
Earth and Space Science 

 

1 
Deep Learning for Daily 2-m Temperature Downscaling 2 

 3 

Shuyan Ding1, Xiefei Zhi1, Yang Lyu1, Yan Ji1, and Weijun Guo2 4 

1. Key Laboratory of Meteorology Disaster, Ministry of Education (KLME)/Joint International 5 
Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation 6 
Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing 7 
University of Information Science and Technology, Nanjing, Jiangsu 210044, China. 8 

2. Xiamen Air Traffic Management Station of China Civil Aviation, Xiamen, Fujian 361006, 9 
China 10 

Corresponding author: Xiefei Zhi (zhi@nuist.edu.cn)  11 

Key Points: 12 

• This paper presents a novel deep learning downscaling method, UNR-Net, capable of 13 
downscaling daily 2-m temperature by a factor of 10 14 

• The overall performance of the UNR-Net method surpasses the U-Net method and linear 15 
regression method 16 

• The 12 components-based error decomposition method is proposed to analyze the error 17 
source of different models. 18 

  19 



Earth and Space Science 

 

Abstract 20 

This study proposes a novel method, which is a U-shaped convolutional neural network that 21 

combines non-local attention mechanisms, Res2net residual modules, and terrain information 22 

(UNR-Net). The original U-Net method and the linear regression (LR) method are conducted as 23 

benchmarks. Generally, the UNR-Net has demonstrated promise in performing a 10x 24 

downscaling for daily 2-m temperature over North China with lead times of 1–7 days and shows 25 

superiority to the U-Net and LR methods. To be specific, U-Net and UNR-Net demonstrate 26 

higher Nash-Sutcliffe Efficiency coefficient (NSE) values compared to LR by 0.052 and 0.077, 27 

respectively. The corresponding improvements in pattern correlation coefficient are 0.013 and 28 

0.016, while the root mean square error values are higher by 0.22 and 0.338, respectively. 29 

Additionally, the structural similarity index metric is higher by 0.033 and lower by 0.015. 30 

Furthermore, regions with significant errors are primarily distributed in complex terrain areas 31 

such as the Taihang Mountains, where UNR-Net exhibits noticeable improvements. In addition, 32 

the 12 components-based error decomposition method is proposed to analyze the error source of 33 

different models. Generally, the smallest errors are observed during the summer season and the 34 

sequence error component is proven to be the main source error of 2-m temperature forecasts. 35 

Furthermore, UNR-Net consistently demonstrates the lowest errors among all 12 error 36 

components. Therefore, combining the numerical weather prediction model and deep learning 37 

method is very promising in downscaling temperature forecasts and can be applied to routine 38 

forecasting of other atmospheric variables in the future. 39 

Plain Language Summary 40 

This research proposes a new method for downscaling using deep learning. The method uses a 41 

specific type of neural network called UNR-Net, which combines attention mechanisms, residual 42 

modules, and terrain information. The performance of UNR-Net is compared to two other 43 

methods: U-Net and LR. In the study, UNR-Net shows promise in performing a 10x downscaling 44 

of the daily 2-m temperature in North China. The UNR-Net demonstrates the best overall 45 

performance among all the comprehensive indicators (NSE, pattern correlation coefficient, root 46 

mean square error, and structural similarity index metric). Errors in the predictions are mainly 47 

found in complex terrain areas like the Taihang Mountains, but UNR-Net shows noticeable 48 

improvements in these regions. The study also proposes a 12 components-based error 49 

decomposition method to analyze the error sources of different models. All in all, it is found that 50 
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the smallest errors are observed during the summer season and the main source error is the 51 

sequence error component. Additionally, when considering lead times of 1–7 days, UNR-Net 52 

consistently shows the lowest errors among all 12 error components. Based on these findings, 53 

combining numerical weather prediction models with deep learning methods holds great promise 54 

for generating high-resolution temperature forecasts. 55 

1.  Introduction 56 

Temperature is a meteorological element closely related to human life. With the advancement of 57 

society, there is an increasing demand for high-resolution temperature forecasts. However, in the 58 

present era, the resolution of numerical models is limited due to factors such as computational 59 

costs, scale sensitivity, and mismatches (Rind et al., 1992), which pose challenges in meeting the 60 

requirements of practical applications and scientific research. (Roberts et al., 2018; Feser et al., 61 

2011; Wilby & Wigley, 1997). Therefore, downscaling methods have emerged. 62 

These methods utilize appropriate refinement processes to infer meteorological element 63 

information at local scales based on the available low-resolution data (Höhlein et al., 2020). Due 64 

to the complexity of spatiotemporal characteristics, downscaling remains a challenging and 65 

intricate problem. Over the past few decades, various downscaling techniques have been 66 

proposed, including simple downscaling, dynamical downscaling (Jing et al. 2022; Wang et al. 67 

2021), and statistical downscaling (Sharifi et al., 2019; Fowler et al., 2007). Among these, 68 

statistical downscaling exhibits a distinct advantage due to its high accuracy, excellent 69 

scalability, and lower computational resource requirements (Kim & Barros 2002; Frei et al., 70 

2003; Hagemann et al., 2004; Ji et al., 2023a; Mannig et al., 2013). 71 

In the past few decades, numerous advancements have been made in statistical downscaling 72 

techniques. Although traditional statistical approaches can to some extent enhance the resolution, 73 

they still have limitations in utilizing spatial and temporal dependencies, resulting in limited 74 

fitting capabilities (Chen et al., 2018; Wilby et al., 1998; He et al., 2016b). With the advent of 75 

the big data era, deep learning has the potential to discover features in high-dimensional data and 76 

capture the underlying nonlinear relationships between various meteorological variables (Yuan et 77 

al., 2020). It shows promise in terms of both accuracy and efficiency, surpassing previous 78 

methods (Höhlein et al., 2020). However, the use of deep learning methods in the field of 79 

meteorological downscaling is still in its early stages and faces challenges such as inadequate 80 
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description of complex features and poor performance in extreme events (Baño-Medina et al., 81 

2020; Ji et al., 2022; Ji et al., 2023b; Vandal et al., 2019). Therefore, further practical exploration 82 

and research are needed to address these issues. 83 

Presently, the field of deep learning offers numerous techniques that are well-suited for 84 

addressing challenges in the domain of downscaling. Due to its ability to incorporate receptive 85 

fields of varying sizes, U-Net has achieved success in semantic segmentation tasks (Ronneberger 86 

et al., 2015). Subsequently, it has also shown promising performance in tasks such as forecast 87 

calibration (Han et al., 2021; Zhu et al., 2022) and downscaling (Doury et al., 2023; Sha et al., 88 

