References
Barber, C.A., Gleason, C.J., 2018. Verifying the prevalence, properties, and congruent hydraulics of at-many-stations hydraulic geometry (AMHG) for rivers in the continental United States. Journal of Hydrology 556, 625–633. https://doi.org/10.1016/j.jhydrol.2017.11.038
Bates, P.D., 2022. Flood Inundation Prediction. Annu. Rev. Fluid Mech. 54, 287–315. https://doi.org/10.1146/annurev-fluid-030121-113138
Bhushan, S., Shean, D., Alexandrov, O., Henderson, S., 2021. Automated digital elevation model (DEM) generation from very-high-resolution Planet SkySat triplet stereo and video imagery. ISPRS Journal of Photogrammetry and Remote Sensing 173, 151–165. https://doi.org/10.1016/j.isprsjprs.2020.12.012
Bjerklie, D.M., Birkett, C.M., Jones, J.W., Carabajal, C., Rover, J.A., Fulton, J.W., Garambois, P.-A., 2018. Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska. Journal of Hydrology 561, 1000–1018. https://doi.org/10.1016/j.jhydrol.2018.04.005
Brinkerhoff, C.B., Gleason, C.J., Ostendorf, D.W., 2019. Reconciling at-a-Station and at-Many-Stations Hydraulic Geometry Through River-Wide Geomorphology. Geophysical Research Letters 46, 9637–9647. https://doi.org/10.1029/2019GL084529
Cardona, A., 2006. TrakEM2: an ImageJ-based program for morphological data mining and 3d modeling. Presented at the Proc. ImageJ User and Developer Conference.
Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M., Tomancak, P., Hartenstein, V., Douglas, R.J., 2012. TrakEM2 software for neural circuit reconstruction. PloS one 7, e38011.
Cohn, T.A., Kiang, J.E., Mason, R.R., 2013. Estimating Discharge Measurement Uncertainty Using the Interpolated Variance Estimator. Journal of Hydraulic Engineering 139, 502–510. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000695
Dewals, B., Kitsikoudis, V., Angel Mejía-Morales, M., Archambeau, P., Mignot, E., Proust, S., Erpicum, S., Pirotton, M., Paquier, A., 2023. Can the 2D shallow water equations model flow intrusion into buildings during urban floods? Journal of Hydrology 619, 129231. https://doi.org/10.1016/j.jhydrol.2023.129231
Durga Rao, K.H.V., Shravya, A., Dadhwal, V.K., 2020. A novel method of satellite based river discharge estimation using river hydraulic geometry through genetic algorithm technique. Journal of Hydrology 589, 125361. https://doi.org/10.1016/j.jhydrol.2020.125361
Eltner, A., Sardemann, H., Grundmann, J., 2019. Flow velocity and discharge measurement in rivers using terrestrial and UAV imagery. Hydrol. Earth Syst. Sci. Discuss. 1–29. https://doi.org/10.5194/hess-2019-289
Euler, L., 2008. Principles of the motion of fluids. Physica D: Nonlinear Phenomena, Euler Equations: 250 Years On 237, 1840–1854. https://doi.org/10.1016/j.physd.2008.04.019
European Space Agency, 2022. Technical Note on Quality Assessment for Jilin-1 SP and GF03C Video Missions.
Fujita, I., Muste, M., Kruger, A., 1998. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of Hydraulic Research 36, 397–414. https://doi.org/10.1080/00221689809498626
Fulton, J.W., Mason, C.A., Eggleston, J.R., Nicotra, M.J., Chiu, C.-L., Henneberg, M.F., Best, H.R., Cederberg, J.R., Holnbeck, S.R., Lotspeich, R.R., Laveau, C.D., Moramarco, T., Jones, M.E., Gourley, J.J., Wasielewski, D., 2020. Near-Field Remote Sensing of Surface Velocity and River Discharge Using Radars and the Probability Concept at 10 U.S. Geological Survey Streamgages. Remote Sensing 12, 1296. https://doi.org/10.3390/rs12081296
Geoscience Australia, 2022. Elvis - Elevation and Depth - Foundation Spatial Data.
