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Abstract 19 

This study proposes a novel method, which is a U-shaped convolutional neural network that 20 

combines non-local attention mechanisms, Res2net residual modules, and terrain information 21 

(UNR-Net). The original U-Net method and the linear regression (LR) method are conducted as 22 

benchmarks. Generally, the UNR-Net has demonstrated promise in performing a 10x 23 

downscaling for daily 2-m temperature over North China with lead times of 1–7 days and shows 24 

superiority to the U-Net and LR methods. To be specific, U-Net and UNR-Net demonstrate 25 

higher Nash-Sutcliffe Efficiency coefficient (NSE) values compared to LR by 0.052 and 0.077, 26 

respectively. The corresponding improvements in pattern correlation coefficient are 0.013 and 27 

0.016, while the root mean square error values are higher by 0.22 and 0.338, respectively. 28 

Additionally, the structural similarity index metric is higher by 0.033 and lower by 0.015. 29 

Furthermore, regions with significant errors are primarily distributed in complex terrain areas 30 

such as the Taihang Mountains, where UNR-Net exhibits noticeable improvements. In addition, 31 

the 12 components-based error decomposition method is proposed to analyze the error source of 32 

different models. Generally, the smallest errors are observed during the summer season and the 33 

sequence error component is proven to be the main source error of 2-m temperature forecasts. 34 

Furthermore, UNR-Net consistently demonstrates the lowest errors among all 12 error 35 

components. Therefore, combining the numerical weather prediction model and deep learning 36 

method is very promising in downscaling temperature forecasts and can be applied to routine 37 

forecasting of other atmospheric variables in the future. 38 

Plain Language Summary 39 

This research proposes a new method for downscaling using deep learning. The method uses a 40 

specific type of neural network called UNR-Net, which combines attention mechanisms, residual 41 

modules, and terrain information. The performance of UNR-Net is compared to two other 42 

methods: U-Net and LR. In the study, UNR-Net shows promise in performing a 10x downscaling 43 

of the daily 2-m temperature in North China. The UNR-Net demonstrates the best overall 44 

performance among all the comprehensive indicators (NSE, pattern correlation coefficient, root 45 

mean square error, and structural similarity index metric). Errors in the predictions are mainly 46 

found in complex terrain areas like the Taihang Mountains, but UNR-Net shows noticeable 47 

improvements in these regions. The study also proposes a 12 components-based error 48 

decomposition method to analyze the error sources of different models. All in all, it is found that 49 
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the smallest errors are observed during the summer season and the main source error is the 50 

sequence error component. Additionally, when considering lead times of 1–7 days, UNR-Net 51 

consistently shows the lowest errors among all 12 error components. Based on these findings, 52 

combining numerical weather prediction models with deep learning methods holds great promise 53 

for generating high-resolution temperature forecasts. 54 

1.  Introduction 55 

Temperature is a meteorological element closely related to human life. With the advancement of 56 

society, there is an increasing demand for high-resolution temperature forecasts. However, in the 57 

present era, the resolution of numerical models is limited due to factors such as computational 58 

costs, scale sensitivity, and mismatches (Rind et al., 1992), which pose challenges in meeting the 59 

requirements of practical applications and scientific research. (Roberts et al., 2018; Feser et al., 60 

2011; Wilby & Wigley, 1997). Therefore, downscaling methods have emerged. 61 

These methods utilize appropriate refinement processes to infer meteorological element 62 

information at local scales based on the available low-resolution data (Höhlein et al., 2020). Due 63 

to the complexity of spatiotemporal characteristics, downscaling remains a challenging and 64 

intricate problem. Over the past few decades, various downscaling techniques have been 65 

proposed, including simple downscaling, dynamical downscaling (Jing et al. 2022; Wang et al. 66 

2021), and statistical downscaling (Sharifi et al., 2019; Fowler et al., 2007). Among these, 67 

statistical downscaling exhibits a distinct advantage due to its high accuracy, excellent 68 

scalability, and lower computational resource requirements (Kim & Barros 2002; Frei et al., 69 

2003; Hagemann et al., 2004; Ji et al., 2023a; Mannig et al., 2013). 70 

In the past few decades, numerous advancements have been made in statistical downscaling 71 

techniques. Although traditional statistical approaches can to some extent enhance the resolution, 72 

they still have limitations in utilizing spatial and temporal dependencies, resulting in limited 73 

fitting capabilities (Chen et al., 2018; Wilby et al., 1998; He et al., 2016b). With the advent of 74 

the big data era, deep learning has the potential to discover features in high-dimensional data and 75 

capture the underlying nonlinear relationships between various meteorological variables (Yuan et 76 

al., 2020). It shows promise in terms of both accuracy and efficiency, surpassing previous 77 

methods (Höhlein et al., 2020). However, the use of deep learning methods in the field of 78 

meteorological downscaling is still in its early stages and faces challenges such as inadequate 79 
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description of complex features and poor performance in extreme events (Baño-Medina et al., 80 

2020; Ji et al., 2022; Ji et al., 2023b; Vandal et al., 2019). Therefore, further practical exploration 81 

and research are needed to address these issues. 82 

Presently, the field of deep learning offers numerous techniques that are well-suited for 83 

addressing challenges in the domain of downscaling. Due to its ability to incorporate receptive 84 

fields of varying sizes, U-Net has achieved success in semantic segmentation tasks (Ronneberger 85 

et al., 2015). Subsequently, it has also shown promising performance in tasks such as forecast 86 

calibration (Han et al., 2021; Zhu et al., 2022) and downscaling (Doury et al., 2023; Sha et al., 87 

2020). However, when U-Net is employed for downscaling end-to-end tasks, the accuracy and 88 

practical effectiveness of the results can still be further improved through existing techniques. 89 

Mnih et al. (2014) achieved impressive results and gained widespread attention by incorporating 90 

attention mechanisms into convolutional neural networks for image processing tasks. Since then 91 

various attention mechanisms have emerged (Hu et al., 2018; Woo et al. 2018), and it has also 92 

found applications in downscaling (Park et al., 2022; Jing et al., 2022; Gerges et al., 2022). In 93 

theory, deeper networks have larger receptive fields, allowing them to integrate more 94 

information and potentially achieve better results. However, training deep networks can 95 

encounter challenges such as vanishing/exploding gradients and degradation (Pan et al., 2019). 96 

