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Abstract: Within the context of climate change, understanding and predicting coastal change 7 

is of the foremost importance to protect coastal communities and coastal assets. This study 8 

analyzes field data from 125 locations along the Morecambe coastline, consisting of beach 9 

transects collected twice a year for more than a decade (2007 to 2022). To model the 10 

sediment volume changes observed along the Morecambe coastline, this study proposes a 11 

two-stage machine learning model that incorporates beach behavior classification and deep 12 

learning techniques to predict changes in sediment volumes along coastal environments. The 13 

first stage of the model, developed using a random forest classifier, classifies beach behavior 14 

into four categories: eroding, accreting, stable, or undergoing short-term fluctuations. The 15 

second stage of the model developed using LSTM and sequence-to-sequence models, uses 16 

the output of the first stage to predict the available sediment volume after erosion/accretion. 17 

LSTM model achieved a testing regression of 0.9961 for one-step-ahead (6 months) 18 

predictions of sediment volume time series, while sequence-to-sequence model achieved the 19 

testing regression of 0.9950 for three-time-ahead (1.5 years) predictions and 0.9916 for ten-20 

time-step-ahead (5 years) prediction. 21 

Plain Language Summary: This study investigates how coastlines change over time, 22 

especially as the climate changes. We focused on the Morecambe Bay in England and 23 

analyzed data collected over 16 years from 2007 to 2022. Artificial intelligence models were 24 
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developed that learn from beach data to predict if a beach will erode (wash away), grow 25 

bigger, or stay the same. These models work in two steps: first, it figures out if the beach is 26 

eroding (wearing away), growing, staying the same, or changing in small bursts. Then, it uses 27 

that information to predict how much sediment a particular beach location will be there in 6 28 

months, 1.5 years, or even 5 years from now. These models are capable of accurately 29 

predicting beach behavior and sediments available, especially for short-term predictions. This 30 

information can help protect coastal towns and areas from the effects of climate change. 31 

Keywords: Sediment volume; Morecambe Bay; Two-stage modeling; Random Forest; 32 

LSTM; Sequence-to-sequence 33 

1. Introduction 34 
Dynamic coastal processes continuously shape the coastline and understanding 35 

coastal dynamics is important to protect coastal communities and coastal infrastructures. 36 

Waves, tidal energy and sediment availability determine sediment transport and 37 

morphological variations but anthropogenic activities can also accelerate the rate of coastline 38 

change (Prasad & Kumar, 2014; van Rijn, 2011; Williams et al., 2018). Over the years, more 39 

and more infrastructures have been built along the coastline. Coastal erosion causes the 40 

coastline to retreat inland. The removal of sediments from infrastructure locations can expose 41 

their foundations, reducing their strength and stability, and making them unsafe. With sea 42 

level rise and changes in storms activity, there is increased uncertainty about the risk of 43 

erosion, flooding and on whether the project lifetime of these infrastructures will prove 44 

adequate to withstand the challenges posed by climate change.   45 

Several soft nourishment and hard structures are designed to address coastal erosion 46 

problems. Soft nourishment includes, for instance, shoreface nourishment (beach fills) 47 

(Kumar & Leonardi, 2023b, 2024a) and submerged reefs (Harris, 2012), while hard structures 48 

include groins (Lima et al., 2020), detached breakwaters (Browder et al., 2015), seawalls 49 
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(Betzold & Mohamed, 2017), and revetments (Crawford et al., 2020). To be effective, these 50 

engineering solutions must be installed at identified vulnerable locations. Historic erosion and 51 

deposition data as well as predictive models can be used to identify such locations, 52 

specifically those that can be classified as having long-term chronic erosion or short-term 53 

fluctuating erosion trends. For instance, if an area of interest experiences substantial sediment 54 

loss over 5-10 years, it can be considered to have long-term chronic erosion and thus requires 55 

erosion protection measures (van Rijn, 2011).  56 

Machine Learning and predictive models such as artificial neural networks (ANNs) 57 

can be useful for nonlinear forecasting of coastal change (Kumar and Leonardi, 2023 a, b). 58 

These can be especially helpful when long-term morphodynamical models are not available 59 

or prove to be too computationally expensive. Historic data, whether from remote sensing or 60 

direct field campaigns can also be used to feed into the ANN models and identify erosion 61 

prone areas to support coastal management.  62 

ANN models are information processing systems modelled on the structure of the 63 

human brain (Anctil et al., 2009; Sharma et al., 2003) and effective in dealing with 64 

nonlinearities (Farzad & El-Shafie, 2017) and have been successfully applied to other coastal 65 

engineering problems. ANN models can learn the nonlinear relationships between the 66 

different variables that influence coastal erosion, making them well-suited for modeling this 67 

complex process. ANN models can even learn dependencies that process-based models fail to 68 

capture. Several researchers have developed models to predict coastal erosion, including 69 

