommodated by the thrusting along the Jwalamukhi Thrust (JMT) and 364 
hence strain partitioning along the foot of the Himalayan accretionary wedge in the Kangra re-365 
entrant region, due to the JMT and other thrust faults over the Holocene age. 366 

3 Data Analysis and Methodology 367 

3.1 Data Analysis 368 
In this study, we have combined six arrival time datasets recorded by local and regional 369 

seismograph networks (temporary and permanent) installed in the study region (25-35°N and 74-370 
84°E). The combined dataset consist of arrival times of earthquakes recorded by International 371 
Seismological Center (ISC: www.isc.ac.uk) permanent network (Magnitude 3 and above; Period: 372 
1974-2021), National Centre for Seismology, Govt. of India (NCS: www.seismo.gov.in) 373 
permanent network (Magnitude 2 and above; Period: 1998-2021), Incorporated Research 374 
Institution for Seismology (IRIS: www.iris.edu; Roecker and Levin, 2007) temporarily deployed 375 
network Y2 (Magnitude 3 and above; Period: 2007-2011), Réseau Sismologique et géodésique 376 
Français (RESIF-SISMOB: www.ws.resif.fr; Bollinger et al., 2011) temporarily deployed 377 
network HiK-NET (Magnitude 2 and above; Period: 2014-2016),  Wadia Institute of Himalayan 378 
Geology, Govt. of India (WIHG: www.wihg.res.in) permanent network WIHG-I (Magnitude 2 379 
and above; Period: 2007-2020), and Wadia Institute of Himalayan Geology, Govt. of India 380 
(WIHG: www.wihg.res.in) permanent network WIHG-II (Magnitude 2 and above; Period: 2016-381 
2020). The seismographs network coordinates are given in Table S1. The earthquakes recorded 382 
by WIHG-I and WIHG-II networks were routinely analyzed and located through SEISAN 383 
[Ottemöller et al., 2021]. While combining different datasets we followed the criteria for 384 
identification of common events with close origin times should be ≤ 8 s and geographic 385 
coordinates should be ≤ 20 km. Considering the importance of slightly out-of-network events, 386 
we incorporated the same, as they considerably increase the ray coverage especially for greater 387 
depths as suggested by Zhao et al. [2007] and Koulakov, [2009b]. At the same time, they provide 388 
positive effects on tomography and enhance the resolution of tomographic images on the outer 389 
edges of the study area especially for greater depths. 390 

After combining the dataset, we relocated the earthquakes using 1-D reference velocity 391 
model through LOTOS algorithm [Koulakov, 2009a]. The details about the computation of 1-D 392 
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reference velocity model will be discussed in the next section. After relocation, the combined 393 
initial dataset consists of 1,36,125 picks with the corresponding P – and S – phases from 12,395 394 
events recorded at 178 seismographs installed in the study region. For tomographic analysis we 395 
followed a 3 steps main criterion for earthquake events to be included in inversion process: 396 

(i) number of rays per event should be ≥ 8; 397 
(ii) the residuals for P – and S – rays after initial location of sources in 1-D reference velocity 398 

model should be < 1.5 and 2 s, respectively; 399 
(iii) distance from an event to the nearest recording station should be ≤ 250 km. 400 

After applying the selection criteria part of the data were filtered out, and the final dataset 401 
qualify for an iterative source location and tomographic analysis, consist of 99,048 picks with the 402 
corresponding 52,702 P - wave rays and 46,346 S – wave rays from 7,177 events (on an average 403 
14 rays/event but not < 8) recorded at 178 seismic stations installed in the study region. The 404 
distribution of earthquakes and recording stations selected for computations is shown in Figure 2. 405 
The distribution of earthquake sources and receivers in the study area especially along the 406 
tectonic trend of the Himalayan Arc is good and quite homogenous (Figure 2) that ensures the 407 
high resolution of the tomographic inversions. In addition, to corroborate we have obtained the 408 
gravity data as Free-Air gravity anomaly (FAGA) and spherical Bouguer gravity anomaly (BGA) 409 
grids (WGM2012) [Bouvalot et al., 2012] from the International Gravimetric Bureau (BGI: 410 
www.bgi.obs-mip.fr), and topography data from ETOPO_2022 digital elevation model (15-arc 411 
second global relief model) of the earth’s surface that integrates the land topography and the 412 
ocean bathymetry [Amante and Eakins, 2009], available at the National Geophysical Data Centre 413 
(NGDC: www.ngdc.noaa.gov). 414 
 415 
Figure 2: Map showing the distribution of relocated seismicity in the final 3-D velocity model after 3 416 
iterations (blue dots). Red triangles show seismic stations involved in this study. Green lines with 417 
numbers show six profiles selected for visualization of the main results in cross-sections, taken along as 418 
well as across the tectonic trend of the collision zone. Background topography is shown. 419 
 420 
3.2 3-D Tomographic Inversion 421 