The Residual Network (ResNet), proposed by He et al. (2016a) successfully addressed the issue 97 

of network degradation. Subsequently, numerous studies have discussed the concept of residuals 98 

and proposed various variants (Xie et al., 2017; Huang et al., 2017; Veit et al., 2016). 99 

Furthermore, regarding the utilization of meteorological variables, apart from studies that solely 100 

utilize the meteorological variables at the downscaled scale (Kumar et al., 2021; Höhlein et al., 101 

2020), some researchers have taken into account the physical significance and constraints of 102 

meteorological variables by incorporating terrain data into neural networks (Sha et al., 2020). 103 

But most studies that utilize multivariate data simply incorporate auxiliary data by stacking 104 

channels during input. This approach fails to effectively utilize higher-resolution auxiliary 105 

information compared to the target resolution, and there is also a lack of discussion regarding the 106 

optimal utilization of auxiliary information. 107 

As a result, we propose a novel U-shaped convolutional neural network called UNR-Net, which 108 

integrates a nonlocal attention mechanism (Wang et al., 2018), Res2net (Gao et al.,2019), and 109 

terrain information for downscaling temperature. A non-local attention mechanism can allocate 110 
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importance to each position from a global perspective, considering the correlations between 111 

high-resolution observational data and low-resolution forecast data while disregarding distance. 112 

Res2net modules serve the purpose of not only mitigating model degradation issues but also 113 

efficiently coupling multiple receptive field sizes. We employ multiple convolutional operations 114 

to progressively decrease the resolution of the terrain data while increasing the number of 115 

channels and then fuse these products into the network through skip connections, which can not 116 

only adjust the feature map size of the high-resolution terrain data for easier input, but also 117 

preserve the high-resolution information of the terrain data, and control the proportion of terrain 118 

information in the network during feature extraction and downscaling. Additionally, in the 119 

downscaling part of the network, a combination of nearest-neighbor interpolation and 120 

convolution was utilized for upsampling (Dong et al., 2016), which can avoid the “checkerboard 121 

effect” caused by transpose convolution (Gauthier, 2014; Dumoulin et al., 2017). 122 

The evaluation phase of the model after the modeling process is crucial. For model evaluation, 123 

the performance of UNR-Net is compared with LR, the original U-Net, and low-resolution 124 

forecast data with the comprehensive evaluation metrics NSE, pattern correlation coefficient 125 

(PCC), root mean square error (RMSE), and structural similarity index metric (SSIM). Still, the 126 

comprehensive evaluation metrics can only assess the overall performance of methods from 127 

various perspectives, which often lack detailed assessment and specific physical significance. 128 

Error decomposition, on the other hand, can provide a further evaluation of the results and 129 

enhance the interpretability of the methods (Hodson et al., 2021). Initially, the mean squared 130 

error (MSE) is decomposed into four seasons, and then the error for each season is further 131 

decomposed into three components, enabling a more detailed and specific analysis. The 132 

remainder of this paper follows the following structure. Section 2 describes the utilized data. 133 

Section 3 outlines the methods employed. Section 4 analyzes the performance of the three 134 

downsampling methods. Finally, a summary and discussion are presented in Section 5. 135 

2. Data 136 

The research area of this paper covers the geographical coordinates of (107° to 122.9°E, 31.1° to 137 

47°N). The eastern part of the region is characterized by low-lying terrain and proximity to the 138 

ocean, while the western part features higher elevations and is situated inland. The region is 139 

predominantly mountainous with hilly terrain, exhibiting significant topographical variations. 140 
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Due to the significant impact of elevation on 2-m temperature and the region's importance as an 141 

agricultural area, downscaled modeling in such complex terrain is highly challenging yet holds 142 

substantial practical significance. 143 

The forecast data used in this study is sourced from the Global Ensemble Forecasting System 144 

(GEFS) of the National Centers for Environmental Prediction (NCEP). The model resolution is 145 

0.25° × 0.25°, and the data covers the geographical region of (105° to 124°E, 30° to 49°N). The 146 

dataset spans the period from 1 January 2010 to 31 December 2019, with daily initializations at 147 

0000 UTC. The experiment incorporates 2-m temperature data with lead times of 1–7 days. 148 

In this study, the observational data utilized the ERA5-Land dataset provided by the European 149 

Centre for Medium-Range Weather Forecasts (ECMWF). The dataset had a resolution of 0.1° × 150 

0.1° and covered the time period from 2 January 2010 to 7 January 2020, with a focus on daily 2-151 

m temperature data at 0000 UTC and covers the geographical region of (105° to 124.9°E, 29.1° 152 

to 49°N). 153 

The topographic data utilized in this study was derived from the ETOPO1 dataset provided by 154 

the National Oceanic and Atmospheric Administration (NOAA). The dataset has a resolution of 155 

1′ × 1′ and covers the geographical region of (105° to 124°59′E, 29°1′ to –49°N) (Figure 1). 156 

 157 

Figure 1. Study domain. The color bar represents the altitude of the terrain (m). 158 
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3.  Methods 159 

In this study, a total of three methods were employed to perform a 10x downscaling on the North 160 

China region. The three methods used were LR, U-Net, and UNR-Net. The first method, LR, is a 161 

traditional downscaling approach. It involves performing bilinear interpolation on the low-162 

resolution forecast data and then applying linear regression. The second method is the 163 

unmodified original U-Net, where the upsampling process utilizes transpose convolutions. The 164 

third method is a modified version of the U-Net that combines non-local attention with Res2net 165 

residual modules. Additionally, it incorporates terrain information to enhance the performance of 166 

the model. These three methods utilize the data that has undergone data preprocessing as 167 

described in Section 3.1, and these three methods share the same training set, validation set, and 168 

test set. The two deep learning methods both employ an end-to-end approach, where the 169 

networks simultaneously perform the calibration and downscaling tasks. Additionally, the 170 

training process for both networks is identical and follows a supervised learning approach. The 171 

Adam optimizer is used for training in both cases (Kingma & Ba, 2017). The loss function used 172 

is MSE, defined as follows: 173 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖

,)
2

𝑁

𝑖=1

, (1) 174 

where 𝑁 represents the number of grid points in a batch, 𝑖 represents the grid point position, 𝑦𝑖 175 

represents the ground truth values, and 𝑦𝑖
,, represents the predicted values. The learning rate is set 176 

to 0.001, and it is decayed every 20 steps with a decay rate of 0.5. To avoid overfitting, early 177 

stopping is implemented to determine the stopping epoch. Finally, an evaluation is conducted on 178 

the results of the three methods, which includes the error between the high-resolution 179 

downscaled results and high-resolution observation, as well as the error between the low-180 

resolution observation and the low-resolution forecast data after second-order conservative 181 

remapping scheme (Jones, 1999). Subsequently, an error decomposition is performed to further 182 

analyze the performance of the three methods. 183 

3.1 Data Preprocessing 184 

First, data processing is conducted on the forecast data. The forecast data has a resolution of 185 

0.25° × 0.25°, and due to the downscaling factor of 10 used in the experiment, the resolution of 186 

the observational data is 0.1° × 0.1°. Therefore, the first step is to perform a second-order 187 
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conservative remapping scheme (Jones, 1999) to adjust the resolution of the forecast data to 1° × 188 

1°. Due to the absence of observational data for the oceanic region, the oceanic part of the 189 

forecast data is assigned empty values. Then, the land data is standardized using the following 190 

formula: 191 

𝑥𝑛𝑒𝑤 =
𝑥 − 𝜇

𝜎
, (2) 192 

where 𝑥 represents the previous value of the data, 𝑥𝑛𝑒𝑤 represents the new value of the data, 𝜇 193 

represents the mean of the respective matrix, and 𝜎 represents the variance. Afterward, the 194 

oceanic region is filled using the nearest-neighbor interpolation method, as described by the 195 

formula: 196 

𝑓(𝑖) = 𝑓(𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡), (3) 197 

where 𝑖 represents the grid point location, 𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡  represents the closest grid point location to 𝑖, 198 

𝑓(𝑖𝑛𝑒𝑎𝑟𝑒𝑠𝑡) represents the value of the nearest grid point, and 𝑓(𝑖) represents the value of the 199 

grid point 𝑖. By applying the mentioned processing to the forecast data, the low-resolution 200 

forecast data is obtained. 201 

Next, the observational data are processed in a similar manner as the forecast data, including 202 

standardization and nearest-neighbor interpolation for the oceanic regions. This results in 203 

obtaining the high-resolution observational data. 204 

Both the low-resolution forecast data and the high-resolution observational data are divided into 205 

training sets, validation sets, and testing sets. The training set consists of data with forecast start 206 

dates from 1 January 2010 to 31 December 2017. The validation set comprises data with forecast 207 

start dates from 1 January 2017 to 31 December 2018. Lastly, the testing set includes data with 208 

forecast start dates from 1 January 2018 to 31 December 2019. 209 

Finally, the terrain data is processed using the same methods as applied to the forecast data, 210 

including standardization and nearest-neighbor interpolation for the oceanic regions. This results 211 

in obtaining the high-resolution terrain data. 212 
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3.2 Downscaling methods 213 

3.2.1 LR 214 

First, the low-resolution forecast data is subjected to bilinear interpolation. Bilinear interpolation 215 

involves performing linear interpolation in two directions. The formulas for bilinear interpolation 216 

are as follows: 217 

𝑓(𝑋𝑟 , 𝑌𝑎) ≈
𝑋𝑏 − 𝑋𝑟

𝑋𝑏 − 𝑋𝑎
𝑓(𝑋𝑎 , 𝑌𝑎) +

𝑋𝑟 − 𝑋𝑎

𝑋𝑏 − 𝑋𝑎
𝑓(𝑋𝑏, 𝑌𝑎), (4) 218 

𝑓(𝑋𝑟 , 𝑌𝑏) ≈
𝑋𝑏 − 𝑋𝑟

𝑋𝑏 − 𝑋𝑎
𝑓(𝑋𝑎 , 𝑌𝑏) +

𝑋𝑟 − 𝑋𝑎

𝑋𝑏 − 𝑋𝑎
𝑓(𝑋𝑏, 𝑌𝑏), (5) 219 

where 𝑓(𝑋𝑎 , 𝑌𝑎), 𝑓(𝑋𝑏, 𝑌𝑎), 𝑓(𝑋𝑎 , 𝑌𝑏), and 𝑓(𝑋𝑏, 𝑌𝑏) represent the values of the four points in the 220 

respective directions. 𝑋𝑎, 𝑋𝑏, 𝑌𝑎, and 𝑌𝑏 represent the positions on the coordinate axes, while 221 

𝑓(𝑋𝑟 , 𝑌𝑎) and 𝑓(𝑋𝑟 , 𝑌𝑏) represent the points obtained through linear interpolation in the x-222 

direction. After obtaining 𝑓(𝑋𝑟 , 𝑌𝑎) and 𝑓(𝑋𝑟 , 𝑌𝑏), linear interpolation is performed in the y-223 

direction to obtain the value of the unknown point as follows: 224 

𝑓(𝑋𝑟 , 𝑌𝑟) ≈
𝑌𝑏 − 𝑌𝑟

𝑌𝑏 − 𝑌𝑎
𝑓(𝑋𝑟 , 𝑌𝑎) +

𝑌𝑟 − 𝑋𝑎

𝑌𝑏 − 𝑌𝑎
𝑓(𝑋𝑟 , 𝑌𝑏), (6) 225 

where 𝑓(𝑋𝑟 , 𝑌𝑟) represents the value of the unknown point. As a result, we obtain the forecast 226 

data with a resolution of 0.1° × 0.1°. Next, linear regression is applied to the forecast data, 227 

following the formula: 228 

𝑦𝑡 = 𝑎 + 𝑏𝑥𝑡, (7) 229 

where 𝑦𝑡 represents the predicted result, 𝑥𝑡 represents the values for linear regression, and 𝑎 and 230 