2020). However, when U-Net is employed for downscaling end-to-end tasks, the accuracy and 89 

practical effectiveness of the results can still be further improved through existing techniques. 90 

Mnih et al. (2014) achieved impressive results and gained widespread attention by incorporating 91 

attention mechanisms into convolutional neural networks for image processing tasks. Since then 92 

various attention mechanisms have emerged (Hu et al., 2018; Woo et al. 2018), and it has also 93 

found applications in downscaling (Park et al., 2022; Jing et al., 2022; Gerges et al., 2022). In 94 

theory, deeper networks have larger receptive fields, allowing them to integrate more 95 

information and potentially achieve better results. However, training deep networks can 96 

encounter challenges such as vanishing/exploding gradients and degradation (Pan et al., 2019). 97 

The Residual Network (ResNet), proposed by He et al. (2016a) successfully addressed the issue 98 

of network degradation. Subsequently, numerous studies have discussed the concept of residuals 99 

and proposed various variants (Xie et al., 2017; Huang et al., 2017; Veit et al., 2016). 100 

Furthermore, regarding the utilization of meteorological variables, apart from studies that solely 101 

utilize the meteorological variables at the downscaled scale (Kumar et al., 2021; Höhlein et al., 102 

2020), some researchers have taken into account the physical significance and constraints of 103 

meteorological variables by incorporating terrain data into neural networks (Sha et al., 2020). 104 

But most studies that utilize multivariate data simply incorporate auxiliary data by stacking 105 

channels during input. This approach fails to effectively utilize higher-resolution auxiliary 106 

information compared to the target resolution, and there is also a lack of discussion regarding the 107 

optimal utilization of auxiliary information. 108 

As a result, we propose a novel U-shaped convolutional neural network called UNR-Net, which 109 

integrates a nonlocal attention mechanism (Wang et al., 2018), Res2net (Gao et al.,2019), and 110 

terrain information for downscaling temperature. A non-local attention mechanism can allocate 111 
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importance to each position from a global perspective, considering the correlations between 112 

high-resolution observational data and low-resolution forecast data while disregarding distance. 113 

Res2net modules serve the purpose of not only mitigating model degradation issues but also 114 

efficiently coupling multiple receptive field sizes. We employ multiple convolutional operations 115 

to progressively decrease the resolution of the terrain data while increasing the number of 116 

channels and then fuse these products into the network through skip connections, which can not 117 

only adjust the feature map size of the high-resolution terrain data for easier input, but also 118 

preserve the high-resolution information of the terrain data, and control the proportion of terrain 119 

information in the network during feature extraction and downscaling. Additionally, in the 120 

downscaling part of the network, a combination of nearest-neighbor interpolation and 121 

convolution was utilized for upsampling (Dong et al., 2016), which can avoid the “checkerboard 122 

effect” caused by transpose convolution (Gauthier, 2014; Dumoulin et al., 2017). 123 

The evaluation phase of the model after the modeling process is crucial. For model evaluation, 124 

the performance of UNR-Net is compared with LR, the original U-Net, and low-resolution 125 

forecast data with the comprehensive evaluation metrics NSE, pattern correlation coefficient 126 

(PCC), root mean square error (RMSE), and structural similarity index metric (SSIM). Still, the 127 

comprehensive evaluation metrics can only assess the overall performance of methods from 128 

various perspectives, which often lack detailed assessment and specific physical significance. 129 

Error decomposition, on the other hand, can provide a further evaluation of the results and 130 

enhance the interpretability of the methods (Hodson et al., 2021). Initially, the mean squared 131 

error (MSE) is decomposed into four seasons, and then the error for each season is further 132 

decomposed into three components, enabling a more detailed and specific analysis. The 133 

remainder of this paper follows the following structure. Section 2 describes the utilized data. 134 

Section 3 outlines the methods employed. Section 4 analyzes the performance of the three 135 

downsampling methods. Finally, a summary and discussion are presented in Section 5. 136 

2. Data 137 

The research area of this paper covers the geographical coordinates of (107° to 122.9°E, 31.1° to 138 

47°N). The eastern part of the region is characterized by low-lying terrain and proximity to the 139 

ocean, while the western part features higher elevations and is situated inland. The region is 140 

predominantly mountainous with hilly terrain, exhibiting significant topographical variations. 141 
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3.  Methods 160 

In this study, a total of three methods were employed to perform a 10x downscaling on the North 161 

China region. The three methods used were LR, U-Net, and UNR-Net. The first method, LR, is a 162 

traditional downscaling approach. It involves performing bilinear interpolation on the low-163 

resolution forecast data and then applying linear regression. The second method is the 164 

unmodified original U-Net, where the upsampling process utilizes transpose convolutions. The 165 

third method is a modified version of the U-Net that combines non-local attention with Res2net 166 

residual modules. Additionally, it incorporates terrain information to enhance the performance of 167 

the model. These three methods utilize the data that has undergone data preprocessing as 168 

described in Section 3.1, and these three methods share the same training set, validation set, and 169 

test set. The two deep learning methods both employ an end-to-end approach, where the 170 

networks simultaneously perform the calibration and downscaling tasks. Additionally, the 171 

training process for both networks is identical and follows a supervised learning approach. The 172 

Adam optimizer is used for training in both cases (Kingma & Ba, 2017). The loss function used 173 

is MSE, defined as follows: 174 

𝑀𝑆𝐸 = 1𝑁 ෍൫𝑦௜ − 𝑦௜,൯ଶே
௜ୀଵ , #ሺ1ሻ  

where 𝑁 represents the number of grid points in a batch, 𝑖 represents the grid point position, 𝑦௜ 175 

represents the ground truth values, and 𝑦௜, , represents the predicted values. The learning rate is set 176 

to 0.001, and it is decayed every 20 steps with a decay rate of 0.5. To avoid overfitting, early 177 

stopping is implemented to determine the stopping epoch. Finally, an evaluation is conducted on 178 

the results of the three methods, which includes the error between the high-resolution 179 

downscaled results and high-resolution observation, as well as the error between the low-180 

resolution observation and the low-resolution forecast data after second-order conservative 181 

remapping scheme (Jones, 1999). Subsequently, an error decomposition is performed to further 182 

analyze the performance of the three methods. 183 

3.1 Data Preprocessing 184 

First, data processing is conducted on the forecast data. The forecast data has a resolution of 185 