The results of the 3-D seismic tomographic inversion are highly dependent on the quality 422 
of data and preliminary 1-D reference velocity models used for the inversion [Kissling et 423 
al., 1994]. We tried a number of 1-D velocity models as initial models and carried out 3-D 424 
inversion. Here, our objective is to study the varying nature and configuration of the Moho and 425 
the lithospheric mantle. We do not look for small scale crust/mantle heterogeneities. Therefore, 426 
here we do not predefine Moho depth and the corresponding velocity at Moho depth. In other 427 
words, here we do not parameterize the Moho as a sharp first-order interface. Instead, we set the 428 
reference 1-D velocity model without any high velocity gradients and even without any sharp 429 
interfaces. We determine geometry of Moho boundary by considering velocity anomalies. The 430 
velocity around the Moho depths in the preliminary 1-D reference velocity model will be faster 431 
than expected crustal velocities but slower than that of mantle velocities. As a result, the crust 432 
will be identified as a low-velocity anomaly body, whereas the uppermost mantle as a high-433 
velocity anomaly body. Thus, variations in low-velocity anomaly may represents variations in 434 
crustal thickness or disturbances in Moho boundary geometry. We define 1-D reference velocity 435 
model with constant Vp/Vs ratio equals to 1.75 and set the P – wave velocity (Vp) at different 436 
depths as: 5.60 km/s at -5 km depth, 6.25 km/s at 25 km depth, 7.4 km/s at 40 km depth, 7.8 km/s 437 
at 65 km depth, 8.00 km/s at 120 km depth, 8.10 km/s at 165 km depth, and 8.20 km/s at 210 km 438 
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depth. S – wave velocities were computed simply by diving the Vp by 1.75. The preliminary 1-D 439 
reference velocity models used for 3-D inversion are shown in Figure 3, and Table S2. During 440 
the inversion process the velocity is linearly interpolated between the defined depth levels. 441 
 442 
Figure 3: Preliminary 1-D Reference Velocity Models. Red and blue lines indicate P – wave and S – 443 
wave velocity respectively. 444 
 445 

3-D tomographic inversion was performed using LOTOS algorithm [Koulakov, 2009a; 446 
Koulakov et al., 2010] and this efficient algorithm has been implemented in many tomographic 447 
studies conducted in the Indo-Asia collision zone [e.g., Koulakov et al., 2015; Medved et al., 448 
2022; Mukhopadhyay et al., 2014, 2016; Raoof et al., 2017, 2018, 2019; Sychev et al., 2018], as 449 
well as in different regions of the world [e.g., D’Auria et al., 2022; Garcia et al, 2019; Estève et 450 
al., 2022; Kasatkina et al., 2022; Koulakov et al., 2010; Singh et al., 2019; Talebi et al., 2020; 451 
Yaroshenko et al., 2022] and demonstrated new findings. 452 

This algorithm uses local and regional earthquake data to conduct an iterative 453 
simultaneous inversion of body wave arrival times (P – and S – wave) and source coordinates. 454 
The result comes in the form of 3-D distribution of P – and S – wave velocities and relocated 455 
source coordinates in the 3-D velocity model. 456 

The tomographic inversion was performed in four major steps: (1) computation of a 457 
reference traveltimes table using preliminary 1-D reference velocity model, where this stage 458 
involves computing the traveltimes for all feasible combinations of hypocentral depths and 459 
epicentral distances for earthquake sources using analytical formulae [Nolet, 1981]; (2) using a 460 
reference traveltimes table calculated in step (1), determining the sources’ approximate locations 461 
based on the grid search approach [Koulakov and Sobolev, 2006]; locating the sources in the 3-D 462 
velocity model (in the first iteration, the initial 1-D reference velocity model is utilized, and in 463 
the succeeding iterations, the updated 3-D velocity models are used); (4) and velocity model 464 
inversion using multiple parameterization grids. The steps (3) and (4) are iterated over a number 465 
of times, one after the other. The bending method was utilized for 3-D ray tracing which is based 466 
on the successive modification of the ray path to achieve the shortest possible travel time 467 
[Koulakov, 2009a]. The idea of 3-D bending for ray tracing was first proposed by Um and 468 
Thurber [1987]. The effects of topography on 3-D tomographic inversions have been taken into 469 
account by taking into consideration the elevation of the seismograph stations. The earthquake 470 
sources are permitted to be located below the topographic surface. This efficient algorithm takes 471 
into account for the spherical nature of the Earth. Even though the computations are performed in 472 
Cartesian coordinates, the reference model is defined as a radially symmetric spherical model 473 
[Koulakov et al., 2010, 2015]. The parameterization of the velocity model was carried out by an 474 
algorithm proposed by Koulakov et al. [2006] using a grid of nodes allocated in the study 475 
volume in accordance with the ray density. In the horizontal direction the nodes were allocated 476 
with regular spacing of 20 km (in present case) in the areas of sufficient ray density (10 % of the 477 
average ray density) only. In the vertical direction the nodes were allocated with the spacing of 5 478 
km (in present case), where the spacing inversely depends on the ray density and cannot be 479 
smaller than 5 km. As lowest resolvable size of the velocity anomalies is smaller than that of the 480 
defined grid spacing, therefore every pattern in the model is based on many nodes. This lessens 481 
the effect of the grid geometry on the outcome. The inversion was carried out by employing four 482 
grids with different fundamental orientations (0°, 22°, 45°, and 67°) independently, and the 483 
results were then stacked into one model to lessen the influence of node distributions in the 484 
results. The estimated model served as an updated 3-D velocity model in the following cycle of 485 
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iterations. An iterative Least Square with QR factorization (LSQR) algorithm [Paige and 486 
Saunders, 1982; van der Sluis and van der Vorst, 1987], probably the most popular of the 487 
iterative algorithms in tomography problems, was used to invert the entire sparse matrix for 488 
simultaneous determination of velocities (Vp, Vs), and hypocentral parameters (dx, dy, dz, and 489 
dt) with respect to the reference 1-D velocity model. We have used only three cycles of iterations 490 
for both real and synthetic data inversions (a compromise between the quality of the solution and 491 
the computation time). To stabilize the solution, we employed the two types of regularization co-492 
efficient: amplitude damping and smoothening/flattening co-efficient (minimizing the 493 
differences in the velocity at neighboring nodes). Several synthetic tests were conducted to 494 
evaluate the optimum values of the regularization parameters that enable for the optimum 495 
recovery of the recognized synthetic structures. The Tikhonov regularization, which presumes 496 
introducing a set of trivial equations for all grid nodes, was used for damping the amplitudes of 497 
the anomalies. We used the co-efficient of amplitude damping as (0.7) for P – and (1.2) for S – 498 
models. Another regularization co-efficient, smoothening/flattening co-efficient that smoothens 499 
the resulting model in the horizontal as well as vertical directions. We used the values for co-500 
efficient of smoothening as (2.0) for P – and (3.0) for S – models. Synthetic modeling was also 501 
used to evaluate the weights for the station corrections. We used the values for weights for the 502 
station corrections as (0.45) for P – and (0.45) for S – models. After that, computations based on 503 
the real data were performed using the same set of regularization co-efficient and weights for 504 
station corrections. 505 