𝑏 are the coefficients of the linear regression. The coefficients 𝑎 and 𝑏 in linear regression are 231 

calculated using the following formulas: 232 

𝑎 = 𝑦̅ − 𝑏𝑥̅, (8) 233 

𝑏 =
𝛴𝑡=1

𝑛 𝑥𝑡𝑦𝑡 − 𝑛𝑥̅𝑦̅

𝛴𝑡=1
𝑛 𝑥𝑡

2 − 𝑛𝑥̅2
, (9) 234 

where 𝑥𝑡 represents the forecast data in the training set, 𝑦𝑡 represents the observational data in 235 

the training set, 𝑥 ̅represents the mean of the forecast data in the training set, and 𝑦̅ represents the 236 

mean of the observational data in the training set. After obtaining the regression coefficients 𝑎 237 
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and 𝑏 for each grid point, the regression equation is applied to the testing set. This process yields 238 

the downscaled results using the LR method for the testing set. 239 

3.2.2 U-Net 240 

The U-Net is a convolutional neural network architecture with a U-shaped structure that was first 241 

introduced in the field of semantic segmentation (Ronneberger et al. 2015). Its encoder-decoder 242 

structure is well-suited for handling pixel-level problems and is also well-suited for processing 243 

grid-based meteorological data. The downscaling U-Net architecture employed in this study 244 

employs multiple upsampling operations in the decoder section, iteratively generating feature 245 

maps at the desired target resolution (Figure 2). 246 

 247 

Figure 2. U-Net architecture. The rectangular box with right angles represents the data, while the 248 

rounded rectangles and ellipses represent different operations or functions. The text inside the 249 

rounded rectangles and ellipses indicates the name of the respective operation or function. The 250 

solid arrows indicate the flow of data. The blue box represents the feature extraction section, 251 

while the purple box represents the downscaling section. 252 

The downscaling U-Net architecture in this paper consists of two components: the blue box 253 

representing the feature extraction section and the purple box representing the downscaling 254 

section. Placing the upsampling process after the feature extraction section can reduce 255 

computational load without compromising the accuracy of the results. The feature extraction 256 
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section accepts input data of low resolution for forecasting. The structure of the feature 257 

extraction section consists of the left encoder part and the right decoder part. Downsampling is a 258 

critical process in the encoder, and the downsampling module comprises pooling, convolution, 259 

and activation operations. Through the downsampling module, the size of the feature maps is 260 

halved, while the number of channels is doubled compared to the original. Upsampling is an 261 

essential process in the decoder, and the upsampling module consists of convolution, activation, 262 

transposed convolution, and activation operations. Through the upsampling module, the size of 263 

the feature maps is doubled, while the number of channels is halved compared to the original. 264 

Then the feature maps of the same size are concatenated through skip connections. Skip 265 

connections allow for the integration of information from different scales, thereby enhancing the 266 

network’s ability to capture complex patterns and improve its fitting capability. The number of 267 

convolutional kernels in each layer of the feature extraction section is {16, 32, 64, 64, 64, 32, 32, 268 

16}. The downsampling section includes two upsampling processes. The order of operations in 269 

the upsampling module is consistent with the feature extraction section. However, in the final 270 

upsampling module, the size of the feature maps is increased by a factor of 5. After the 271 

upsampling, batch normalization, convolution, and activation operations in the downsampling 272 

section, the high-resolution downscaled results are obtained. The number of convolutional 273 

kernels in each layer of the feature extraction section is {16, 16, 16, 16, 16, 16, 1}. The 274 

relationship to control the output feature map size in convolutional operations within the network 275 

can be represented as, 276 

𝑜 = ⌊
𝑖 + 2𝑝 − 𝑘

𝑠
⌋ + 1. (10) 277 

The relationship to control the output feature map size in transpose convolutional operations can 278 

be represented as: 279 

𝑜 = 𝑠(𝑖 − 1) + 𝑘 − 2𝑝, (11) 280 

where 𝑜 represents the size of the output feature map, 𝑖 represents the size of the input feature 281 

map, 𝑝 represents the padding size, 𝑘 represents the size of the convolutional kernel, and 𝑠 282 

represents the stride of the convolution operation. The activation function used is Rectified 283 

Linear Unit (ReLU) (Glorot et al., 2011), which is widely used and highly effective in regression 284 

problems. Its formula is as follows: 285 
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𝑅𝑒𝐿𝑈(𝑥𝑖) = 𝑚𝑎𝑥(0, 𝑥𝑖) , (12) 286 

where, 𝑥𝑖 represents the elements of the feature map to the activation function. Batch 287 

normalization is also employed in the network. Batch normalization helps alleviate the problem 288 

of internal covariate shifts during the training process (Ioffe & Szegedy, 2015). It stabilizes the 289 

learning process by normalizing the inputs of each layer within a mini-batch and has shown good 290 

performance in accelerating the training of various deep learning models and regularization 291 

(Silver et al., 2017). The formula for batch normalization is as follows; 292 

𝐵𝑁(𝑋) =
𝑋 − 𝐸[𝑋]

√Var[𝑋] + 𝜖
× 𝛾 + 𝛽, (13) 293 

where 𝛾 and 𝛽 are trainable parameters, 𝜖 is a small constant value, 𝑋 represents the feature map 294 

matrix, 𝐸[𝑋] is the mean of the feature map matrix 𝑋, and Var[𝑋] is the variance of the feature 295 

map matrix 𝑋. 296 

3.2.3 UNR-Net 297 

The UNR-Net consists of three components: the auxiliary information processing section, the 298 

feature extraction section, and the downscaling section (Figure 3). The auxiliary information 299 

processing section receives high-resolution terrain data and outputs to both the feature extraction 300 

section and the downscaling section. The feature extraction section takes inputs from the low-301 

resolution forecast data and the auxiliary information processing section, and outputs to the 302 

downscaling section. The downscaling section receives inputs from both the auxiliary 303 

information processing section and the feature extraction section, ultimately generating high-304 

resolution downscaled results. 305 

The auxiliary information processing section accepts high-resolution auxiliary data, and the 306 

resolution of the auxiliary data can be higher than the target resolution of the downscaling task. 307 

Because in this section, we control the size of the output feature maps by utilizing (Equation 9), 308 

the result is a gradual reduction in the dimensions of the feature maps. In this task, the resolution 309 

of the terrain data is 60 times higher than that of the low-resolution forecast data. In this network, 310 

the size of the feature maps gradually decreases by factors of 2, 3, 5, and 2. Specifically, the data 311 

that undergoes a total reduction of 6 and 30 times is input into the downscaling part, while the data 312 

that undergoes a total reduction of 60 times is input into the feature extraction part. The number 313 
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of convolutional kernels in this part is {8, 8, 8, 8, 6}, and after the first and second copies, the 314 

number of convolutional kernels for the subsequent convolution operations is {1, 1}. 315 