0.25° × 0.25°, and due to the downscaling factor of 10 used in the experiment, the resolution of 186 

the observational data is 0.1° × 0.1°. Therefore, the first step is to perform a second-order 187 
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conservative remapping scheme (Jones, 1999) to adjust the resolution of the forecast data to 1° × 188 

1°. Due to the absence of observational data for the oceanic region, the oceanic part of the 189 

forecast data is assigned empty values. Then, the land data is standardized using the following 190 

formula: 191 𝑥௡௘௪ = 𝑥 − 𝜇𝜎 , #ሺ2ሻ  

where 𝑥 represents the previous value of the data, 𝑥௡௘௪ represents the new value of the data, 𝜇 192 

represents the mean of the respective matrix, and 𝜎 represents the variance. Afterward, the 193 

oceanic region is filled using the nearest-neighbor interpolation method, as described by the 194 

formula: 195 𝑓ሺ𝑖ሻ = 𝑓ሺ𝑖௡௘௔௥௘௦௧ሻ, #ሺ3ሻ  

where 𝑖 represents the grid point location, 𝑖௡௘௔௥௘௦௧ represents the closest grid point location to 𝑖, 196 𝑓ሺ𝑖௡௘௔௥௘௦௧ሻ represents the value of the nearest grid point, and 𝑓ሺ𝑖ሻ represents the value of the 197 

grid point 𝑖. By applying the mentioned processing to the forecast data, the low-resolution 198 

forecast data is obtained. 199 

Next, the observational data are processed in a similar manner as the forecast data, including 200 

standardization and nearest-neighbor interpolation for the oceanic regions. This results in 201 

obtaining the high-resolution observational data. 202 

Both the low-resolution forecast data and the high-resolution observational data are divided into 203 

training sets, validation sets, and testing sets. The training set consists of data with forecast start 204 

dates from 1 January 2010 to 31 December 2017. The validation set comprises data with forecast 205 

start dates from 1 January 2017 to 31 December 2018. Lastly, the testing set includes data with 206 

forecast start dates from 1 January 2018 to 31 December 2019. 207 

Finally, the terrain data is processed using the same methods as applied to the forecast data, 208 

including standardization and nearest-neighbor interpolation for the oceanic regions. This results 209 

in obtaining the high-resolution terrain data. 210 
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3.2 Downscaling methods 211 

3.2.1 LR 212 

First, the low-resolution forecast data is subjected to bilinear interpolation. Bilinear interpolation 213 

involves performing linear interpolation in two directions. The formulas for bilinear interpolation 214 

are as follows: 215 

𝑓ሺ𝑋௥, 𝑌௔ሻ ≈ 𝑋௕ − 𝑋௥𝑋௕ − 𝑋௔ 𝑓ሺ𝑋௔, 𝑌௔ሻ + 𝑋௥ − 𝑋௔𝑋௕ − 𝑋௔ 𝑓ሺ𝑋௕, 𝑌௔ሻ, #ሺ4ሻ  

𝑓ሺ𝑋௥, 𝑌௕ሻ ≈ 𝑋௕ − 𝑋௥𝑋௕ − 𝑋௔ 𝑓ሺ𝑋௔, 𝑌௕ሻ + 𝑋௥ − 𝑋௔𝑋௕ − 𝑋௔ 𝑓ሺ𝑋௕, 𝑌௕ሻ, #ሺ5ሻ  

where 𝑓ሺ𝑋௔, 𝑌௔ሻ, 𝑓ሺ𝑋௕, 𝑌௔ሻ, 𝑓ሺ𝑋௔, 𝑌௕ሻ, and 𝑓ሺ𝑋௕, 𝑌௕ሻ represent the values of the four points in the 216 

respective directions. 𝑋௔, 𝑋௕, 𝑌௔, and 𝑌௕ represent the positions on the coordinate axes, while 217 𝑓ሺ𝑋௥, 𝑌௔ሻ and 𝑓ሺ𝑋௥, 𝑌௕ሻ represent the points obtained through linear interpolation in the x-218 

direction. After obtaining 𝑓ሺ𝑋௥, 𝑌௔ሻ and 𝑓ሺ𝑋௥, 𝑌௕ሻ, linear interpolation is performed in the y-219 

direction to obtain the value of the unknown point as follows: 220 

𝑓ሺ𝑋௥, 𝑌௥ሻ ≈ 𝑌௕ − 𝑌௥𝑌௕ − 𝑌௔ 𝑓ሺ𝑋௥, 𝑌௔ሻ + 𝑌௥ − 𝑋௔𝑌௕ − 𝑌௔ 𝑓ሺ𝑋௥, 𝑌௕ሻ, #ሺ6ሻ  

where 𝑓ሺ𝑋௥, 𝑌௥ሻ represents the value of the unknown point. As a result, we obtain the forecast 221 

data with a resolution of 0.1° × 0.1°. Next, linear regression is applied to the forecast data, 222 

following the formula: 223 𝑦௧ = 𝑎 + 𝑏𝑥௧, #ሺ7ሻ  

where 𝑦௧ represents the predicted result, 𝑥௧ represents the values for linear regression, and 𝑎 and 224 𝑏 are the coefficients of the linear regression. The coefficients 𝑎 and 𝑏 in linear regression are 225 

calculated using the following formulas: 226 𝑎 = 𝑦ത − 𝑏𝑥̅, #ሺ8ሻ  

𝑏 = 𝛴௧ୀଵ௡ 𝑥௧𝑦௧ − 𝑛𝑥̅𝑦ത𝛴௧ୀଵ௡ 𝑥௧ଶ − 𝑛𝑥̅ଶ , #ሺ9ሻ  

where 𝑥௧ represents the forecast data in the training set, 𝑦௧ represents the observational data in 227 

the training set, 𝑥 ഥ represents the mean of the forecast data in the training set, and 𝑦ത represents the 228 

mean of the observational data in the training set. After obtaining the regression coefficients 𝑎 229 
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section accepts input data of low resolution for forecasting. The structure of the feature 249 

extraction section consists of the left encoder part and the right decoder part. Downsampling is a 250 

critical process in the encoder, and the downsampling module comprises pooling, convolution, 251 

and activation operations. Through the downsampling module, the size of the feature maps is 252 

halved, while the number of channels is doubled compared to the original. Upsampling is an 253 

essential process in the decoder, and the upsampling module consists of convolution, activation, 254 

transposed convolution, and activation operations. Through the upsampling module, the size of 255 

the feature maps is doubled, while the number of channels is halved compared to the original. 256 