In total we have performed five iterations, but consider only three iterations as the best 506 
for showing the main results. Table S3 shows the values of the mean residuals and the variance 507 
reductions for the P – and S – wave data. It should be emphasized that we have provided the 508 
mean residuals values in L1 norm. The mean residual deviations in the L1 norm decreased from 509 
0.7663162 to 0.6021442 s (21.42354 %) for the P – wave data and from 1.30105 to 0.9028781 s 510 
(30.60389 %) for the S – wave data after three cycles of inversions and the subsequent relocation 511 
of the earthquake sources. 512 

4 Results and Discussion 513 

4.1 Synthetic Modelling 514 
In this study we have performed tomographic inversion for 3-D distributions of P – wave 515 

(Vp) and S – wave (Vs) velocities and earthquake source locations. Our prime aim is to 516 
reconstruct the configuration of Moho depth and geometry of the subducting/underthrusting 517 
lithospheric mantle. As, we know that S – wave is very sensitive to fluids, cracks/fractures and 518 
temperature and pressure variations. Therefore, we cannot rely that much on the geometry 519 
reconstructed through Vs anomalies as compared to Vp anomalies. We may misinterpret the 520 
geometry of the reconstructed velocity structures through Vs anomalies. Thus herein, we only 521 
exhibit results for Vp anomalies. We exhibit here the outcomes of the synthetic modeling to 522 
evaluate the robustness and reliability of the acquired tomographic results before presenting the 523 
major results with 3-D distributions of the P – wave velocity (Vp) anomalies. In addition to 524 
assess the spatial resolution of the recovered velocity models, synthetic tests can aid in 525 
determining the optimal values of free inversion parameters (weights for source parameters and 526 
station corrections, smoothening / flattening co-efficient, amplitude damping co-efficient, 527 
number of iterations, etc.), as well as in estimating the actual amplitudes of the recovered 528 
velocity anomalies. The synthetic modelling is carried out in a way which is as closely as 529 
possible to how real data processing is carried out. The same 3-D bending algorithm is used for 530 



manuscript submitted to Tectonics 

 

ray tracing to determine the travel times for the same sources and receivers’ locations as in the 531 
real data inversion scenario. Then, to achieve approximately the same variance reduction as that 532 
of real data inversion, random noise with an average deviation of 0.1 s (in present case) is used to 533 
perturb the computed synthetic travel times. Then, using the same algorithm used for real data 534 
inversion, we completed the full data processing, including the steps for source locations, after 535 
computing the synthetic travel times and "forgot" all the information containing the velocity 536 
distributions and source locations. To examine the horizontal and vertical resolutions with the 537 
given data set, we conducted a number of synthetic tests (synthetic test using realistic pattern or 538 
free-shape anomalies (e.g., variable Moho depth model and subducting/underthrusting 539 
lithospheric slabs in this case), vertical checkerboard test, and horizontal checkerboard test. 540 
 541 
Synthetic Test through Free-Shape anomalies 542 

The outcome of the free-shape anomalies, which was used to evaluate the horizontal and 543 
vertical resolution of the recovered variable Moho depth model and geometry of the 544 
subducting/underthrusting lithospheric slabs, is shown in Figure 4. This test demonstrates the 545 
algorithm's capacity and efficiency to resolve the realistic velocity structures with the present 546 
data set. The synthetically recovered outcomes (Figure 4) show that we have enough resolution 547 
to distinguish and demonstrate the recovered model in the real data inversion scenario. Here, we 548 
define the synthetic models within the distance limits of ± 30 km across the profile with an 549 
amplitude of ± 10 %. In Figure 4, we show the results for two models as described above. In this 550 
case, the modelled anomalies don't change with depth. We can observe that the shapes and 551 
amplitudes have been correctly reconstructed. This test demonstrates the viability of a robust 552 
reconstruction of the geometry of the Moho boundary as well as the geometry of the 553 
subducting/underthrusting lithospheric slabs. 554 
 555 
Figure 4: Synthetic tests to assess the vertical resolution in cross-sections along the profiles 2 and 5. The 556 
configuration of the synthetic anomalies defined as that of realistic anomalies. Positions of the profiles are 557 
shown in map view. (a) Synthetic test with reconstruction of the “variable Moho” depth model in relative 558 
P – wave velocity (Vp) anomalies along section 2 and 5. Black line highlight the configuration of 559 
Synthetic Moho. (b) Synthetic test with realistic configuration of the anomalies representing 560 
subducting/underthrusting lithospheric slabs, as observed in section 5. Top low-velocity anomaly is 561 
demarcated as Moho boundary with varying configuration from west to east in section 2 and south to 562 
north in section 5, and bottom high-velocity anomalies demarcated are subducting/underthrusting Indian 563 
mantle lithosphere towards north and subducted Tibetan slab towards south. We show the synthetic model 564 
(bottom) and recovered results (top) for the P – wave velocity (Vp) model. 565 
 566 
Vertical Checkerboard Test 567 