 316 

Figure 3. UNR-Net architecture. The green box represents the auxiliary information processing 317 

section, the blue box represents the feature extraction section, and the purple box represents the 318 

downscaling section. The rest of the instructions are the same as in Figure 2. 319 

The difference between the feature extraction part in this section and the feature extraction part 320 

in the downscaling U-Net described in Section 3.2.2, is the utilization of dropout layers to 321 

prevent alleviate overfitting (Srivastava et al., 2014), the removal of some batch normalization 322 

operations (Li et al. 2019), and the addition of residual attention modules. The addition of the 323 

residual attention modules is one of the key improvements in the network. 324 
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 325 

Figure 4. The Residual Attention Module. The numbers within the parentheses for the resize 326 

operation represent the shape of the output feature map, and the ⊗ represents matrix 327 

multiplication. 328 

This module primarily consists of the Res2net module (Gao et al., 2019) and a non-local 329 

attention mechanism (Wang et al., 2018) (Figure 4). The Res2net module divides the feature map 330 

into four segments along the channel dimension and processes them separately. This approach 331 

enables more efficient integration of multiple receptive field sizes, allowing the model to capture 332 

information from different scales effectively. Additionally, it helps prevent model degradation, 333 

ensuring stable and robust performance. The nonlocal attention mechanism is a spatially 334 

sensitive attention mechanism. Within the attention part of the module, the input is first 335 

replicated four times for separate operations. One of the replicas is used for residual connection, 336 

while the other two replicas are used to generate attention weights. These attention weights are 337 

then multiplied with the fourth replica, resulting in a feature map that emphasizes important 338 

regions. During the generation of attention weights, the module performs matrix multiplication 339 

on the resized feature maps to produce the attention weights, similar to the process of generating 340 

a covariance matrix. These attention weights are then activated using the softmax activation 341 

function, given by the formula: 342 
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𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑐𝐶
𝑐=1

, (14) 343 

where 𝑧𝑖 represents the elements of the attention weight matrix, and 𝐶 represents the total 344 

number of elements in the attention weight matrix. Finally, the attention-weighted feature map is 345 

obtained by multiplying it element-wise with the fourth copy of the feature map that underwent 346 

convolution and resizing operations. This results in a feature map where the importance is 347 

allocated based on the attention weights. Therefore, this non-local attention mechanism can 348 

allocate the importance of each position in the feature map from a global perspective, 349 

considering the correlation between high-resolution observational data and low-resolution 350 

forecast data, while ignoring the spatial distance and capturing the interactions across different 351 

locations. The distinction between the downscaling components of UNR-Net and U-Net lies in 352 

the source of data and the methodology employed for upsampling. The downscaling section of 353 

this network not only receives inputs from the feature extraction part but also incorporates inputs 354 

from the auxiliary information processing section after each upsampling step. These input feature 355 

maps have a smaller receptive field, allowing the network to incorporate information from a 356 

smaller scale and enhance its fitting capability. Moreover, the upsampling method in the 357 

downscaling section of UNR-Net has been changed from transpose convolution to a combination 358 

of nearest-neighbor interpolation and convolution. This change was made to address the issue of 359 

checkerboard artifacts that can be introduced by transpose convolution, which can potentially 360 

affect the practical utility of the network (Dumoulin et al., 2017). The combination of nearest-361 

neighbor interpolation and convolution for upsampling helps to avoid the occurrence of 362 

checkerboard artifacts without compromising result accuracy. The formula for nearest-neighbor 363 

interpolation is as follows: 364 

𝑠𝑟𝑐𝑋 = 𝑑𝑠𝑡𝑋 ×
𝑠𝑟𝑐𝑊𝑖𝑑𝑡ℎ

𝑑𝑠𝑡𝑊𝑖𝑑𝑡ℎ
, (15) 365 

𝑠𝑟𝑐𝑌 = 𝑑𝑠𝑡𝑌 ×
𝑠𝑟𝑐𝐻𝑒𝑖𝑔ℎ𝑡

𝑑𝑠𝑡𝐻𝑒𝑖𝑔ℎ𝑡
, (16) 366 

where 𝑑𝑠𝑡𝑋 and 𝑑𝑠𝑡𝑌 represent the coordinates of the enlarged feature map's grid points; 367 

𝑑𝑠𝑡𝑊𝑖𝑑𝑡ℎ and 𝑑𝑠𝑡𝐻𝑒𝑖𝑔ℎ𝑡 represent the length and width of the enlarged feature map; 𝑠𝑟𝑐𝑋 and 368 

𝑠𝑟𝑐𝑌 represent the coordinates of the original feature map's grid points; 𝑠𝑟𝑐𝑊𝑖𝑑𝑡ℎ and 369 

𝑠𝑟𝑐𝐻𝑒𝑖𝑔ℎ𝑡 represent the length and width of the original feature map. 370 
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The network shares the same operations and parameters as the U-Net, except for the differences 371 

mentioned above. 372 

3.3 Evaluation metrics 373 

We have employed six evaluation methods to assess the strengths and weaknesses of the three 374 

approaches from various perspectives. The six evaluation methods are the NSE (Nash et al., 375 

1970), PCC, RMSE, SSIM, Root Mean Square Error Skill Score (RMSESS), and MSE. Their 376 

formulas are given as follows:  377 

𝑁𝑆𝐸 = 1 −
𝛴𝑖=1

𝑛 (𝑜𝑖 − 𝑓𝑖 )2

𝛴𝑖=1
𝑛 (𝑜𝑖 − 𝑜̅)2

, (17) 378 

𝑃𝐶𝐶 =
∑ (𝑓𝑖 − 𝑓)̅(𝑜𝑖 − 𝑜̅)

𝑚

𝑖=1

√∑ (𝑜𝑖 − 𝑜̅)2(𝑓𝑖 − 𝑓)̅
2𝑚

𝑖=1
∑ (𝑜𝑖 − 𝑜̅)2𝑚

𝑖=1

, (18)
 379 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑓𝑖 − 𝑜𝑖)2

𝑚

𝑖=1

, (19) 380 

𝑆𝑆𝐼𝑀 =
(2𝑜̅𝑓̅ + 𝐶1)(2𝜎𝑜𝑓 + 𝐶2)