Peponi et al. (2019), Corbella and Stretch (2012) and Adamo et al. (2014). Peponi et al. 70 

(2019) integrated geographic information systems (GIS) with ANN to predict erosion-prone 71 

areas at the coastal zones of Costa da Caparica in Lisbon, Portugal, in the near future. They 72 

mainly considered anthropogenic inputs from GIS, such as the number of residents, land 73 

cover, number of households, and vegetated and non-vegetated areas, to predict erosion-74 
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prone areas using ANN. Corbella and Stretch (2012) and Adamo et al. (2014) used process-75 

based models to estimate coastal erosion. Corbella and Stretch (2012) used the SBEACH, 76 

XBEACH, and Time Convolution models to estimate coastal erosion trends at coastal areas 77 

of Durban, South Africa. Adamo et al. (2014) used directional wave spectrum and direction 78 

of wave propagation to estimate coastal erosion and used this it to estimate shoreline change.  79 

This study proposes a combination of two prediction models to classify beach profiles 80 

based on their trends in morphological changes and to predict time series of morphological 81 

trends. Specifically, the objectives of this study are: 1) Utilizing high-quality field 82 

measurements from Morecambe Bay coastline, this study aims to harness real-time beach 83 

transect data for a comprehensive analysis. The primary goal is to construct a robust random 84 

forest classifier model that can accurately predict the long-term behavior of the coastline, 85 

categorizing it into erosion, accretion, stability, or short-term erosion fluctuation. 2) Focusing 86 

on the significant field measurements, this research seeks to advance predictive capabilities 87 

by developing a cutting-edge Long Short-Term Memory (LSTM) and sequence-to-sequence 88 

model. The central objective is to forecast the volume of sediment erosion or accretion at 89 

specific locations, further enhancing our ability to comprehend and anticipate coastal 90 

morphological changes. 91 

Continuous field campaigns were conducted from 2007 to 2022 to collect beach 92 

profiles using GS16 Leica antenna and a Leica CS20 handset at 125 locations along 93 

Morecambe Bay. Simulation data, including coastal parameters such as wave height, wave 94 

direction, wave velocity, and coastline composition are obtained from a hydrodynamic model 95 

built using Delft3D and were fed along with historical data into the ANN models. The 96 

manuscript is organized as follows: After presenting the study site, the methodology section 97 

details the field data collection methods, hydrodynamic modeling techniques, machine 98 

learning models employed, and performance criteria used to evaluate the models' 99 
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effectiveness. The results section then presents the analysis of the gathered field data and 100 

model performance. Following this, the discussion section delves into the literature on 101 

coastline change in Morecambe Bay and explores the applicability of the developed models 102 

in this context. Finally, the conclusion section summarizes the study, highlighting key 103 

findings and implications. 104 

2. Study Site 105 
Morecambe Bay, a macrotidal embayment in northwest England, is the test case of 106 

this study. Its shoreline is mostly covered in fine sand, and the bay opens southwest into the 107 

Irish Sea (Mason et al., 2010). Intertidal zones, especially sandbanks and subtidal channels, 108 

are highly susceptible to change, and these changes can be observed even within a single 109 

season. The fetch length is constrained by landmasses such as Ireland and the Isle of Man. As 110 

a result, significant wave heights at the bay mouth reach up to 2 meters for only about 10% of 111 

the year, remaining around 0.5 meters for the rest of the year. Morecambe Bay has a large 112 

ordinary spring tidal range of approximately 8.2 meters and its subtidal channels experience 113 

maximum spring tide velocities of about 1.5 meters per second (Mason et al., 2010). During 114 

the 1991–2007 study period, Mason et al. (2010) found that the bay experienced significant 115 

sediment movement from below mean sea level to above mean sea level. This erosion and 116 

accretion caused the mudflat to retreat towards the landmass. Due to its dynamic behavior 117 

and significant sediment movement, this bay was selected for this study.  118 

3. Methodology 119 

3.1 Field Data 120 
Sefton Council (Sefton MBC, UK) provided a dataset of beach transects at 139 121 

locations along the Morecambe Bay coastline, collected mostly between 2007 and 2022.  122 

 123 
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 124 

Fig 1. Location of data measurement sites (blue dots) along Morecambe coastline  125 