In comparison to the horizontal resolution, the vertical resolution is usually poor in local 568 
and regional passive source tomographic studies. The severity of this issue increases for broader 569 
areas, when the rays' depth of penetration is substantially lower than their length. Nearly 570 
horizontal rays are unable to reliably determine the change in velocity with depth in this 571 
situation. Figure 5 shows the outcomes of synthetic modelling through vertical checkerboard test. 572 
In this test checkerboard anomalies are defined along each of the six profiles utilized for 573 
presenting the main results. On each of the profiles the checkerboard anomalies are defined with 574 
80 × 80 km size in horizontal direction and 60 km in vertical direction with an amplitude of ± 10 575 
%. It can be clearly identified that the anomalies change the signs, at depths of 60 km, 120 km, 576 
etc. The recovered results (Figure 5) clearly demonstrate that the velocity model has good 577 
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resolution for the two upper layers (60 and 120 km depths) along all the sections. Whereas, along 578 
sections 4 and 5 we can see some alternation of anomalies that changes their signs at deeper 579 
levels beneath the Indo-Asia collision boundary and southwest Tibet. This is due the presence of 580 
Y2 network and occurrence of mantle earthquakes as reported by many researchers [e.g., Chen 581 
and Yang, 2004; Feldl and Bilham, 2006; Liang et al., 2008; Nabelek et al., 2009; Xu et al., 582 
2017; Wu et al., 1998; Priestley et al., 2008]. Therefore, we consider that our reconstructed 583 
velocity models have good resolution up to ~120 km and ~150 km depths beneath the Himalayas 584 
and the Indo-Asia collision boundary and southwest Tibet respectively. 585 
 586 
Figure 5: Results of checkerboard test to assess the vertical resolution of P – wave velocity (Vp) model 587 
along the six profiles selected for presenting the main results. Thin black lines highlight the shapes of 588 
initial synthetic patterns. The size of the initial input synthetic model is 80×80×60 km. The locations of 589 
the profiles are shown in map view. 590 
 591 
Horizontal Checkerboard Test 592 

In this test, the initial synthetic model has alternating anomalies with sizes of 80 × 80 km 593 
with separation of 10 km, and amplitudes of ±10 % that are constant at all depths. At depths as 594 
low as 80 km, we can see that the primary patterns are correctly resolved. In the center of the 595 
region, where the majority of seismic stations are located, the best resolution is achieved. The 596 
anomalies are diagonally smeared outside the station network, yet at the right places, the 597 
alternation of anomalies may still be seen. Figure S1 shows the outcomes of synthetic modelling 598 
through horizontal checkerboard test conducted for assessing the horizontal resolution of the 599 
recovered velocity model. 600 
 601 
4.2 Real Data Inversion Results 602 

The estimated tomographic images of Vp – anomalies through real data inversion, are 603 
presented as horizontal slices (figure 6) for six depth levels (30 km, 35 km, 40 km, 50 km, 60 604 
km, and 70 km), and cross-sections taken along the six selected profiles (Figure 7). The profiles 605 
are selected in a way that three profiles (1, 2 and 3) are along the tectonic trend of the Himalayas 606 
and three profiles (4, 5 and 6) are across the tectonic trend of the Himalayan–Tibetan orogen, 607 
more or less perpendicular to the strike of the Himalayas. Where, profiles 1, 2 and 3 are selected 608 
intentionally in a way that pass through the well-defined litho-tectonic subdivisions of the 609 
Himalayas; the Sub-Himalaya, the Lesser Himalaya and the Greater Himalaya respectively 610 
(Figures 2 and 6). The estimated tomographic images are well consistent and in good agreement 611 
with the overall geotectonic structure of the study region. Major geological structures are clearly 612 
discerned in the estimated tomographic images. The observed consistency in the Vp – anomalies 613 
relative to the geotectonic structure of the study region can be considered as evidence for the 614 
robustness of our results. Low Vp – anomalies represent the sediments/sedimentary rocks and 615 
high Vp – anomalies represent the high-density rigid material (Figures 6 and 7). Prominent low 616 
Vp – anomalies all along the Himalayan–Tibetan orogen may represents the sedimentary 617 
wedge/underthrusted crustal material below the Himalayas whereas high Vp – anomalies 618 
represent the high-density and rigid crustal material at shallower depths and Indian lithospheric 619 
mantle at deeper depths (Figure 6). The estimated tomographic images represented here as 620 
horizontal slices clearly demonstrate that low Vp – anomalies distributed all over the Himalayas 621 
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and the southern Tibet at all depths except at 60-70 km depth below the Sub-Himalaya and 622 
Lesser Himalaya (Figure 6), represents the thicker crust containing sedimentary wedge and 623 
underthrusted crustal part of the Indian plate under the Himalayan-Tibetan orogen, as postulated 624 
by many researchers [Srivastava and Mitra, 1994; Hodges, 2000; Yin, 2006]. Low gravity 625 
anomaly, as well as isostatic model, supports the crustal thickening in the Himalayan-Tibetan 626 
orogen [Verma and Mukhopadhyay, 1977; Bonvalot et al., 2012]. However, the crust is 627 
relatively thinner below the Sub-Himalaya and the Lesser Himalaya as compared to the southern 628 
Tibet, where the crust seems to be greater than 70 km. This may be attributed to deeper 629 
roots/thicker crust developed by underthrusting of the Indian plate under the Eurasian plate. 630 
Prominent high Vp – anomaly at 30-35 km depths near the Delhi-Haridwar Ridge (DHR) area 631 
represents high-density and rigid crystalline material which is attributed to the hard and rigid 632 
rocks of the Precambrian age Delhi-Haridwar Ridge (DHR), a part of the Aravalli and Delhi fold 633 
belts running almost perpendicular to the tectonic trend of the Himalayas [Prasad et al., 2011; 634 
Qureshy, 1998; Rao et al., 2000]. It seems that this high Vp – body might be underthrusting the 635 
Himalaya, as speculated by many researchers [Gahalaut and Kundu, 2012; Hubbard et al., 2021]. 636 
The prominent low Vp – anomaly seems to be almost perpendicular to the strike of the 637 
Himalayas at a depth range of 40–50 km, may represents relatively thicker crust below the DHR 638 
as compared to the Himalayan foreland basin (Indo-Gangetic Plain). 639 
 640 
Figure 6: Map view of tomographic images of P – wave velocity (Vp) anomalies for six selected depth 641 
levels (30, 35, 40, 50, 60 and 70 km depth) are presented. Black dots and cyan triangles show relocated 642 
seismicity in final 3-D velocity model and seismic stations involved respectively. Black lines demarcate 643 
major tectonic features (abbreviations are given in Figure 1). 644 