(𝑓̅2 + 𝑜̅2 + 𝐶1)(𝜎𝑓
2 + 𝜎𝑜

2 + 𝐶2)
, (20) 381 

𝑅𝑀𝑆𝐸𝑆𝑆 =
𝑅𝑀𝑆𝐸𝑟𝑒𝑓 − 𝑅𝑀𝑆𝐸

𝑅𝑀𝑆𝐸𝑟𝑒𝑓
, (21) 382 

𝑀𝑆𝐸 =
1

𝑚
∑(𝑓𝑖 − 𝑜𝑖)

2

𝑚

𝑖=1

, (22) 383 

where 𝑜 represents the observation; 𝑓 represents the forecast; 𝑛 represents the number of time 384 

steps; 𝑚 represents the number of grid points; 𝑜̅ and 𝑓 ̅represent the mean of observations and 385 

forecasts (in the case of 𝑁𝑆𝐸, it represents the mean over all time steps for a grid point, and in 386 

other formulas, it represents the mean over all grid points for a time step); respectively; 𝜎𝑜 is the 387 

standard deviation of observations; 𝜎𝑓 is the standard deviation of forecasts; 𝜎𝑜𝑓 is the 388 

covariance between observations and forecasts; 𝐶1 and 𝐶2 are constants. Among the six 389 

evaluation metrics, higher values indicate better performance, except for RMSE and MSE, in 390 
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which a lower value is desirable. 𝑁𝑆𝐸 reflects the fitting effect of the downscaled results to the 391 

observations (Gerges et al., 2022). 𝑃𝐶𝐶 measures the correlation between the forecast field and 392 

the observation field. 𝑅𝑀𝑆𝐸 represents the absolute error between the forecast values and the 393 

observed values. 𝑆𝑆𝐼𝑀 measures the similarity between the forecast field and the observation 394 

field, which is more in line with human visual perception. 𝑅𝑀𝑆𝐸𝑆𝑆 quantifies the comparison 395 

between two methods. 𝑀𝑆𝐸, as an absolute error, can amplify the 𝑅𝑀𝑆𝐸.  396 

3.4 Error decomposition 397 

While comprehensive evaluation metrics allow for the quantification of model performance from 398 

various perspectives, they often lack interpretability and provide limited guidance for model 399 

improvement (Zhu et al., 2022). Error decomposition, on the other hand, enables the breakdown 400 

of absolute errors into interpretable components, facilitating a more in-depth evaluation (Hodson 401 

et al., 2021). 402 

First, the model error 𝝐 is defined as, 403 

𝝐 = 𝒇 − 𝒐, (23) 404 

where 𝒇 represents a downscaled results vector with 𝑛 values, and 𝒐 represents an observation 405 

vector with 𝑛 values. 406 

The error can be divided into four components representing the four seasons, 407 

𝝐 = 𝝐𝟏 + 𝝐𝟐 + 𝝐𝟑 + 𝝐𝟒, (24) 408 

= 𝜹𝟏𝝐 + 𝜹𝟐𝝐 + 𝜹𝟑𝝐 + 𝜹𝟒𝝐, (25) 409 

where 1, 2, 3, and 4 represent the four seasons (spring, summer, autumn, and winter, 410 

respectively), and 𝜹 is a matrix of the same shape as 𝝐, consisting of elements 0 and 1, 411 

𝛿𝑖𝑗 = {
1 𝑖𝑓 𝜖𝑖 ∈ 𝑠𝑒𝑎𝑠𝑜𝑛 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (26) 412 

So, the 𝑀𝑆𝐸 can be decomposed as follows: 413 

𝑀𝑆𝐸(𝝐) = 𝑀𝑆𝐸(𝝐𝟏 + 𝝐𝟐 + 𝝐𝟑 + 𝝐𝟒), (27) 414 

=
1

𝑛
∑(𝜖1𝑖 + 𝜖2𝑖 + 𝜖3𝑖 + 𝜖4𝑖 )2,

𝑛

𝑖=1

(28) 415 
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=
1

𝑛
∑(𝜖1𝑖)2

𝑛

𝑖=1

+
1

𝑛
∑(𝜖2𝑖)2

𝑛

𝑖=1

+
1

𝑛
∑(𝜖3𝑖)2

𝑛

𝑖=1

+
1

𝑛
∑(𝜖4𝑖)2

𝑛

𝑖=1

+
2

𝑛
∑(𝜖1𝑖 ⋅ 𝜖2𝑖 )

𝑛

𝑖=1

+
2

𝑛
∑(𝜖3𝑖 ⋅ 𝜖4𝑖)

𝑛

𝑖=1

+
2

𝑛
∑(𝜖1𝑖 + 𝜖2𝑖 ) ⋅ (𝜖3𝑖 + 𝜖4𝑖)

𝑛

𝑖=1

. (29)

 416 

Since the errors for the four seasons are orthogonal to each other, the term 
2

𝑛
∑ (𝜖1𝑖 ⋅ 𝜖2𝑖 )𝑛

𝑖=1 +417 

2

𝑛
∑ (𝜖3𝑖 ⋅ 𝜖4𝑖)𝑛

𝑖=1 +
2

𝑛
∑ (𝜖1𝑖 + 𝜖2𝑖) ⋅ (𝜖3𝑖 + 𝜖4𝑖)𝑛

𝑖=1  equals zero. According to Hodson et al. (2021), 418 

each MSE can be decomposed into three components: Bias, Sequence, and Distribution. 419 

Therefore, it follows, 420 

𝑀𝑆𝐸(𝝐) = 𝐵𝑖𝑎𝑠(𝝐𝟏)2 + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝝐𝟏) + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝝐𝟏)

+𝐵𝑖𝑎𝑠(𝝐𝟐)2 + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝝐𝟐) + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝝐𝟐)

+𝐵𝑖𝑎𝑠(𝝐𝟑)2 + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝝐𝟑) + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝝐𝟑)

+𝐵𝑖𝑎𝑠(𝝐𝟒)2 + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝝐𝟒) + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝝐𝟒). (31)

 421 

The Bias component quantifies the model's ability to accurately replicate the mean of the 422 

observations. The Sequence component measures the model's ability to accurately reproduce 423 

temporal sequences of events. The Distribution component quantifies the model's ability to 424 

accurately replicate the distribution of the observations. As a result, we have obtained the 425 

differences in terms of bias, sequence, and distribution across various seasons. 426 