Then the feature maps of the same size are concatenated through skip connections. Skip 257 

connections allow for the integration of information from different scales, thereby enhancing the 258 

network’s ability to capture complex patterns and improve its fitting capability. The number of 259 

convolutional kernels in each layer of the feature extraction section is {16, 32, 64, 64, 64, 32, 32, 260 

16}. The downsampling section includes two upsampling processes. The order of operations in 261 

the upsampling module is consistent with the feature extraction section. However, in the final 262 

upsampling module, the size of the feature maps is increased by a factor of 5. After the 263 

upsampling, batch normalization, convolution, and activation operations in the downsampling 264 

section, the high-resolution downscaled results are obtained. The number of convolutional 265 

kernels in each layer of the feature extraction section is {16, 16, 16, 16, 16, 16, 1}. The 266 

relationship to control the output feature map size in convolutional operations within the network 267 

can be represented as, 268 

𝑜 = ඌ𝑖 + 2𝑝 − 𝑘𝑠 ඐ + 1. #ሺ10ሻ  

The relationship to control the output feature map size in transpose convolutional operations can 269 

be represented as: 270 𝑜 = 𝑠ሺ𝑖 − 1ሻ + 𝑘 − 2𝑝, #ሺ11ሻ  

where 𝑜 represents the size of the output feature map, 𝑖 represents the size of the input feature 271 

map, 𝑝 represents the padding size, 𝑘 represents the size of the convolutional kernel, and 𝑠 272 

represents the stride of the convolution operation. The activation function used is Rectified 273 

Linear Unit (ReLU) (Glorot et al., 2011), which is widely used and highly effective in regression 274 

problems. Its formula is as follows: 275 
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𝑅𝑒𝐿𝑈ሺ𝑥௜ሻ = 𝑚𝑎𝑥ሺ0, 𝑥௜ሻ , #ሺ12ሻ  

where, 𝑥௜ represents the elements of the feature map to the activation function. Batch 276 

normalization is also employed in the network. Batch normalization helps alleviate the problem 277 

of internal covariate shifts during the training process (Ioffe & Szegedy, 2015). It stabilizes the 278 

learning process by normalizing the inputs of each layer within a mini-batch and has shown good 279 

performance in accelerating the training of various deep learning models and regularization 280 

(Silver et al., 2017). The formula for batch normalization is as follows; 281 

𝐵𝑁ሺ𝑋ሻ = 𝑋 − 𝐸ሾ𝑋ሿඥVarሾ𝑋ሿ + 𝜖 × 𝛾 + 𝛽, #ሺ13ሻ  

where 𝛾 and 𝛽 are trainable parameters, 𝜖 is a small constant value, 𝑋 represents the feature map 282 

matrix, 𝐸ሾ𝑋ሿ is the mean of the feature map matrix 𝑋, and Varሾ𝑋ሿ is the variance of the feature 283 

map matrix 𝑋. 284 

3.2.3 UNR-Net 285 

The UNR-Net consists of three components: the auxiliary information processing section, the 286 

feature extraction section, and the downscaling section (Figure 3). The auxiliary information 287 

processing section receives high-resolution terrain data and outputs to both the feature extraction 288 

section and the downscaling section. The feature extraction section takes inputs from the low-289 

resolution forecast data and the auxiliary information processing section, and outputs to the 290 

downscaling section. The downscaling section receives inputs from both the auxiliary 291 

information processing section and the feature extraction section, ultimately generating high-292 

resolution downscaled results. 293 
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𝑆𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝑧௜ሻ = 𝑒௭೔∑ 𝑒௭೎஼௖ୀଵ , #ሺ14ሻ  

where 𝑧௜ represents the elements of the attention weight matrix, and 𝐶 represents the total 331 

number of elements in the attention weight matrix. Finally, the attention-weighted feature map is 332 

obtained by multiplying it element-wise with the fourth copy of the feature map that underwent 333 

convolution and resizing operations. This results in a feature map where the importance is 334 

allocated based on the attention weights. Therefore, this non-local attention mechanism can 335 

allocate the importance of each position in the feature map from a global perspective, 336 

considering the correlation between high-resolution observational data and low-resolution 337 

forecast data, while ignoring the spatial distance and capturing the interactions across different 338 

locations. The distinction between the downscaling components of UNR-Net and U-Net lies in 339 

the source of data and the methodology employed for upsampling. The downscaling section of 340 

this network not only receives inputs from the feature extraction part but also incorporates inputs 341 

from the auxiliary information processing section after each upsampling step. These input feature 342 

maps have a smaller receptive field, allowing the network to incorporate information from a 343 

smaller scale and enhance its fitting capability. Moreover, the upsampling method in the 344 

downscaling section of UNR-Net has been changed from transpose convolution to a combination 345 

of nearest-neighbor interpolation and convolution. This change was made to address the issue of 346 

checkerboard artifacts that can be introduced by transpose convolution, which can potentially 347 

affect the practical utility of the network (Dumoulin et al., 2017). The combination of nearest-348 

neighbor interpolation and convolution for upsampling helps to avoid the occurrence of 349 

checkerboard artifacts without compromising result accuracy. The formula for nearest-neighbor 350 

interpolation is as follows: 351 

𝑠𝑟𝑐𝑋 = 𝑑𝑠𝑡𝑋 × 𝑠𝑟𝑐𝑊𝑖𝑑𝑡ℎ𝑑𝑠𝑡𝑊𝑖𝑑𝑡ℎ , #ሺ15ሻ  

𝑠𝑟𝑐𝑌 = 𝑑𝑠𝑡𝑌 × 𝑠𝑟𝑐𝐻𝑒𝑖𝑔ℎ𝑡𝑑𝑠𝑡𝐻𝑒𝑖𝑔ℎ𝑡 , #ሺ16ሻ  

where 𝑑𝑠𝑡𝑋 and 𝑑𝑠𝑡𝑌 represent the coordinates of the enlarged feature map's grid points; 352 𝑑𝑠𝑡𝑊𝑖𝑑𝑡ℎ and 𝑑𝑠𝑡𝐻𝑒𝑖𝑔ℎ𝑡 represent the length and width of the enlarged feature map; 𝑠𝑟𝑐𝑋 and 353 𝑠𝑟𝑐𝑌 represent the coordinates of the original feature map's grid points; 𝑠𝑟𝑐𝑊𝑖𝑑𝑡ℎ and 354 𝑠𝑟𝑐𝐻𝑒𝑖𝑔ℎ𝑡 represent the length and width of the original feature map. 355 
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The network shares the same operations and parameters as the U-Net, except for the differences 356 

mentioned above. 357 

3.3 Evaluation metrics 358 

We have employed six evaluation methods to assess the strengths and weaknesses of the three 359 

approaches from various perspectives. The six evaluation methods are the NSE (Nash et al., 360 