 The raw data from Sefton Council consisted of beach transects of varying lengths, 126 

measured twice a year (spring and autumn) from 2007 and 2022 using GS16 Leica antenna 127 

and Leica CS20 handset. The dataset was corrected in post processing using Lecia Infinity 128 

software with an accuracy of Hz 3 mm + 0.1 ppm/ V 3.5 mm + 0.4 ppm. Locations with two 129 

or fewer transects in time and those outside Morecambe Bay were discarded, leaving 125 130 

locations with an average of 22 transects per location (Figure 1). Some of the transect had 131 

varying length from year to year. To address this, the data were pre-processed and missed 132 

datapoints were filled with the interpolated data from the three previous transects (e.g., if part 133 

of the Autumn 2019 transect was missed, the missed section was filled through the average of 134 

the 2019 (Summer) and 2018 (spring and autumn) values (see S1 for extended explanation 135 

and table for this)). The raw data for all locations is available through Kumar and Leonardi 136 

(2024b) and the raw data and interpolated transects are presented in supplementary file S1. 137 

This interpolation was needed for around 20% of the transects (591 out of 2883). At few 138 
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locations, there were intervals in the transect data where measurements were taken with gaps 139 

in time. As presented in this file, these time gaps predominantly occurred in 2013 and 2015 at 140 

54 locations. Moreover, for 22 locations where the initial profile was measured in 2007, there 141 

was a significant gap between 2008 and 2012. After calculating the volume of sand at each 142 

location using the area under the curve method, which provided volumes in cubic meters per 143 

meter of beach width, the sediment volumes during these missing time gaps were interpolated 144 

using spline curves. For locations with notable time gaps between 2008 and 2012, the 145 

transects from 2007 and 2008 were excluded, enabling the transect time series to commence 146 

from 2012. A total of 256 profiles were interpolated to effectively complete the time series 147 

from 2010 to 2022 with two transects per year. 148 

3.2 Hydrodynamic modelling 149 
To obtain localized wave data, we simulated the hydrodynamic in Morecambe Bay 150 

using Delft3D. From the hydrodynamic model, we extracted wave height, wave velocity, and 151 

wave direction at each transect location. Details about the model setup and model validation 152 

can be found in Kumar et al., 2023a, b. 153 

The model was calibrated using wave buoys at Morecambe Bay at Cleveleys and 154 

Heysham. To model realistic waves, we downloaded real-time wave data for the Cleveleys 155 

buoy station for the year 2022 from open source catalogue of coastal monitoring 156 

https://www.coastalmonitoring.org/realtimedata/?chart=104&tab=download&disp_option=. 157 

We applied this wave data to the sea boundary of the simulation domain. The model grid had 158 

a variable resolution, from 120×130 m onshore to 1000×300 m offshore. The simulation 159 

domain extended 57 km along the coastline and 20 km across, with a maximum distance from 160 

the sea boundary of 50 km. Wave and tide forcings were applied at the sea boundary, and a 161 

Neumann condition was applied at the lateral boundaries to allow wave energy to propagate 162 

freely. Real-time wave forcings were obtained from the Cleveleys buoy station for 2022. The 163 

model was run for 5 days, with a time step of 1 minute, from January 1st to 5th. Morphology 164 

https://www.coastalmonitoring.org/realtimedata/?chart=104&tab=download&disp_option=
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was not updated during the simulation, as the focus was on obtaining localized wave height, 165 

wave velocity, and wave direction. Modeling results were recorded every 10 minutes at 166 

observation points regularly spaced, at a distance of about 150 m, along the coastline and at a 167 

distance of about 500 m away from the starting point of beach transect measurement, which 168 

are usually on the landmass. This distance was chosen to ensure that the observation points 169 

are in the sea or in intertidal zone, allowing for a sufficient duration of water exposure for the 170 

collection of wave data. Most of the transects intersect with these observation points. The 125 171 

observation points nearest to each location were then selected from these observation points.  172 

The coastline angle at each location was obtained using QGIS software, and the 173 

coastline was visually assessed using Google Earth based on vegetation presence to classify it 174 

as sandy, marshy (when vegetation is present across the whole transect), or marshy with 175 

mudflat. For some marsh areas, the length of transects were within the marshy area, so they 176 

were classified as marshy. For other locations, the length of transects were measured beyond 177 

the marshy areas into the mudflat, so they were classified as marshy with mudflat. 178 

3.3 Machine Learning modelling 179 
The preprocessed and simulation data were combined to match the selected 125 180 

locations and fed to the predictive models. Two predictive models were developed:  181 

 Model A1 was developed to classify beach behavior as erosion, accretion, stable, or 182 

short-term fluctuation based on wave direction, wave velocity, coastline angle, and 183 

coastline composition.  184 

 Model A2 to predict the available volume of sediment after erosion/accretion based on 185 

wave height, wave velocity, beach behavior (output of Model A1), and historical 186 

changes in sediment volume.  187 

Model A1 is a random forest (RF) classifier. Model A2 is based on LSTM and sequence-188 

to-sequence models. The methodology flowchart is presented in Figure 2. 189 
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 190 