 645 
Cross-sections of Vp – anomalies clearly demonstrate the crust and uppermost mantle 646 

structures beneath the study region (Figure 7). Exaggerated topography and regional Bouguer 647 
gravity anomaly (BGA) are shown on top and bottom of all the sections in respective segments 648 
(Figure 7) respectively. The observations of the Vp – anomalies are consistent all along the 649 
sections for the respective geotectonic units. We trace the lowest boundary of the low-velocity 650 
anomaly that may represents the crust-mantle boundary (Moho) along all the sections. We here 651 
report an undulating geometry of the Moho along the tectonic trend of the Himalayas (Figure 7). 652 
We note here that crustal thickness is lowest in the Himalayan foreland basin and start increasing 653 
gradually from below the Sub-Himalaya to the Higher Himalaya and reaches maxima below the 654 
southern Tibet. Section 4 (Figure 7) and Figure 9 show the effect of Delhi Haridwar Ridge 655 
(DHR) on the crustal part of the Himalayas. It shows that the crust here is buckled up. We 656 
propose that the ridge behaves like a beam that rams into the mountain chain, leading to such a 657 
buckling effect. Delhi-Haridwar ridge (DHR) is butting against the Himalayas (section 4, Figure 658 
7). It is observed that the ridge seems to be underthrust the sub-Himalayas. This is the first time 659 
its northernmost extent is reported. 660 

The gravity anomalies are related to the anomalous density and mass distributions within 661 
the Earth and thus shed light on the internal structure and composition of the Earth and play an 662 
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important role in the lithospheric studies. The gravity anomalies serve as the most sensitive 663 
indicator of the degree and the way in which the topographic elements on the surface of the earth 664 
are compensated at depth [Karner and Watts, 1983]. The positive-negative gravity anomaly 665 
couple can be characterized as the static models of the density and mass distribution in the 666 
mountain ranges and their surroundings [e.g., Burov et al., 1990, 1998; Lin and Watts, 2002; 667 
Jordan and Watts, 2005; Kaban et al., 2010]. The positive gravity anomalies may represent the 668 
high-density rigid rocks within the crust and/or thin crust, whereas the flanking negative gravity 669 
anomalies may represent the over-thickened crust comprising of low-density crustal roots with 670 
sedimentary wedge [e.g., Watts and Daly, 1981; Bassett and Watts, 2015]. Large wavelength and 671 
short wavelength Bouguer gravity anomalies can be interpreted due to crustal thickening and 672 
folding/bulging or mid-crustal density heterogeneities respectively [Watts and Daly, 1981; 673 
Caporali, 2000]. The magnitude and wavelength of the Bouguer gravity anomaly are subject to 674 
the wavelength and elevation of the topography and the flexibility of the lithosphere, respectively 675 
[Karner and Watts, 1983]. Here in, the BGA and topography shows obvious corroboration with 676 
the density and/or mass distributions within the Himalayan-Tibetan orogen (Figure 7). 677 
 678 
Figure 7: Cross-sections of P – wave velocity (Vp) anomalies along six selected profiles for the main 679 
results are presented. Positions of the profiles are shown with green lines and indicating numbers in map 680 
view of Vp anomalies at 45 km depth slice, where black dots and cyan triangles show distribution of 681 
relocated seismicity and seismic stations involved respectively, white lines demarcate major tectonic 682 
features (abbreviations are given in Figure 1). Exaggerated topography and Bouguer Gravity Anomaly 683 
(BGA) [after Bonvalot et al., 2012] are presented on top and bottom of cross-sections, along each profile. 684 
Arrows indicate major tectonic features where profiles intersect the same. Crust-Mantle boundary 685 
(Seismic Moho) is indicated with black lines in each of the cross-sections. Dotted black lines in section 5 686 
indicate the underthrusting/subducting Indian Mantle Lithosphere towards north and subducted Tibetan 687 
Slab towards south. In cross-sections black dots indicate projections of relocated seismicity within 100 688 
km on either side of the profiles. 689 
 690 