1970), PCC, RMSE, SSIM, Root Mean Square Error Skill Score (RMSESS), and MSE. Their 361 

formulas are given as follows:  362 

𝑁𝑆𝐸 = 1 − 𝛴௜ୀଵ௡ ሺ𝑜௜ − 𝑓௜ሻଶ𝛴௜ୀଵ௡ ሺ𝑜௜ − 𝑜̅ሻଶ , #ሺ17ሻ  

𝑃𝐶𝐶 = ෌ ൫𝑓௜ − 𝑓൯̅ሺ𝑜௜ − 𝑜̅ሻ௠௜ୀଵඨ෍ ሺ𝑜௜ − 𝑜̅ሻଶ൫𝑓௜ − 𝑓൯̅ଶ௠௜ୀଵ ∑ ሺ𝑜௜ − 𝑜̅ሻଶ௠௜ୀଵ
, #ሺ18ሻ

 

𝑅𝑀𝑆𝐸 = ඩ 1𝑚 ෍ሺ𝑓௜ − 𝑜௜ሻଶ௠
௜ୀଵ , #ሺ19ሻ  

𝑆𝑆𝐼𝑀 = ൫2𝑜̅𝑓̅ + 𝐶ଵ൯൫2𝜎௢௙ + 𝐶ଶ൯൫𝑓̅ଶ + 𝑜̅ଶ + 𝐶ଵ൯൫𝜎௙ଶ + 𝜎௢ଶ + 𝐶ଶ൯ , #ሺ20ሻ  

𝑅𝑀𝑆𝐸𝑆𝑆 = 𝑅𝑀𝑆𝐸௥௘௙ − 𝑅𝑀𝑆𝐸𝑅𝑀𝑆𝐸௥௘௙ , #ሺ21ሻ  

𝑀𝑆𝐸 = 1𝑚 ෍ሺ𝑓௜ − 𝑜௜ሻଶ௠
௜ୀଵ , #ሺ22ሻ  

where 𝑜 represents the observation; 𝑓 represents the forecast; 𝑛 represents the number of time 363 

steps; 𝑚 represents the number of grid points; 𝑜̅ and 𝑓 ̅represent the mean of observations and 364 

forecasts (in the case of 𝑁𝑆𝐸, it represents the mean over all time steps for a grid point, and in 365 

other formulas, it represents the mean over all grid points for a time step); respectively; 𝜎௢ is the 366 

standard deviation of observations; 𝜎௙ is the standard deviation of forecasts; 𝜎௢௙ is the 367 

covariance between observations and forecasts; 𝐶ଵ and 𝐶ଶ are constants. Among the six 368 

evaluation metrics, higher values indicate better performance, except for RMSE and MSE, in 369 
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which a lower value is desirable. 𝑁𝑆𝐸 reflects the fitting effect of the downscaled results to the 370 

observations (Gerges et al., 2022). 𝑃𝐶𝐶 measures the correlation between the forecast field and 371 

the observation field. 𝑅𝑀𝑆𝐸 represents the absolute error between the forecast values and the 372 

observed values. 𝑆𝑆𝐼𝑀 measures the similarity between the forecast field and the observation 373 

field, which is more in line with human visual perception. 𝑅𝑀𝑆𝐸𝑆𝑆 quantifies the comparison 374 

between two methods. 𝑀𝑆𝐸, as an absolute error, can amplify the 𝑅𝑀𝑆𝐸.  375 

3.4 Error decomposition 376 

While comprehensive evaluation metrics allow for the quantification of model performance from 377 

various perspectives, they often lack interpretability and provide limited guidance for model 378 

improvement (Zhu et al., 2022). Error decomposition, on the other hand, enables the breakdown 379 

of absolute errors into interpretable components, facilitating a more in-depth evaluation (Hodson 380 

et al., 2021). 381 

First, the model error 𝝐 is defined as, 382 𝝐 = 𝒇 − 𝒐, #ሺ23ሻ  
where 𝒇 represents a downscaled results vector with 𝑛 values, and 𝒐 represents an observation 383 

vector with 𝑛 values. 384 

The error can be divided into four components representing the four seasons, 385 𝝐 = 𝝐𝟏 + 𝝐𝟐 + 𝝐𝟑 + 𝝐𝟒, #ሺ24ሻ  = 𝜹𝟏𝝐 + 𝜹𝟐𝝐 + 𝜹𝟑𝝐 + 𝜹𝟒𝝐, #ሺ25ሻ  

where 1, 2, 3, and 4 represent the four seasons (spring, summer, autumn, and winter, 386 

respectively), and 𝜹 is a matrix of the same shape as 𝝐, consisting of elements 0 and 1, 387 𝛿௜௝ = ቄ1 𝑖𝑓 𝜖௜ ∈ 𝑠𝑒𝑎𝑠𝑜𝑛 𝑗0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . #ሺ26ሻ  

So, the 𝑀𝑆𝐸 can be decomposed as follows: 388 𝑀𝑆𝐸ሺ𝝐ሻ = 𝑀𝑆𝐸ሺ𝝐𝟏 + 𝝐𝟐 + 𝝐𝟑 + 𝝐𝟒ሻ, #ሺ27ሻ  = 1𝑛 ෍ሺ𝜖ଵ௜ + 𝜖ଶ௜ + 𝜖ଷ௜ + 𝜖ସ௜ሻଶ,௡
௜ୀଵ #ሺ28ሻ  
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= 1𝑛 ෍ሺ𝜖ଵ௜ሻଶ௡
௜ୀଵ + 1𝑛 ෍ሺ𝜖ଶ௜ሻଶ௡