Gleason, C.J., Durand, M.T., 2020. Remote Sensing of River Discharge: A Review and a Framing for the Discipline. Remote Sensing 12, 1107. https://doi.org/10.3390/rs12071107
Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019. Challenges, Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water Resources Research 55, 5277–5300. https://doi.org/10.1029/2018WR024289
Hauet, A., Morlot, T., Daubagnan, L., 2018. Velocity profile and depth-averaged to surface velocity in natural streams: A review over alarge sample of rivers. E3S Web Conf. 40, 06015. https://doi.org/10.1051/e3sconf/20184006015
Kääb, A., Altena, B., Mascaro, J., 2019. River-ice and water velocities using the Planet optical cubesat constellation. Hydrol. Earth Syst. Sci. 23, 4233–4247. https://doi.org/10.5194/hess-23-4233-2019
Kim, Y., Muste, M., Hauet, A., Krajewski, W.F., Kruger, A., Bradley, A., 2008. Stream discharge using mobile large-scale particle image velocimetry: A proof of concept. Water Resources Research 44. https://doi.org/10.1029/2006WR005441
King, T.V., Neilson, B.T., Rasmussen, M.T., 2018. Estimating Discharge in Low‐Order Rivers With High‐Resolution Aerial Imagery. Water Resour. Res. 54, 863–878. https://doi.org/10.1002/2017WR021868
Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., Camenen, B., 2010. Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers. Journal of Hydrology 394, 42–52. https://doi.org/10.1016/j.jhydrol.2010.05.049
Legleiter, C.J., Kinzel, P.J., 2021. Surface Flow Velocities From Space: Particle Image Velocimetry of Satellite Video of a Large, Sediment-Laden River. Front. Water 3, 652213. https://doi.org/10.3389/frwa.2021.652213
Legleiter, C.J., Kinzel, P.J., 2020. Inferring surface flow velocities in sediment-laden Alaskan rivers from optical image sequences acquired from a helicopter. Remote Sensing 12, 1282.
Legleiter, C.J., Kinzel, P.J., Laker, M., Conaway, J.S., 2023. Moving Aircraft River Velocimetry (MARV): Framework and proof‐of‐concept on the Tanana River. Water Resources Research. https://doi.org/10.1029/2022WR033822
Lewis, Q.W., Lindroth, E.M., Rhoads, B.L., 2018. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging. Journal of Hydrology 560, 230–246. https://doi.org/10.1016/j.jhydrol.2018.03.008
Li, L., Yan, H., 2022. A robust filtering algorithm based on the estimation of tracer visibility and stability for large scale particle image velocimetry. Flow Measurement and Instrumentation 87, 102204. https://doi.org/10.1016/j.flowmeasinst.2022.102204
Lins, H.F., 2008. Challenges to hydrological observations. WMO Bulletin 57, 55–58.
Liu, K., Song, C., Wang, J., Ke, L., Zhu, Y., Zhu, J., Ma, R., Luo, Z., 2020. Remote Sensing-Based Modeling of the Bathymetry and Water Storage for Channel-Type Reservoirs Worldwide. Water Resources Research 56, e2020WR027147. https://doi.org/10.1029/2020WR027147
Masafu, C., Williams, R., Shi, X., Yuan, Q., Trigg, M., 2022. Unpiloted Aerial Vehicle (UAV) image velocimetry for validation of two-dimensional hydraulic model simulations. Journal of Hydrology 612, 128217. https://doi.org/10.1016/j.jhydrol.2022.128217
Matheson, A., Thoms, M.C., 2018. The spatial pattern of large wood in a large low gradient river: the Barwon–Darling River. International Journal of River Basin Management 16, 21–33. https://doi.org/10.1080/15715124.2017.1387123
Moramarco, T., Barbetta, S., Bjerklie, D.M., Fulton, J.W., Tarpanelli, A., 2019. River Bathymetry Estimate and Discharge Assessment from Remote Sensing. Water Resources Research 55, 6692–6711. https://doi.org/10.1029/2018WR024220
Moramarco, T., Barbetta, S., Tarpanelli, A., 2017. From Surface Flow Velocity Measurements to Discharge Assessment by the Entropy Theory. Water 9, 120. https://doi.org/10.3390/w9020120
Murray-Darling Basin Authority, 2010. Guide to the proposed Basin Plan: Technical background (MDBA publication no. 61/10).
Muste, M., Fujita, I., Hauet, A., 2008. Large-scale particle image velocimetry for measurements in riverine environments: LARGE-SCALE PARTICLE VELOCIMETRY. Water Resour. Res. 44. https://doi.org/10.1029/2008WR006950
Pan, F., Wang, C., Xi, X., 2016. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry. Journal of Hydrology 540, 670–687. https://doi.org/10.1016/j.jhydrol.2016.06.024
Pasternack, G.B., 2011. 2D Modeling and Ecohydraulic Analysis.
Pavelsky, T.M., 2014. Using width‐based rating curves from spatially discontinuous satellite imagery to monitor river discharge. Hydrological Processes 28, 3035–3040.
Pearce, S., Ljubičić, R., Peña-Haro, S., Perks, M., Tauro, F., Pizarro, A., Dal Sasso, S., Strelnikova, D., Grimaldi, S., Maddock, I., Paulus, G., Plavšić, J., Prodanović, D., Manfreda, S., 2020. An Evaluation of Image Velocimetry Techniques under Low Flow Conditions and High Seeding Densities Using Unmanned Aerial Systems. Remote Sensing 12, 232. https://doi.org/10.3390/rs12020232
Perks, M.T., Sasso, S.F.D., Hauet, A., Jamieson, E., Coz, J.L., Pearce, S., Peña-Haro, S., Pizarro, A., Strelnikova, D., Tauro, F., Bomhof, J., Grimaldi, S., Goulet, A., Hortobágyi, B., Jodeau, M., Käfer, S., Ljubicˇic, R., Maddock, I., Mayr, P., Paulus, G., Pénard, L., Sinclair, L., Manfreda, S., 2020. Towards harmonisation of image velocimetry techniques for river surface velocity observations 15.