We report here the regional variation in the thickness of the crust/lithosphere below the 691 
Himalayan-Tibetan orogen (Figure 7) that may be attributed to anomalous density/mass 692 
distributions. The observed undulations in the Moho geometry/crustal thickness and/or intra-693 
crustal density/mass variations through our tomographic results are well corroborated with BGA 694 
and topography. Where, low/high BGA values are well corroborated with the negative/positive 695 
velocity anomalies respectively. Similar observations were made by Gao et al. [2003] in his 696 
study for the Baikal Rift zone as positive/negative travel time residuals in relation to low/high 697 
Bouguer gravity anomalies respectively. The highly negative Bouguer gravity anomalies over the 698 
Higher Himalayas and Tibet suggest the presence of thickened crust/lithosphere with relatively 699 
low-density roots with sedimentary wedge and underthrusted crustal fragments (Figure 7) 700 
beneath the Himalayan-Tibetan orogen. The observed local peaks of relatively high BGA values 701 
with respect to its general trend in the Lesser and Higher Himalayas are well corroborated with 702 
the over-thrusted high-density rigid crustal rocks associated with the MCT, MBT and other thrust 703 
faults movements in the Himalayas, as deciphered by high-velocity anomalies in the upper crust 704 
in my tomographic results (Figure 7). This suggests two possible scenarios: one that these bodies 705 
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have relatively higher density as compared to the surrounding media, this is supported by my 706 
tomographic result; two that in these regions, isostatic compensation have not been achieved and 707 
hence resulted in the anomalous density/mass distributions that may represent variable crustal 708 
thicknesses. Therefore, the high-density rigid crystalline rocks of the upper crust most often 709 
coincide with the Himalayan seismic belt beneath the Himalayas as deciphered by the high-710 
velocity anomalies in my tomographic image (Figure 7) suggests a hard and rigid crust with the 711 
excess density in the crust to subcrustal levels [Qureshy, 1971; Verma et al., 1976; Verma and 712 
Mukhopadhyay, 1977]. This could be due to the fact that these thrusted anomalous bodies are 713 
small enough or thrusted in fragments during the collision episodes, so that the lithosphere may 714 
hold them without buckling down substantially and hence the isostatic compensation may not 715 
have taken place. However, the BGA observed over IGP show BGA values having a flat 716 
spectrum with negative to near zero values at places where the estimated crusted thickness is 717 
~40-45 km. This could be attributed due to the sediments resting over the hard basement and 718 
suggests that IGP region is relatively more or less in isostatic equilibrium as compared to the 719 
surroundings (Figure 7). The BGA values observed in the IGP region cannot be attributed to the 720 
sediment cover only, but can also be sought in terms of the crust and mantle relationships 721 
beneath the region and its root effect under the Himalayas [Qureshy, 1971; Verma et al., 1976] to 722 
the north where crustal thickness starts gradually increasing systematically from below the sub-723 
Himalayas (40-50 km), below the Leser Himalayas (50-60 km),  to below the Higher Himalayas 724 
(60-65 km), to below the Tethyan Himalaya (65-75 km) and reaches the deepest point below the 725 
southwest Tibet (75-85 km) after crossing ITSZ about ~300 km from the HFT (Figure 7). The 726 
gradient of negative BGA values is systematically increasing towards the Himalayan-Tibetan 727 
orogen to the north is a typical characteristic of the subduction/Collison zone. 728 
 729 
Comparison with few published Moho depth estimates: In order to compare and produce the 730 
evidence of reliability of our recovered velocity models, we have also estimated the velocity 731 
models along the selected profiles taken from the recent published data [Gillian et al., 2015; 732 
Hazarika et al., 2021; Mandal, 2023; Mandal et al., 2023; Xu et al., 2017]. Figure 8 exhibits the 733 
reconstructed velocity models along the selected profiles. In figure 8, dotted line demarcates the 734 
Moho boundary estimated by different researchers through receiver function imaging technique. 735 
Thick black line demarcates the inferred Moho boundary through tomographic inversion of body 736 
wave arrival times in the present study. It is interesting to note that Moho boundary inferred with 737 
different datasets based on two different type of imaging techniques matches quite well. Hence, 738 
this also serves as another validation of our recovered velocity models. It should be emphasized 739 
here, that the inferred Moho boundary is shallowest beneath the Himalayan foreland basin and it 740 
starts gradually dipping from below the sub-Himalaya to the Higher Himalaya and reaches the 741 
deepest point below the southwest Tibet towards the north (Figure 8). We also report here that 742 
the crustal thickness also varies showing undulating configuration of Moho boundary along the 743 
tectonic trend of the Himalayas (Figure 8). 744 
 745 
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Figure 8: Cross-sections of P – wave velocity (Vp) anomalies along ten selected profiles taken from 746 
published literature are presented. Positions of the profiles are shown with white lines and indicating 747 
numbers in map view of Vp anomalies at 45 km depth slice, where black dots and cyan triangles show 748 
distribution of relocated seismicity and seismic stations involved respectively, White lines demarcate 749 
major tectonic features (abbreviations are given in Figure 1). Crust-Mantle boundary (Seismic Moho) is 750 
indicated with black lines in each of the cross-sections. Dotted black lines indicate the Moho along the 751 
same profile from published literature. In cross-sections black dots indicate projections of relocated 752 
seismicity within 100 km on either side of the profiles. 753 
 754 
Moho depth map and Free-Air gravity anomaly (FAGA): To reconstruct the Moho depth map 755 
we have estimated the Vp – anomalies along the 48 profiles, 24 of them are along (Figure S2) 756 
and 24 are across (Figure S3) the tectonic trend of the Himalayas. To maintain the accuracy and 757 
reconstruct the more realistic and reliable configuration of Moho boundary we manually trace 758 
the bottom of the low-velocity anomaly at an interval of ~ 3-5 km along the well resolved 759 
portion of all the cross-sections. Figure S4 shows the positions of 48 selected profiles and Moho 760 
boundary picking points. We exhibit the reconstructed Moho depth map and regional free-Air 761 
gravity anomalies map in Figure 9. The Free-Air gravity anomalies (FAGA) exhibit quite large 762 
variations in the Himalayan-Tibetan orogen (Figure 9). Strong negative anomalies are seen to the 763 
south of the Himalayas, which may be a result of Indo-Gangetic alluvium carried from the 764 
Himalayas by extremely quick erosion as well as isostatic compensation associated to mountain 765 
building. The higher Himalayas bounded by MCT to the south and STDS to the north exhibits 766 
the strongest free-air gravity anomalies. It is obvious that the main cause of these extreme 767 
fluctuations in the FAGA along the Himalayan thrust zone is the abrupt Moho dipping from the 768 
Indian Plate's comparatively thin crust to the nearly doubled crust found beneath the Himalayas 769 
and Tibet. We also notice significant changes in gravity anomalies along the tectonic trend of the 770 
Himalayas, which may be attributed to the lateral inhomogeneity in the crustal thickness and or 771 
density/mass distributions. We also report that crustal thickness also varies below the Tibet from 772 
west to east, as evidenced by many researchers. Thus, our estimated Moho geometry through 773 
tomographic inversion is well corroborated with the observed regional gravity anomalies. For 774 
instance, the thinner crustal regions are associated with the lower FAGA values. On the other 775 
hand, thicker crust segments are linked to larger FAGA values. 776 
 777 
Figure 9: (a) Estimated Moho depth beneath the study region in map view with epicenters of significant 778 