Fig 2. Flow chart of methodology 191 

3.3.1 Model A1  192 
As shown in the methodology flowchart (Figure 2), field data and modelling data are 193 

fed into Model A1, which classifies beach behavior as long-term erosion, accretion, stable or 194 

short-term erosion fluctuation based on wave direction, wave velocity, coastline angle, and 195 

coastline composition. A random forest (RF) classifier was used to classify beach behavior. 196 

RF is a machine learning algorithm that builds an ensemble of decision trees to make 197 

predictions. Decision trees are hierarchical classifiers that learn rules based on the values of 198 

input variables. RF improves the performance of decision trees by averaging the predictions 199 

of the trees, which reduces the variance of the model and makes it more robust to noise in the 200 

data. RF can be used to solve both classification and regression problems. In classification 201 

problems, the outcome is typically determined by the majority vote of the trees in the 202 

ensemble, while in regression problems, the average of the predictions of the trees in the 203 

ensemble is used. RF models are trained by resampling the training data using bootstrap 204 

sampling (Pham et al., 2022; Wei et al., 2022) or bagging (Rodriguez-Galiano et al., 2015). 205 

These methods create multiple training datasets by randomly sampling the original data with 206 

or without replacement. Training each tree on a unique subset of the training data helps to 207 
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reduce the correlation between the trees (Rodriguez-Galiano et al., 2015). This is because 208 

some data points may be present in multiple subsets, while others may be excluded from all 209 

subsets. This reduced correlation makes the model more robust to variations in the input data 210 

and improves its predictive accuracy (Breiman, 2001). 211 

The problem for this study was to train a RF model for multiclass classification on the 212 

MATLAB platform. Ensemble aggregation methods tried for this model were bagging, 213 

AdaBoostM2 (adaptive boosting for multiclass classification), LPBoost (linear programming 214 

boosting), RUSBoost (random undersampling boosting), and TotalBoost (totally collective 215 

boosting). Tree pruning was allowed based on the error. The number of trees tested was 50, 216 

75, and 100.  217 

The inputs consisted of coastline angle (radian), wave direction (radian), and coastline 218 

composition (sandy, marshy, and marshy with mudflat), which was fed as categorical input. 219 

The target was classification of coastline behavior (long-term erosion, accretion, stable, and 220 

short-term erosion fluctuation), which was also fed as a categorical parameter. The output of 221 

Model A1 was used as input to Model A2 to provide a prediction of the available volume of 222 

sediment. 223 

3.3.2 Model A2  224 
To develop Model A2, we tested two models: LSTM and sequence-to-sequence (S2S), 225 

both of which were built using LSTM cells. LSTM is a type of recurrent neural network 226 

(RNN) that is commonly used for modeling time series data. LSTMs are designed to learn 227 

long-term dependencies in time series data by selectively storing important information and 228 

discarding unimportant information through different gates. These models were developed to 229 

address the problems associated with RNNs, which have difficulty learning long-term 230 

dependencies due to gradient explosion and gradient vanishing (Kumar et al., 2023; 231 

Lindemann et al., 2021; Sun et al., 2022). Unlike feed-forward neural networks (FFNNs), 232 

RNNs allow for feedback of data back to the hidden layers, which creates a time lag effect 233 
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that helps the model learn from previous time steps (Aslam et al., 2020). LSTM models can 234 

learn long-term dependencies in time series data using the gating mechanism in it. Kumar and 235 

Leonardi (2023a) provide a detailed discussion of the gating mechanism of LSTM models. 236 

3.3.2.1 LSTM model  237 
LSTM model was developed to predict sediment volume one time step ahead where each 238 

time step in the transect data corresponds to 6 months. The network consisted of a feature 239 

input layer, a sequence input layer, a sequence unfolding and folding layer, LSTM layers, and 240 

two fully connected layers followed by a regression layer. The feature input layer received 241 

feature inputs such as wave height, wave velocity, and coastline behavior (categorical). The 242 

sequence input layer received the previous three-time steps, equivalent to 1.5 years of 243 

sediment volume as its input. These feature and sequence inputs were combined at each time 244 

step using sequence unfolding and folding layer before feeding it to LSTM cells. The 245 

network was created and trained on a MATLAB platform. The number of LSTM layer tested 246 

were 3 and 4, each with 5, 10, 15, or 20 nodes. The cell weights were initialized using the He 247 

initializer. The cell state and hidden state of each layer were connected to the next layer in the 248 

sequence. This interconnection between cells allows LSTMs to capture and propagate 249 

information over time steps, which is crucial for modeling sequential data effectively. 250 