Rantz, S.E., 1982. Measurement and computation of streamflow (USGS Numbered Series No. 2175), Measurement and computation of streamflow, Water Supply Paper. U.S. G.P.O. https://doi.org/10.3133/wsp2175
Rentschler, J., Salhab, M., 2020. People in Harm’s Way: Flood Exposure and Poverty in 189 Countries, Policy Research Working Papers. The World Bank. https://doi.org/10.1596/1813-9450-9447
Revel, M., Zhou, X., Yamazaki, D., Kanae, S., 2023. Assimilation of transformed water surface elevation to improve river discharge estimation in a continental-scale river. Hydrology and Earth System Sciences 27, 647–671. https://doi.org/10.5194/hess-27-647-2023
Riggs, R.M., Allen, G.H., David, C.H., Lin, P., Pan, M., Yang, X., Gleason, C., 2022. RODEO: An algorithm and Google Earth Engine application for river discharge retrieval from Landsat. Environmental Modelling & Software 148, 105254. https://doi.org/10.1016/j.envsoft.2021.105254
Sharif, O., 2022. Measuring surface water flow velocities by a drone and large-scale particle image velocimetry (LSPIV) [WWW Document]. URL http://essay.utwente.nl/93022/ (accessed 1.5.23).
Sichangi, A.W., Wang, L., Yang, K., Chen, D., Wang, Z., Li, X., Zhou, J., Liu, W., Kuria, D., 2016. Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sensing of Environment 179, 36–53. https://doi.org/10.1016/j.rse.2016.03.019
Sun, X., Shiono, K., Chandler, J.H., Rameshwaran, P., Sellin, R.H.J., Fujita, I., 2010. Discharge estimation in small irregular river using LSPIV. Proceedings of the Institution of Civil Engineers - Water Management 163, 247–254. https://doi.org/10.1680/wama.2010.163.5.247
Tarpanelli, A., Barbetta, S., Brocca, L., Moramarco, T., 2013. River Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling. Remote Sensing 5, 4145–4162. https://doi.org/10.3390/rs5094145
Tauro, F., Petroselli, A., Grimaldi, S., 2018. Optical sensing for stream flow observations: A review. Journal of Agricultural Engineering 49, 199–206. https://doi.org/10.4081/jae.2018.836
Thielicke, W., Sonntag, R., 2021. Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software 9.
Thielicke, W., Stamhuis, E., 2014. PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software 2, e30. https://doi.org/10.5334/jors.bl
Turnipseed, D.P., Sauer, V.B., 2010. Discharge measurements at gaging stations (USGS Numbered Series No. 3-A8), Discharge measurements at gaging stations, Techniques and Methods. U.S. Geological Survey, Reston, VA. https://doi.org/10.3133/tm3A8
Vigoureux, S., Liebard, L.-L., Chonoski, A., Robert, E., Torchet, L., Poveda, V., Leclerc, F., Billant, J., Dumasdelage, R., Rousseau, G., Delestre, O., Brigode, P., 2022. Comparison of Streamflow Estimated by Image Analysis (LSPIV) and by Hydrologic and Hydraulic Modelling on the French Riviera During November 2019 Flood, in: Gourbesville, P., Caignaert, G. (Eds.), Advances in Hydroinformatics, Springer Water. Springer Nature, Singapore, pp. 255–273. https://doi.org/10.1007/978-981-19-1600-7_16
WaterNSW, 2023. Water New South Wales. https://realtimedata.waternsw.com.au/. https://realtimedata.waternsw.com.au/
Welber, M., Le Coz, J., Laronne, J.B., Zolezzi, G., Zamler, D., Dramais, G., Hauet, A., Salvaro, M., 2016. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR): FIELD ASSESSMENT OF PORTABLE SURFACE VELOCITY RADARS. Water Resour. Res. 52, 1108–1126. https://doi.org/10.1002/2015WR017906
Zakharova, E., Nielsen, K., Kamenev, G., Kouraev, A., 2020. River discharge estimation from radar altimetry: Assessment of satellite performance, river scales and methods. Journal of Hydrology 583, 124561. https://doi.org/10.1016/j.jhydrol.2020.124561
Zhu, X., Lipeme Kouyi, G., 2019. An Analysis of LSPIV‐Based Surface Velocity Measurement Techniques for Stormwater Detention Basin Management. Water Resour. Res. 55, 888–903. https://doi.org/10.1029/2018WR023813