௜ୀଵ + 1𝑛 ෍ሺ𝜖ଷ௜ሻଶ௡
௜ୀଵ + 1𝑛 ෍ሺ𝜖ସ௜ሻଶ௡

௜ୀଵ+ 2𝑛 ෍ሺ𝜖ଵ௜ ⋅ 𝜖ଶ௜ሻ௡
௜ୀଵ + 2𝑛 ෍ሺ𝜖ଷ௜ ⋅ 𝜖ସ௜ሻ௡

௜ୀଵ + 2𝑛 ෍ሺ𝜖ଵ௜ + 𝜖ଶ௜ሻ ⋅ ሺ𝜖ଷ௜ + 𝜖ସ௜ሻ௡
௜ୀଵ . #ሺ29ሻ  

Since the errors for the four seasons are orthogonal to each other, the term ଶ௡ ∑ ሺ𝜖ଵ௜ ⋅ 𝜖ଶ௜ሻ௡௜ୀଵ +389 ଶ௡ ∑ ሺ𝜖ଷ௜ ⋅ 𝜖ସ௜ሻ௡௜ୀଵ + ଶ௡ ∑ ሺ𝜖ଵ௜ + 𝜖ଶ௜ሻ ⋅ ሺ𝜖ଷ௜ + 𝜖ସ௜ሻ௡௜ୀଵ  equals zero. According to Hodson et al. (2021), 390 

each MSE can be decomposed into three components: Bias, Sequence, and Distribution. 391 
Therefore, it follows, 392 𝑀𝑆𝐸ሺ𝝐ሻ = 𝐵𝑖𝑎𝑠ሺ𝝐𝟏ሻଶ + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒ሺ𝝐𝟏ሻ + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛ሺ𝝐𝟏ሻ+𝐵𝑖𝑎𝑠ሺ𝝐𝟐ሻଶ + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒ሺ𝝐𝟐ሻ + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛ሺ𝝐𝟐ሻ+𝐵𝑖𝑎𝑠ሺ𝝐𝟑ሻଶ + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒ሺ𝝐𝟑ሻ + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛ሺ𝝐𝟑ሻ+𝐵𝑖𝑎𝑠ሺ𝝐𝟒ሻଶ + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒ሺ𝝐𝟒ሻ + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛ሺ𝝐𝟒ሻ. #ሺ31ሻ  

The Bias component quantifies the model's ability to accurately replicate the mean of the 393 

observations. The Sequence component measures the model's ability to accurately reproduce 394 

temporal sequences of events. The Distribution component quantifies the model's ability to 395 

accurately replicate the distribution of the observations. As a result, we have obtained the 396 

differences in terms of bias, sequence, and distribution across various seasons. 397 

4.  Results 398 

4.1 General downscaling performance 399 

Figure 5 illustrates the error performance of the downscaled results from the three methods and 400 

the low-resolution forecast data compared to the observations. the graph illustrates that the 401 

downscaled results from the three methods exhibit significantly better performance in terms of 402 

error compared to the low-resolution forecast data. 403 

For NSE, PCC, and RMSE, the average differences between the LR method and U-Net over a 404 

lead time from 1 to 7 days are 0.052, 0.013, and 0.220, respectively. In comparison, the 405 

corresponding differences between the LR method and UNR-Net are 0.077, 0.016, and 0.338, 406 

respectively. The LR method exhibits the poorest performance. As for the two deep learning 407 

methods, their average differences are 0.025, 0.005, and 0.117, indicating a similar performance. 408 

Moreover, as the lead time increases, the differences among the three methods become more 409 
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Figure 5. The overall evaluation of the three methods and the GEFS data. Variations in (a) NSE, 432 

(b) PCC, (c) RMSE, and (d) SSIM of 2-m temperature at lead times of 1–7 days derived from the 433 

GEFS, LR, U-Net, and UNR-Net averaged over North China. 434 

The spatial distribution of NSE for the three methods is illustrated in Figure 6. Upon examining 435 

the spatial distribution of the downscaled results from the three methods in fitting high-resolution 436 

observational data, it becomes evident that the underperforming areas are concentrated around 437 

the Taihang Mountain range. In certain regions, the scores even dip below 0.45. The scores 438 

exhibit an increasing trend from both sides of the Taihang Mountain range in terms of spatial 439 

distribution. Overall, there is a pattern of higher scores in the southeastern and northwestern 440 

regions. 441 

From LR to U-Net and then to UNR-Net, the fit of the predicted field to the observed field in the 442 

region of the Taihang Mountains shows improvement. Moreover, within all lead times depicted 443 

in the figure, the area characterized by scores below 0.45 exhibits a progressively diminishing 444 

extent, with notable improvements observed, particularly in the vicinity of the Taihang 445 

Mountains, for the two employed deep learning methodologies. Additionally, it is noteworthy 446 

that the area encompassing scores exceeding 0.95 demonstrates a gradual increase in size. When 447 

considering a lead time of 1 day, the distribution of regions with NSE scores below 0.45 for the 448 

LR method is concentrated in the northeastern part of Shaanxi province and in the vicinity of the 449 

Taihang Mountains. In fact, a majority of these areas even exhibit scores below 0.4. On the other 450 

hand, regions with NSE scores surpassing 0.95 are mainly limited to Jiangsu, Anhui, Hubei, and 451 

other areas. For the U-Net method, the extent of regions with NSE scores below 0.45 has been 452 

significantly reduced. In the northeastern part of Shaanxi province, there are no longer any areas 453 

with scores below 0.4. Furthermore, regions with NSE scores exceeding 0.95 now include 454 

Shandong and Henan. As for the UNR-Net method, the area with NSE scores below 0.45 has 455 

decreased compared to U-Net. In the northeastern part of Shaanxi province, southern Shanxi, and 456 

Liaoning province, there are no longer any regions with scores below 0.45. The regions near the 457 

Taihang Mountains with scores below 0.45 appear sporadically. Additionally, the region in the 458 

southeast of Hebei province is now encompassed within the area with NSE scores surpassing 459 

0.95, and the overall area in Shandong with scores below 0.95 has decreased compared to U-Net. 460 

When considering lead times of 4 and 7 days, although the overall scores of all three methods 461 
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have decreased, certain patterns still emerge. The LR method exhibits the largest area with scores 462 

below 0.45 and the smallest area with scores above 0.95. Conversely, UNR-Net showcases the 463 

smallest area with scores below 0.45 and the largest area with scores above 0.95. Especially 464 

noteworthy is the 7-day lead time, where the LR method has virtually no areas with scores above 465 

0.95. In contrast, both deep learning methods still exhibit some distribution in the southeastern 466 

region. Furthermore, the area with scores above 0.8 for UNR-Net is notably larger than that for 467 

U-Net. 468 

As the lead time increases, NSE scores progressively decrease. For instance, when comparing the 469 

7-day lead time to the 1-day lead time, the LR method experiences a decrease of 0.348 in NSE, 470 

while the U-Net method decreases by 0.307 and the UNR-Net method decreases by 0.276. It is 471 

evident that UNR-Net exhibits a lower reduction magnitude compared to the other two methods. 472 