3.3.2.2 Sequence-to-Sequence (S2S) 251 
Sequence-to-Sequence (S2S) model S2S model was developed, in this study, to 252 

predict volume of sediment three-time step, i.e., 1.5 years, ahead based on the previous three-253 

time step of volume of sediment time series and feature inputs. The S2S model consists of an 254 

encoder layer, which extracts information from the input data (Tang et al., 2016), and a 255 

decoder layer, which generates the output data based on the learned states (Kim et al., 2020). 256 

The encoder and decoder layers of the S2S model were implemented using LSTM layers 257 

(LSTM cell in figure 3), with 6 layers in the encoder and 3 layers in the decoder (Figure 3). 258 

All feature and sequence inputs, as discussed above for the LSTM model, were fed to the 259 



 12 

corresponding LSTM layers of S2S model. The cell state (C) and hidden state (H) of each 260 

layer were connected to the following layer in the network. The C, H, and output of the last 261 

LSTM layer in the encoder were connected to the LSTM layers in the decoder, as shown in 262 

figure 3. The output of each layer in the decoder was connected to regression layer, which 263 

provided the output of the next three-time steps of sediment volume. The sequence input and 264 

target were selected using the sliding window technique, as illustrated in Figure 3. Time steps 265 

t-3, t-2, and t-1 were used as input to predict time steps t, t+1, and t+2. For the model 266 

predicting 10-time step ahead, this network structure was extended by adding more LSTM 267 

cells, along with their fully connected layer, in decoder to accommodate ten time steps from t 268 

to t+9. The number of nodes of each LSTM layers tested, in this study, varied from 5 to 50. 269 

The model architecture was manually assembled, and its connections were managed 270 

manually. The model was trained using a custom training loop on the MATLAB platform. 271 

 272 

Fig 3. Model A2 structure 273 
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3.4. Performance criteria 274 
This study utilizes both classification and regression models. The RF classifier 275 

performs multi-class classification between four categories, while the LSTM and S2S models 276 

perform regression prediction of time series. The prediction performance of both models is 277 

evaluated using different criteria. Accuracy, precision, recall, and F1 score were used to 278 

assess the performance of the RF classifier model, while regression mean absolute error 279 

(MAE) and Nash-Sutcliffe efficiency (NSE) were used to assess the performance of the 280 

LSTM and S2S models.  281 

Accuracy measures the model's ability to correctly classify a given observation 282 

(equation 2). Precision measures the proportion of observations classified as positive by the 283 

model are actually positive (equation 3), indicating how reliable the model is for positive 284 

classifications. Recall measures the model's sensitivity by calculating the percentage of items 285 

actually present in the input that were correctly identified by the model (equation 4). F1 score 286 

measures the weighted harmonic mean of precision and recall scores (equation 5). 287 

                                            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                     (2) 

                                                          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                               (3) 

                                                              𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                 (4) 

                                             𝐹𝛽 =
(𝛽2 + 1) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
                                                   (5) 

where: TP = true positive i.e., positive observation correctly classified as positive; TN = true 288 

negative i.e., negative observation correctly classified as negative; FP = false positive i.e., 289 

negative observation wrongly classified as positive; FN = false negative i.e., positive 290 

observation wrongly classified as negative; 𝛽 is the weightage factor between precision and 291 

recall. For this study 𝛽 = 1 which gives equal weightage to the precision and recall, hence 𝐹1. 292 

Equations 2, 3, 4, and 5 are designed for binary classifications, but this study involves multi-293 
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class classification with four categories: erosion, accretion, stable, and short-term fluctuation. 294 

When the model correctly classifies an erosion beach as erosion, it is considered as a true 295 

positive. However, if the model classifies any other category as erosion, it is counted as a 296 

false positive. This process applies to all four categories. In multi-class classification, a 297 

weighted average approach is employed, where precision, recall, and F1 scores are calculated 298 

for each category and then averaged weighting according to the number of samples in each 299 

category present in the dataset. 300 

The performance of regression models is evaluated using various metrics, including 301 

regression (equation 6), MAE (equation 7), and NSE (equation 8). Regression provides a 302 

statistical measure of how closely the predicted data aligns with the target data, indicating the 303 

model's generalizing ability. MAE quantifies the error in the predicted values, while NSE 304 

assesses the model's efficiency on a scale ranging from -∞ to 1, where 1 represents the most 305 

efficient model. 306 

                                              𝑟 =
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)2]
                                       (6) 

                                                                    𝑀𝐴𝐸 =
1

𝑛
∑|𝑥 − 𝑦|

𝑛

𝑖=1

                                                         (7) 

                                                                  𝑁𝑆𝐸 = 1 −
∑(𝑦 − 𝑥)2

∑(𝑥 − 𝑥̅)2
                                                       (7) 

n is the number of data points, x is target value, y is predicted value 307 

4. Results 308 

4.1 Coastline analysis 309 
Analysis of the data obtained from Sefton Council revealed rapid sediment movement 310 

and instability along most part of the Morecambe Bay coastline. Marshy areas, mudflat edges 311 