historical and recent large-magnitude earthquakes since 1501 CE. Red stars - epicenters of great 779 
earthquakes Mw ≥ 8; Blue stars - epicenters of major earthquakes with Mw 7–8; Black dots - epicenters 780 
of earthquakes with Mw 6–7; White dots – epicenters of earthquakes with Mw 5–6 (more details are 781 
given in Figure 1). Black lines demarcate major tectonic features (abbreviations are given in Figure 1). (b) 782 
Free-Air Gravity anomalies (FAGA) in map view derived from WGM 2012 [after Bonvalot et al., 2012]. 783 
White lines demarcate major tectonic features (abbreviations are given in Figure 1). 784 
 785 
Variations of crustal thickness and their tectonic implications: We suggest a mechanism that 786 
could explain the variation in crustal thickness or undulating geometry of Moho boundary in the 787 
Himalayan-Tibetan orogen. The Indian plate's crust appears to be extremely heterogenous due to 788 
anomalous density/mass distributions and anomalous isostatic compensation. The existence of 789 
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subducting basement Ridges (e.g., DHR) of Precambrian age comprising of crystalline rocks and 790 
ancient igneous provinces (crystalline basement beneath IGP) impacted by relict igneous 791 
processes may be one of the causes of substantial magmatic intrusions that may have 792 
significantly strengthened the Indian crust. However, thicker sediment piles and the sedimentary 793 
wedge material could account for the thicker crust and higher FAGA and lower BGA values. 794 
These two varieties of crust have different mechanical effects and behave differently during the 795 
episodes of Indo-Asia collision. The compression of the crust in the collision zone would have 796 
been more pronounced because the crust influenced by igneous processes is stronger. The 797 
presence of thicker crust near the contact area (75-85 km) where present collision zone lie along 798 
the ITSZ (Figure 9), can be explained by a stronger pushing impact of the Indian plate's more 799 
rigid crust. Thus, the thicker crust in front of the colliding Indian plate front along the collision 800 
boundary may indicate a wider shortening zone which has been reported by many researchers as 801 
discussed in the introduction. The segment of the abnormally thinner crust that lie below the sub-802 
Himalaya may be explained by a lower crustal compression rate due to weaker incoming crust 803 
and lubricating effects of thicker sediments with a reduced colliding impact. We report here that 804 
the crust is relatively thicker below the IGP and sub-Himalaya in the Himachal Himalaya 805 
towards northwest as compared to Uttarakhand Himalaya. We infer that this variation is due to 806 
the E-W compression in response to oblique convergence of the Indian plate, as Indian plate 807 
subducts below Hindu Kush region. Many researchers reported the oblique convergence of the 808 
Indian plate and strain partitioning [e.g., Dey et al., 2016; Stevans and Avouac, 2015; Yadav et 809 
al., 2019] of the Himalayas towards northwest (Figures 1 and 9). Herein, we first explain the 810 
mechanism responsible this along strike variation of the crustal thickness/geometry of the Moho 811 
boundary. This could be because of the fact that after the continental part of the Indian plate 812 
collided with that of the Eurasian plate at its western end, it rotated counter-clockwise [Treloar 813 
and Coward, 1991]. This would have caused the significant stresses along the tectonic trend of 814 
the Himalayas increasing eastward leading to crumpling of the crust. This would have caused the 815 
variation of the crustal thickness along the tectonic trend of the Himalayas. We also interpret that 816 
the Indian plate collided in episodes during ages with the Eurasian plate with differential 817 
convergence rates [Dewey et al., 1988; Capitanio et al., 2010; van Hinsbergen et al., 2011; 818 
Jagoutz et al., 2015] that may result in differential shortening rates from west to east and hence 819 
this mechanism might have played an important role in controlling the anomalous crustal 820 
thinning/thickening. Along strike varying episodic convergence rates might have also played an 821 
important role in controlling the crustal scale thrusting along the Himalayan thrust zone and the 822 
tectono-metamorphic processes that resulted in anomalous density/mass distribution. 823 
 824 
Figure 10: Schematic interpretation of the estimated tomographic image resulting from P – wave velocity 825 
(Vp) anomalies in section 5. Black line demarcates Main Himalayan Thrust (MHT) [after Gao et al., 826 
2016]. Dashed white line separates seismically active brittle upper crust with that of relatively weaker and 827 
ductile lower crust. In cross-sections black dots indicate projections of relocated seismicity within 100 km 828 
on either side of the profile. Position of the profile is shown with green line and indicating number in map 829 
view of Vp anomalies at 45 km depth slice, where black dots and cyan triangles show distribution of 830 
relocated seismicity and seismic stations involved respectively, White lines demarcate major tectonic 831 
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features (abbreviations are given in Figure 1). Arrows indicate major tectonic features where profile 832 
intersects the same. 833 
 834 
Geodynamic model of the Himalayan-Tibetan orogen: Based on the estimated tomographic 835 
image, herein, we exhibit a schematic preorientation of the Geodynamic model of the 836 
Himalayan-Tibetan orogen (Figure 10). Section 4 (Figure 7) shows that the Indian plate is gently 837 
underthrusting the Eurasian plate. Whereas, section 5 (Figure 7) and Figure exhibit that Indian 838 
plate is subducting/underthrusting the Eurasian plate with increasing dip towards east. Based on 839 
this observation we infer that the Indian plate is torn into pieces differing in its northern limits 840 
and angle of subduction/underthrusting. Where its westernmost end subducts/underthrusts below 841 
the Eurasian plate with a gentle dip crossing ITSZ and KKMF (section 4, Figure 7). Section 4 842 
passes through the Kaurik-Chango Rift (KK-CGR) area.  On the other hand, towards east Indian 843 
plate subducts/underthrust with a relatively greater angle near ITSZ, approximately 250 km 844 
distant from HFT. It is interesting to note that section 5 (Figure 7) and Figure 10 exhibit 845 
subduction zone of two slabs, where subducted Tibetan slab can also be seen dipping southward 846 
below the southwest Tibet. We speculate that the Indian plate has been torn off into several 847 
pieces, this phenomenon has also been reported by several researchers [e.g., Li and Song, 2018]. 848 
We infer that there is vertical tear in the Indian plate that might be related to either by differential 849 
convergence rates and or counter clock wise rotation of the Indian plate or rifting phenomenon. 850 
Figure 10 clearly exhibits that the upper crust below the Himalayas appears to be more rigid 851 
where most of the seismic activity takes place and the lower crust is ductile with partial melts at 852 
places, as evidenced by strong negative velocity anomaly and devoid of seismic activity. 853 
Presence of seismicity in the uppermost mantle below the collision zone suggests that uppermost 854 
mantle of the continental lithosphere is strong enough to sustain the elastic strain accumulation 855 
required for earthquakes. Thus, seismic activity in the upper crust as well as in the uppermost 856 
mantle represents the bimodal distribution of seismicity beneath the Himalayan-Tibetan orogen. 857 
We herein, presents the scenario of two subducting slabs, Indian plate towards north whereas the 858 
Tibetan slab subducted southward, with the Tibetan crust sandwiched between the two plates 859 
resulted in overthickening of the crust. In addition, the variable geometry of the Moho boundary 860 
along the tectonic trend of the Himalayan-Tibetan orogen may indicate that the Indian plate 861 
subducted/underthrusted beneath the Eurasian plate in a piecewise manner as a consequence of 862 
differential convergence rates, counter clockwise rotation of the Indian plate and episodic 863 
collision.  864 