4.  Results 427 

4.1 General downscaling performance 428 

Figure 5 illustrates the error performance of the downscaled results from the three methods and 429 

the low-resolution forecast data compared to the observations. the graph illustrates that the 430 

downscaled results from the three methods exhibit significantly better performance in terms of 431 

error compared to the low-resolution forecast data. 432 

For NSE, PCC, and RMSE, the average differences between the LR method and U-Net over a 433 

lead time from 1 to 7 days are 0.052, 0.013, and 0.220, respectively. In comparison, the 434 

corresponding differences between the LR method and UNR-Net are 0.077, 0.016, and 0.338, 435 

respectively. The LR method exhibits the poorest performance. As for the two deep learning 436 

methods, their average differences are 0.025, 0.005, and 0.117, indicating a similar performance. 437 

Moreover, as the lead time increases, the differences among the three methods become more 438 
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pronounced. When the lead time is 1 day, the gap between U-Net results and low-resolution data 439 

is 114% (NSE), 111% (PCC), and 125% (RMSE) compared to the gap between LR results and 440 

low-resolution data. Similarly, the gap between UNR-Net results and LR results is 117% (NSE), 441 

112% (PCC), and 131% (RMSE) compared to the gap with low-resolution data. When the lead 442 

time is 7 days, the gap between U-Net results and low-resolution data is 129% (NSE), 119% 443 

(PCC), and 141% (RMSE) compared to the gap between LR results and low-resolution data. 444 

Likewise, the gap between UNR-Net results and LR results is 142% (NSE), 127% (PCC), and 445 

165% (RMSE) compared to the gap with low-resolution data. UNR-Net demonstrates a greater 446 

advantage as the lead time becomes longer. 447 

 448 

Figure 5. The overall evaluation of the three methods and the GEFS data. Variations in (a) NSE, 449 

(b) PCC, (c) RMSE, and (d) SSIM of 2-m temperature at lead times of 1–7 days derived from the 450 

GEFS, LR, U-Net, and UNR-Net averaged over North China. 451 

However, in the case of SSIM, the average score of U-Net is even lower than that of the LR 452 

method by 0.015. This indicates that U-Net performs worse than the LR method when 453 

considering SSIM. Indeed, the other three evaluation metrics (NSE, PCC, and RMSE) 454 

unequivocally attest to the superior calibration ability of U-Net compared to the LR method. 455 

However, the evaluation of SSIM measures the degree of structural similarity, which suggests 456 

that U-Net does not excel in the downscaling task. On the other hand, the modified network 457 

UNR-Net, when compared to the LR method, exhibits significant improvement. This implies that 458 

the checkerboard artifacts introduced by the transposed convolutions used in the upsampling 459 

process of U-Net diminish the practical application value of its results. Conversely, the modified 460 

UNR-Net incorporates a combination of nearest-neighbor interpolation and convolution. This 461 
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approach successfully mitigates the issue of checkerboard artifacts, all the while maintaining 462 

unblemished result accuracy. 463 

 464 

Figure 6. Spatial distributions of the NSE for 2-m temperature with lead times of 1, 4, and 7 465 

days derived from LR (a–c), U-Net (d–f), and UNR-net (g–i), the values in the upper-right title 466 

represent the mean of NSE in each case. 467 
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The spatial distribution of NSE for the three methods is illustrated in Figure 6. Upon examining 468 

the spatial distribution of the downscaled results from the three methods in fitting high-resolution 469 

observational data, it becomes evident that the underperforming areas are concentrated around 470 

the Taihang Mountain range. In certain regions, the scores even dip below 0.45. The scores 471 

exhibit an increasing trend from both sides of the Taihang Mountain range in terms of spatial 472 

distribution. Overall, there is a pattern of higher scores in the southeastern and northwestern 473 

regions. 474 

From LR to U-Net and then to UNR-Net, the fit of the predicted field to the observed field in the 475 

region of the Taihang Mountains shows improvement. Moreover, within all lead times depicted 476 

in the figure, the area characterized by scores below 0.45 exhibits a progressively diminishing 477 

extent, with notable improvements observed, particularly in the vicinity of the Taihang 478 

Mountains, for the two employed deep learning methodologies. Additionally, it is noteworthy 479 

that the area encompassing scores exceeding 0.95 demonstrates a gradual increase in size. When 480 

considering a lead time of 1 day, the distribution of regions with NSE scores below 0.45 for the 481 

LR method is concentrated in the northeastern part of Shaanxi province and in the vicinity of the 482 

Taihang Mountains. In fact, a majority of these areas even exhibit scores below 0.4. On the other 483 

hand, regions with NSE scores surpassing 0.95 are mainly limited to Jiangsu, Anhui, Hubei, and 484 

other areas. For the U-Net method, the extent of regions with NSE scores below 0.45 has been 485 

significantly reduced. In the northeastern part of Shaanxi province, there are no longer any areas 486 

with scores below 0.4. Furthermore, regions with NSE scores exceeding 0.95 now include 487 

Shandong and Henan. As for the UNR-Net method, the area with NSE scores below 0.45 has 488 

decreased compared to U-Net. In the northeastern part of Shaanxi province, southern Shanxi, and 489 

Liaoning province, there are no longer any regions with scores below 0.45. The regions near the 490 

Taihang Mountains with scores below 0.45 appear sporadically. Additionally, the region in the 491 

southeast of Hebei province is now encompassed within the area with NSE scores surpassing 492 

0.95, and the overall area in Shandong with scores below 0.95 has decreased compared to U-Net. 493 

When considering lead times of 4 and 7 days, although the overall scores of all three methods 494 

have decreased, certain patterns still emerge. The LR method exhibits the largest area with scores 495 

below 0.45 and the smallest area with scores above 0.95. Conversely, UNR-Net showcases the 496 

smallest area with scores below 0.45 and the largest area with scores above 0.95. Especially 497 

noteworthy is the 7-day lead time, where the LR method has virtually no areas with scores above 498 
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0.95. In contrast, both deep learning methods still exhibit some distribution in the southeastern 499 

region. Furthermore, the area with scores above 0.8 for UNR-Net is notably larger than that for 500 

U-Net. 501 

As the lead time increases, NSE scores progressively decrease. For instance, when comparing the 502 

7-day lead time to the 1-day lead time, the LR method experiences a decrease of 0.348 in NSE, 503 

while the U-Net method decreases by 0.307 and the UNR-Net method decreases by 0.276. It is 504 

evident that UNR-Net exhibits a lower reduction magnitude compared to the other two methods. 505 