(defined as mudflat crossing zero mean sea level), and clifftops have retreated significantly, 312 
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indicating rapid coastal transformation. Sediment Volume changes indicate that only a 313 

minority of sites is stable. 314 

Figure 4 shows a selection of representative transects along Morecambe Bay for the 315 

stable, accreting, eroding and fluctuating cases. Figure 4B shows Sunderland Point in 316 

Morecambe, where according to our analysis the clifftop retreated about 5 meters between 317 

2010 and 2022. The first three profiles in Figure 4B (2010, 2012, and 2015) show significant 318 

retreat towards the landmass. As observed from Google Earth, rock armor was placed 319 

between 2013 and 2015, which reduced the retreat, as seen in its next profile in 2022. Figure 320 

4C and 4F show the transects experiencing mudflat edge retreat. Figure 4C shows transects 321 

near Morecambe city, where mudflat edge retreated about 150 m between 2010 and 2022.  322 

Figure 4F shows transects near Bardsea, where massive erosion of about 5012.7 m
3
/m 323 

sediment has caused the mudflat edge to retreat more than 2 kilometers between 2007 and 324 

2022. Figure 4D, near Morecambe city, shows significant erosion of 308.06 m
3
/m of 325 

sediment between 2012 and 2022. Figure 4E shows transects near Ravenstown, a mostly 326 

marshy area that has experienced significant marshland loss in recent years. The location 327 

shown in Figure 4E has seen the marshland retreat about 500 meters between 2007 and 2022. 328 

Figure 4G shows short-term fluctuations in erosion between 2007 and 2022. The beach 329 

eroded between 2007 and 2017, accreted until 2021, and then eroded again in 2022. Figure 330 

4H shows transects between 2007 and 2022, which shows accretion of about 346.4 m
3
/m of 331 

sediment resulting in the extension of mudflat edge towards the bay. 332 
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 333 

Fig 4. Beach profiles at different locations along Morecambe Bay coastline334 
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 335 

 336 

Fig 5. Beach transects at different locations along Morecambe Bay coastline 337 
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Figure 5 shows the results of a transect analysis of all locations along the Morecambe 338 

Bay coastline. The length of each line represents the length of the transect measured at each 339 

location. Locations are classified as stable, eroding, accreting, or experiencing short-term 340 

fluctuations based on sediment volume changes at each location. Volume changes are 341 

calculated by subtracting the calculated sediment volume of each profile from the sediment 342 

volume of first profile measured in time.   343 

This classification is indicated by different colored dots in Figure 5. Locations with 344 

less than 10% change in sediment volume are classified as stable. As shown in Figure 5, most 345 

marshy are classified as stable (blue). This is because transect length data is only available 346 

within marshy areas, where very little change is observed. Higher volume changes are 347 

noticeable for those transects extending to the mudflat and which are classified accordingly. 348 

For the remaining marshlands, transects extend beyond the marshland into the mudflat, 349 

recording sediment erosion from the mudflat and the retreat of the marshland. These 350 

classifications were fed to the prediction models (A1 and A2) to predict the volume of 351 

sediment available after erosion/accretion. 352 

4.2 A1 model 353 
Model A1 was trained to classify beach behavior as eroding, accreting, stable, or 354 

undergoing short-term fluctuations based on four input parameters: coastline angle (radians), 355 

wave direction (radians), wave velocity (m/s), and transect type (categorical, e.g., marshy). 356 

The RF classifier model was tested using various ensemble aggregation methods (bagging, 357 

AdaBoostM2, LPBoost, RUSBoost, and TotalBoost) and different numbers of trees (50, 75, 358 

and 100). 15% of the data was reserved for testing, another 15% of the data was reserved for 359 

validation and the remaining 70% was used for training. These configurations yielded good 360 

prediction performance in terms of accuracy, precision, recall, and F1 score (table 1) with 75 361 

trees and RUSBoost method. This model effectively classifies beach behavior with training 362 
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accuracy of 0.95 and testing accuracy of 0.79, providing valuable input for Model A2's 363 

prediction of sediment volume. 364 

Table 1. Performance of A1 model 365 
Criteria Training Testing 

Accuracy 0.95 0.79 

Precision 0.96 0.81 

Recall 0.95 0.79 

F1 Score 0.95 0.77 

 366 

4.3 A2 model 367 
Model A2 was developed to predict the available volume of sediment based on four 368 

input parameters: wave height (m), wave velocity (m/s), coastline behavior (categorical 369 

output from Model A1), and the previous 18 months (three-time steps) of sediment volume 370 