Additionally, UNR-Net maintains a larger area with high NSE scores. Therefore, UNR-Net 473 

demonstrates its superiority particularly in longer lead times, showcasing its favorable 474 

performance. 475 
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Furthermore, as the lead time increases, the overall error tends to escalate. At a lead time of 1 482 

day, the error distribution of the LR method appears to be relatively uniform. While the region 483 

with errors below 0.6 °C is predominantly concentrated in the eastern part, the overall 484 

differences are not significant. On the other hand, U-Net and UNR-Net exhibit smaller errors in 485 

the southeastern region, with large areas showing errors below 1.2 °C. Moreover, UNR-Net 486 

showcases a larger region with errors below 1 °C compared to U-Net. Specifically, UNR-Net 487 

demonstrates a greater coverage of areas with errors below 1°C in Jiangsu, Anhui, and even in 488 

Shandong, surpassing the performance of U-Net. Additionally, UNR-Net displays reduced errors 489 

in regions with complex topography such as the Shandong Peninsula, Shaanxi, and Shanxi, with 490 

a higher number of areas exhibiting errors below 1.2°C. This highlights the stronger correction 491 

capability of UNR-Net. At a lead time of 4 days, the LR method demonstrates an overall spatial 492 

distribution pattern of lower errors in the eastern and western regions, with higher errors 493 

observed in the central area. Specifically, there are areas in the central part of Hebei province 494 

where errors exceed 2.2°C, and some regions even exhibit errors surpassing 2.6°C. In contrast, 495 

the spatial distribution of the two deep learning methods does not exhibit a distinct pattern of 496 

lower errors in the central region. Therefore, compared to the LR method, there is a significant 497 

improvement in the central region, resulting in an overall pattern of lower errors in the southern 498 

areas and higher errors in the northern areas. Notably, UNR-Net outperforms U-Net in terms of 499 

the southern region, with a larger area showing errors below 1.6°C. This is especially evident in 500 

the complex terrain areas of southern Shaanxi and central Shanxi, where UNR-Net demonstrates 501 

even lower errors, showcasing its superior downscaling capability in complex topography 502 

conditions. At a lead time of 7 days, the error distribution of the LR method is similar to that at a 503 

3-day lead time. Both deep learning methods also exhibit a pattern of higher errors in the 504 

northern regions and lower errors in the southern regions. Additionally, UNR-Net exhibits lower 505 

errors in the regions of Shandong and Hebei, showcasing its superior performance in those areas. 506 

Moreover, UNR-Net demonstrates better downscaling capability in the southern regions of 507 

Shaanxi and Shanxi as well. 508 
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deep learning methods relative to the LR method, UNR-Net exhibits a greater degree of 515 

improvement compared to U-Net. The RMSESS scores of UNR-Net, at lead times of 1, 4, and 7 516 

days, were found to be higher than those of U-Net by 0.035, 0.052, and 0.043, respectively. It 517 

can be observed that as the lead time increases, UNR-Net demonstrates a greater overall 518 

improvement over the LR method. From the spatial distribution, it can be observed that the 519 

significant improvements of both deep learning methods are concentrated in central Hebei, 520 

Jiangsu, Anhui, and Henan. Across all lead times, these regions exhibit the lowest scores in the 521 

entire area. At a lead time of 1 day, there are areas where the score is less than zero, indicating 522 

minimal improvement compared to the LR method. These areas are mainly located in Inner 523 

Mongolia, with UNR-Net exhibiting a smaller coverage compared to U-Net. In the Shandong 524 

region, unlike U-Net, UNR-Net does not have any areas with scores less than 0. Comparing the 525 

areas with higher scores, it can be observed that in central Hebei and Anhui, UNR-Net covers a 526 

significantly larger area with scores above 0.3, and even areas with scores above 0.35, while U-527 

Net only has a small portion of the western Anhui region with scores above 0.35, and no such 528 

distribution in other regions. The areas where significant improvements were observed are 529 

primarily concentrated around the Taihang Mountains and the southeastern region. At lead times 530 

of 4 and 7 days, the overall situation is similar to that at a lead time of 1 day. UNR-Net 531 

outperforms U-Net in terms of higher scores. Particularly at a lead time of seven days, UNR-Net 532 

shows improvements over the LR method in all regions. Thus, it further demonstrates the 533 

superiority of UNR-Net, particularly at longer lead times. 534 
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4.2 Error decomposition 596 

The decomposition of MSE into four seasons (spring, summer, autumn, and winter) for lead 597 

times of 1–7 days is illustrated in Figure 12. For the low-resolution forecast data, as the lead time 598 

increases, the error also increases. However, the rate of increase is the smallest during the 599 

summer season. The difference in error between a lead time of 7 days and 1 day is 1.10 in the 600 

summer season, while it is 2.10 in the spring season, 1.58 in the autumn season, and 1.50 in the 601 

winter season. Moreover, as the lead time increases, the error of the LR method becomes closer 602 

to the error of the low-resolution forecast data in all four seasons. The difference between the 603 

two decreases by 0.13, 0.22, 0.06, and 0.11 in the spring, summer, autumn, and winter seasons, 604 

respectively, when comparing a lead time of 7 days to a lead time of 1 day. Particularly, the error 605 

in the autumn and winter seasons shows a closer growth rate to that of the low-resolution 606 

forecast data. As for the two deep learning methods, the difference between their errors and the 607 

errors of the low-resolution forecast data changes differently compared to the performance of the 608 

LR method as the lead time increases. For the U-Net method, the difference between the two 609 

decreases by 0.035 and 0.017 in the autumn and winter seasons, respectively, when comparing a 610 

lead time of 7 days to a lead time of 1 day. However, in the spring and summer seasons, the 611 

difference increases by 0.20 and 0.10, respectively. On the other hand, for the UNR-Net method, 612 

the difference between its error and the error of the low-resolution forecast data increases in all 613 

four seasons as the lead time increases. The difference at a lead time of 7 days compared to a 614 

lead time of 1 day increases by 0.45, 0.20, 0.08, and 0.20 in the spring, summer, autumn, and 615 

winter seasons, respectively. This not only highlights the advantages of the two deep learning 616 

methods, particularly UNR-Net, over the LR method but also further emphasizes that as the lead 617 

time increases, the advantages of the deep learning methods, especially UNR-Net, become more 618 

significant and comprehensive. Additionally, both deep learning methods demonstrate greater 619 

advantages in the spring and summer seasons. 620 
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weaker. Indeed, both deep learning methods demonstrate advantages over the LR method. The 647 

discrepancies between the U-Net method and the low-resolution forecasts for the four seasons 648 

are as follows: at a lead time of 1 day, they are 0.327, 0.289, 0.356, and 0.294, and at a lead time 649 

of 7 days, they are 0.414, 0.832, 0.221, and 0.104. It can be observed that as the lead time 650 

increases, the accuracy improvement of U-Net becomes more prominent during the spring and 651 

summer seasons. The disparities between the UNR-Net method and the low-resolution forecasts 652 

for the four seasons are as follows: at a lead time of 1 day, they are 0.329, 0.279, 0.354, and 653 