5 Conclusions 865 

We have estimated 3-D seismic velocity structures of the crust and uppermost mantle beneath the 866 
Himalayan-Tibetan orogen through travel time tomography using local and regional earthquake 867 
data in order to get a more comprehensive tomographic image of the study region. Different 868 
segments of the study region were studied by several researchers using travel time tomography, 869 
surface wave analysis, and receiver function analysis. Our results exhibit a more comprehensive 870 
image of this tectonically very complicated region. Our results are well resolved up to ~120 km 871 
and ~150 km depths beneath the Himalayas and southwest Tibet respectively. Herein, we exhibit 872 
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first time the effect of ramming of the Himalayas by the DHR through tomographic image. This 873 
ramming has also led to locally buckling up of the crust below the Himalayas. We present the 874 
scenario of two subducting slabs, Indian plate towards north whereas the Tibetan slab subducted 875 
southward, with the Tibetan crust sandwiched between the two plates resulted in overthickening 876 
of the crust. We interpret that the variable geometry of the Moho boundary along the tectonic 877 
trend of the Himalayan-Tibetan orogen may indicate that the Indian plate 878 
subducted/underthrusted beneath the Eurasian plate in a piecewise manner as a consequence of 879 
differential convergence rates, counter clockwise rotation of the Indian plate and episodic 880 
collision. Most of the seismicity is concentrated only in the brittle upper crust beneath the 881 
Himalayas, mainly within the main Himalayan Seismic belt between MBT and MCT within top 882 
~15-25 km depth. Presence of seismicity in the uppermost mantle below the collision zone 883 
suggests that uppermost mantle of the continental lithosphere is strong enough to sustain the 884 
elastic strain accumulation required for earthquakes. Thus, seismic activity in the upper crust as 885 
well as in the uppermost mantle represents the bimodal distribution of seismicity beneath the 886 
Himalayan-Tibetan orogen. Average crustal thickness increases from south to north in the 887 
Himalayas. It is observed that this thickness also varies along the tectonic trend of the 888 
Himalayas. The comprehensive tomographic image, estimated in this study provides further 889 
insight into the Geodynamics of the whole study region that helps to understand the tectonic 890 
deformation and earthquakes generating mechanisms. 891 
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Figure 1: Tectonic Map of the study region.





Figure 2: Data distribution.





Figure 3: Preliminary 1-D Reference Velocity Models.





Figure 4: Synthetic test through free shape anomalies.





Figure 5: Vertical Checkerboard test.





Figure 6: Horizontal Slices of Vp - anomalies.





Figure 7: Cross-sections of Vp - anomalies.





Figure 8: Cross-sections of Vp - anomalies along profiles selected from literature.





Figure 9: Moho Depth map and comparison with Free-Air Gravity anomalies.





Figure 10: Schematic representation of the Geodynamic model.
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