(m
3
/m). Three models, one LSTM and two S2S, were evaluated for predicting 0.5 year (one 371 

time step) ahead, 1.5 years (three time steps) and 5 years (ten time step) ahead, respectively. 372 

For the LSTM model, three and four LSTM layers were tested. The number of nodes in the 373 

LSTM layer was varied from 5 to 50. Ten percent of the data was reserved for testing, another 374 

10% was used for validation, and the remaining 80% was used for training. Both models 375 

demonstrated remarkable accuracy in predicting available sediment volume (table 2). The 376 

LSTM model achieved excellent accuracy when tested with four LSTM layers and 20 nodes 377 

in each layer, while the two S2S models achieved excellent accuracy with 50 and 40 nodes in 378 

its LSTM layers for predicting 1.5 and 5 years ahead, respectively. 379 

Table 2. Performance of A2 model 380 

Model Phase Regression MAE (m
3
/m) NSE 

LSTM 

Training 0.9966 0.0504 0.9929 

Testing 0.9961 0.0567 0.9915 

S2S Training 0.9967 0.0491 0.9933 
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(1.5 years) Testing 0.9950 0.0552 0.9900 

S2S 

(5 years) 

Training 0.9951 0.0645 0.9900 

Testing 0.9916 0.0656 0.9828 

 381 

The S2S models predict multiple time-step values simultaneously, with Table 2 382 

presenting the average accuracy across individual time steps. A detailed breakdown of 383 

accuracy reveals testing MAE values for t, t+1, and t+2 at 0.0434, 0.0567, and 0.0656, 384 

respectively, for a 1.5-year prediction. For a 5-year prediction, testing MAE values are listed 385 

as 0.0481, 0.0597, 0.0625, 0.0607, 0.0647, 0.0615, 0.0692, 0.0712, 0.0736, and 0.0851 m
3
/m. 386 

Notably, the accuracy for the first-time step is lower than that of the LSTM model, which is 387 

tailored for single-step prediction. The S2S models exhibit a decreasing accuracy trend, 388 

indicating an increasing error as the number of predicted time steps increases. While the 389 

LSTM model excels at one-step prediction, the S2S model is recommended for longer 390 

predictions. However, it's essential to consider the escalating error in later time steps when 391 

utilizing the S2S approach. 392 

Discussion 393 
Coastline changes in Morecambe Bay have been observed and studied since 1990s by 394 

several researchers including Pringle (1995), Mason et al. (1999) and Mason et al. (2010). 395 

These studies have documented significant changes in the bathymetry near the coastline. 396 

Pringle (1995) noticed the erosion of salt marshes, which began in mid-1970s and continued 397 

into the 1990s at a relatively slow rate. In addition to the erosion of salt marshes, the Kent 398 

channel of Morecambe also shifted eastward along with its minor channels during the late 399 

1970s, leading to rapid saltmarsh erosion. Mason et al. (1999), observed the movement of the 400 

Leven estuary of Morecambe towards the north-east by about 2 km during the period of 401 

1992-1997. Mason et al. (2010) also observed the migration of the Ulverston channel of 402 
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Morecambe north-east by about 5 km between 1991 to 2004. Similarly, this study, conducted 403 

with the data between 2007 and 2022, also observed significant erosion of mudflat platforms 404 

and marshy regions in most parts of Morecambe. This erosion has resulted in the mudflat 405 

edges, i.e., zero mean sea level crossing of mudflats, retreating up to 2 kilometers (crossing of 406 

mean sea level) and marshes up to 500 meters towards the landmass (figure 4). These 407 

dynamic changes in bathymetry near the coastline pose significant challenges for the 408 

infrastructure sector and coastal communities.  409 

The models developed in this study can effectively identify erosion hotspots and 410 

predict sediment volume changes based on simplified modelling and QGIS inputs. Model A1 411 

is designed to classify the coastline behavior as eroding, accreting, sable or undergoing short 412 

term fluctuations based on inputs of coastline angle, wave velocity, wave direction and 413 

coastline composition. Model A2 is specifically designed to estimate the volume of sediment 414 

eroded or accreted along the coastline based on inputs of wave height, wave velocity, 415 

coastline behavior (output from Model A1), and the previous 18 months of sediment volume 416 

and at a time scale of 1.5 years and 5 years.  417 

These models have the advantage of providing highly accurate predictions for 418 

Morecambe Bay, as they are trained on a comprehensive field dataset from Morecambe Bay. 419 

While their accuracy may decrease when applied to other embayments, they can still be 420 

effectively utilized in areas with similar coastal dynamics and wave conditions to Morecambe 421 

Bay. The advantage of this methodology lies in its development of two predictive models. 422 

One of these models (model A1) is dedicated to identifying erosion hotspots, critical 423 

information for effective coastline management. According to a report by Masselink et al. 424 