0.284, and at a lead time of 7 days, they are 0.794, 0.748, 0.389, and 0.337. It can be observed 654 

that as the lead time increases, the differences between the downscaled results of UNR-Net and 655 

the low-resolution forecasts intensify across all four seasons. This indicates that the UNR-Net 656 

method exhibits a greater degree of improvement over low-resolution forecasts with longer lead 657 

times. This observation indicates that the Sequence component highlights the advantages of 658 

nonlinear methods to a greater extent. Deep learning methods primarily improve the accuracy of 659 

downscaling tasks in the temporal domain. 660 
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As the lead time increases, the proportion of the Sequence component gradually increases. For a 674 

lead time of 1 day, the average proportions of the three methods across the four seasons are 675 

18.30%, 18.04%, and 19.74% respectively. For a lead time of 4 days, the average proportions are 676 

19.51%, 19.56%, and 20.44% respectively. For a lead time of 7 days, the average proportions are 677 

20.84%, 21.02%, and 20.91% respectively. This trend may be attributed to the fact that the errors 678 

in the forecast data in terms of temporal variability increase with longer lead times, resulting in a 679 

higher proportion of temporal errors in the downscaled results of the three methods. 680 

Furthermore, there have been changes in the proportions across seasons. For a lead time of 1 day, 681 

the average proportions of the three methods across the four seasons are 7.98%, 6.17%, 8.59%, 682 

and 10.58% respectively. It can be observed that the majority of errors are concentrated in the 683 

winter season. When the lead time increases to 4 days, the average proportions across the four 684 

seasons are 9.43%, 6.76%, 7.75%, and 9.40% respectively. For a lead time of 7 days, the average 685 

proportions across the four seasons are 10.37%, 5.98%, 8.54%, and 8.44%, respectively. It can 686 

be noted that with the increase in lead time, the seasons with higher proportions of errors 687 

gradually shift toward the spring season. 688 
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Figure 15. The decomposed error values of the 12 components averaged over North China with 715 

lead times of (a–c) 1, (d–f) 4, and (g–i) 7 days. The vertical axis represents errors from three 716 

different methods and the horizontal axis represents the seasonal error. 717 

5.  Conclusions and discussion 718 

This paper introduces a novel downscaling network called UNR-Net, which integrates a non-719 

local attention mechanism, Res2net (Gao et al., 2019), and terrain information to further enhance 720 

the accuracy and practical value of the results. A downscaling experiment with a downscaling 721 

factor of 10x was conducted for the 2-m temperature forecast over the East China region at lead 722 

times of 1–7 days. The LR and U-Net methods are conducted as benchmarks. To obtain a more 723 

detailed and specific evaluation and enhance the interpretability of the models, the error 724 

decomposition method based on MSE is also proposed. 725 

Generally, the UNR-Net demonstrates superior performance over U-Net and LR methods in 726 

terms of NSE, PCC, RMSE, and SSIM, particularly for longer lead times. Regarding NSE, PCC, 727 

and RMSE, the LR method exhibits the poorest performance, followed by U-Net. The best-728 

performing method is UNR-Net. Both deep learning methods demonstrated a certain 729 

improvement compared to the LR method when forecasting for longer lead times. Moreover, 730 

UNR-Net exhibited a more pronounced enhancement compared to U-Net. For SSIM, the U-Net 731 

method shows the poorest performance, followed by the LR method, while UNR-Net exhibits 732 

the best performance. Therefore, it can be observed that UNR-Net has superior practical 733 

applicability compared to U-Net. In terms of spatial distribution, the errors are primarily 734 

concentrated in regions with complex terrain, such as the Taihang Mountains, Shanxi, central 735 

Shaanxi, and Liaoning. UNR-Net exhibits significantly smaller errors in this area compared to 736 

the other two methods, indicating its greater advantage in complex terrain regions. Furthermore, 737 

it was observed that during the summer season, characterized by lower NSE and PCC values in 738 

the low-resolution data, all three methods exhibited better performance in terms of RMSE and 739 

SSIM. 740 

Consequently, for a more in-depth analysis of the errors, the Mean Squared Error (MSE) is first 741 

decomposed based on time into four seasons: spring, summer, autumn, and winter. Then, it is 742 

further decomposed based on its physical significance into three components: Bias, Sequence, 743 

and Distribution. Each method’s error is decomposed into 12 constituent components. Indeed, it 744 
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can be observed that the three methods showed the lowest errors during the summer season. 745 

Moreover, the deep learning methods, especially UNR-Net, displayed more significant 746 

advantages as the lead time increased. Upon decomposing the errors for each season into Bias, 747 

Sequence, and Distribution components, it can be observed that for the Bias and Distribution 748 

components, all three methods showed significant improvements in downscaling results 749 

compared to low-resolution data, with UNR-Net exhibiting the smallest error. Among the error 750 

composition components, the Sequence component has the largest proportion and plays a 751 

dominant role. Especially for longer lead times, the LR method showed little improvement 752 

compared to low-resolution data, while both deep learning methods demonstrated higher 753 

accuracy, with UNR-Net showing the smallest errors. 754 

The success of UNR-Net in temperature downscaling highlights the feasibility of utilizing deep 755 

learning methods and techniques such as non-local attention mechanisms and residual 756 

connections for handling Earth system data. Although UNR-Net has already incorporated terrain 757 

data, it lacks the utilization of additional meteorological variables. Existing studies have shown 758 

that the integration of diverse meteorological variables can enhance the accuracy of results (Sun 759 

& Tang, 2020; Harris et al., 2022). Therefore, in the future, it is worth considering the 760 

incorporation of more meteorological elements into the downscaling task to further improve its 761 

performance. On the other hand, with the ongoing advancements in deep learning technology, 762 

there exists significant potential for further improvements in result accuracy and exploration of 763 

new possibilities. Moreover, from an analysis of error decomposition, it is evident that the degree 764 

of improvement varies for different error components. Therefore, in the future, it would be 765 

beneficial to consider employing techniques tailored to specific physical meanings or seasons. 766 

Incorporating approaches that target seasonality, mean values, temporal patterns, and 767 

distributions, such as season-based transfer learning, holds the potential to not only enhance 768 

overall error performance but also increase their practical value significantly. 769 
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