(2020), 17.3% of the UK coastline, equivalent to 3008 km, is currently experiencing erosion. 425 

The report further notes that only 45.6% of England's coastline is protected by coastal 426 

defense structures such as groynes, seawalls, or artificial beaches. Model A1 can be utilized 427 
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to pinpoint erosive locations along the coastlines, facilitating targeted deployment of coastal 428 

defense measures to protect vulnerable areas. Additionally, this model feeds its output into 429 

the second model (model A2), enabling the latter to learn beach classification—whether 430 

eroding, accreting, fluctuating, or stable—and subsequently predict sediment volumes in the 431 

future. Accurately estimating sediment losses from various beaches, including cliff beaches 432 

(as discussed by Brooks and Spencer (2010)), holds regional significance as these sediments 433 

play crucial roles in beach maintenance, nearshore bank systems, and nearshore sediment 434 

transport pathways. Model A2 can thus be applied to forecast sediment erosion volumes 435 

along beaches, thereby assisting in better understanding and managing coastal erosion 436 

processes and their impacts on coastal ecosystems and communities. 437 

Another advantage of using ANN models are that these are computationally 438 

inexpensive (Hashemi et al., 2010), as compared to the simulation models which typically 439 

require hours for simulation. Thus, the sediment volume change can be predicted instantly in 440 

the scale of 5 years. A drawback of ANN, as suggested by Hashemi et al. (2010), is that its 441 

prediction accuracy is depended on quality of data. However, this study has the advantage of 442 

training models on high quality field data.   443 

Additionally, these models are trained to forecast data points three and ten steps ahead 444 

in the time series, equivalent to 1.5 and 5 years into the future respectively, using only 18 445 

months of historical sediment volume data. The prediction performance was evaluated across 446 

two different time scales to assess the model's ability to forecast over longer durations. For a 447 

5-year forecast, the model demonstrates high accuracy with a testing regression of 0.9916. 448 

However, upon analyzing the ten individual time steps, an increasing error trend becomes 449 

apparent. The MAE rises from 0.0481 m
3
/m for the first-time step to 0.0851 m

3
/m for the 450 

tenth time step, nearly doubling from the initial prediction. Nevertheless, the prediction error 451 
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for the tenth time step remains within acceptable bounds, supported by a testing regression of 452 

0.9878.  453 

Future developments of these models will involve incorporating additional historical 454 

data, enabling the models to scale up and provide forecasts for even longer time horizons. 455 

Moreover, enhancing the input list with additional features is certain to enhance prediction 456 

capabilities by enabling models to grasp the relationship between coastal erosion and various 457 

variables. As demonstrated by Peponi et al. (2019), factors such as urbanization and 458 

population  influence coastal dynamics systems by modifying hydrological patterns, 459 

sedimentation regimes, land use and land cover. Additionally, coastal erosion is influenced by 460 

rising sea levels (Masselink et al., 2020). Thus, incorporating these factors into the model's 461 

input list will facilitate learning the relationship between sediment erosion along the coastline 462 

and these variables, ultimately enhancing the model's predictive robustness. 463 

Conclusion 464 
This study analyzes field data comprising beach transects at 125 locations along the 465 

Morecambe Bay coastline. The analysis reveals areas of rapid coastal change. Following the 466 

data analysis, this study investigates the potential of a two-stage machine learning model for 467 

predicting sediment volume change in a coastal environment. The model utilized a 468 

combination of beach behavior classification and deep learning techniques to achieve 469 

accurate predictions. The results demonstrated that the model effectively captured the 470 

complex relationship between beach behavior, wave conditions, and sediment erosion and 471 

accretion.  472 

Model A1 successfully classified beach behavior into four categories: eroding, accreting, 473 

stable, and undergoing short-term fluctuations using Random Forests and based on input of 474 

coastline angle, wave velocity, wave direction and coastline composition. This classification 475 

provided valuable input for Model A2, which utilized LSTM and sequence-to-sequence 476 
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models to predict available sediment volume for one-step-ahead and multi-step-ahead 477 

predictions, respectively. The LSTM model achieved a testing regression of 0.9961 for one-478 

step-ahead (6 months) predictions of available sediment volume time series, while the 479 

sequence-to-sequence models achieved a testing regression of 0.9950 for three-time-step-480 

ahead (1.5 years) predictions and 0.9916 for ten-time-steps (5 years) prediction. Proposed 481 

models offer several advantages over traditional time series models. Firstly, it explicitly 482 

classifies beach behavior based on input of coastline angle, wave velocity, wave direction, 483 

and coastline composition. Secondly, the model is highly generalizable and can be applied to 484 

different coastal environments with minimal adjustments. 485 
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