Additionally, UNR-Net maintains a larger area with high NSE scores. Therefore, UNR-Net 506 

demonstrates its superiority particularly in longer lead times, showcasing its favorable 507 

performance. 508 

 509 
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 510 

Figure 7. Spatial distributions of the RMSE for 2-m temperature with lead times of 1, 4, and 7 511 

days derived from LR (a–c), U-Net (d–f), and UNR-net (g–i) , the values in the upper-right title 512 

represent the mean of RMSE in each case. 513 

The spatial distribution of the root mean square error (RMSE) predominantly demonstrates a 514 

pattern of lower values in the southeast and higher values in the northwest (Figure 7). 515 

Furthermore, as the lead time increases, the overall error tends to escalate. At a lead time of 1 516 

day, the error distribution of the LR method appears to be relatively uniform. While the region 517 

with errors below 0.6 °C is predominantly concentrated in the eastern part, the overall 518 

differences are not significant. On the other hand, U-Net and UNR-Net exhibit smaller errors in 519 

the southeastern region, with large areas showing errors below 1.2 °C. Moreover, UNR-Net 520 

showcases a larger region with errors below 1 °C compared to U-Net. Specifically, UNR-Net 521 

demonstrates a greater coverage of areas with errors below 1°C in Jiangsu, Anhui, and even in 522 

Shandong, surpassing the performance of U-Net. Additionally, UNR-Net displays reduced errors 523 

in regions with complex topography such as the Shandong Peninsula, Shaanxi, and Shanxi, with 524 

a higher number of areas exhibiting errors below 1.2°C. This highlights the stronger correction 525 

capability of UNR-Net. At a lead time of 4 days, the LR method demonstrates an overall spatial 526 

distribution pattern of lower errors in the eastern and western regions, with higher errors 527 

observed in the central area. Specifically, there are areas in the central part of Hebei province 528 

where errors exceed 2.2°C, and some regions even exhibit errors surpassing 2.6°C. In contrast, 529 

the spatial distribution of the two deep learning methods does not exhibit a distinct pattern of 530 

lower errors in the central region. Therefore, compared to the LR method, there is a significant 531 
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improvement in the central region, resulting in an overall pattern of lower errors in the southern 532 

areas and higher errors in the northern areas. Notably, UNR-Net outperforms U-Net in terms of 533 

the southern region, with a larger area showing errors below 1.6°C. This is especially evident in 534 

the complex terrain areas of southern Shaanxi and central Shanxi, where UNR-Net demonstrates 535 

even lower errors, showcasing its superior downscaling capability in complex topography 536 

conditions. At a lead time of 7 days, the error distribution of the LR method is similar to that at a 537 

3-day lead time. Both deep learning methods also exhibit a pattern of higher errors in the 538 

northern regions and lower errors in the southern regions. Additionally, UNR-Net exhibits lower 539 

errors in the regions of Shandong and Hebei, showcasing its superior performance in those areas. 540 

Moreover, UNR-Net demonstrates better downscaling capability in the southern regions of 541 

Shaanxi and Shanxi as well. 542 

Subsequently, a further comparison was made between the absolute error performance of the two 543 

deep learning methods (Figure 8). Overall, when comparing the improvement levels of the two 544 

deep learning methods relative to the LR method, UNR-Net exhibits a greater degree of 545 

improvement compared to U-Net. The RMSESS scores of UNR-Net, at lead times of 1, 4, and 7 546 

days, were found to be higher than those of U-Net by 0.035, 0.052, and 0.043, respectively. It 547 

can be observed that as the lead time increases, UNR-Net demonstrates a greater overall 548 

improvement over the LR method. From the spatial distribution, it can be observed that the 549 

significant improvements of both deep learning methods are concentrated in central Hebei, 550 

Jiangsu, Anhui, and Henan. Across all lead times, these regions exhibit the lowest scores in the 551 

entire area. At a lead time of 1 day, there are areas where the score is less than zero, indicating 552 

minimal improvement compared to the LR method. These areas are mainly located in Inner 553 

Mongolia, with UNR-Net exhibiting a smaller coverage compared to U-Net. In the Shandong 554 

region, unlike U-Net, UNR-Net does not have any areas with scores less than 0. Comparing the 555 

areas with higher scores, it can be observed that in central Hebei and Anhui, UNR-Net covers a 556 

significantly larger area with scores above 0.3, and even areas with scores above 0.35, while U-557 

Net only has a small portion of the western Anhui region with scores above 0.35, and no such 558 

distribution in other regions. The areas where significant improvements were observed are 559 

primarily concentrated around the Taihang Mountains and the southeastern region. At lead times 560 

of 4 and 7 days, the overall situation is similar to that at a lead time of 1 day. UNR-Net 561 

outperforms U-Net in terms of higher scores. Particularly at a lead time of seven days, UNR-Net 562 
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shows improvements over the LR method in all regions. Thus, it further demonstrates the 563 

superiority of UNR-Net, particularly at longer lead times. 564 

 565 

Figure 8. RMSESS spatial distribution of deep learning methods relative to LR methods for 2-m 566 

temperature with lead times of 1, 4, and 7 days derived from U-Net (a–c) and UNR-net (d–f) , 567 

the values in the upper-right title represent the mean of RMSESS in each case. 568 

Choosing a day from the testing dataset characterized by a widespread occurrence of low-569 

temperature rain and snow events, we present three illustrative examples of downscaling 570 

methods (Figure 9). All three methods aim to downscale the low-resolution forecast data shown 571 

in Figure 12a to achieve results that closely resemble the high-resolution observational data 572 

depicted in Figure 12b. In this particular case, the forecast data generally exhibit lower values in 573 

the northern region compared to the observational data. This highlights the need for higher 574 

requirements in terms of correcting the forecast data. From the downscaling results of the three 575 

methods, it can be observed that all three methods exhibit finer textures compared to the low-576 
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resolution forecast data. In the case of the LR method, the blue color in the northern region 577 

appears lighter, indicating higher temperatures compared to the observed values and the 578 

downscaled results of the other two methods. Therefore, the LR method exhibits larger errors. 579 

On the other hand, both deep learning methods show significantly smaller errors compared to the 580 

LR method, with UNR-Net demonstrating even smaller errors than U-Net.581 

 582 

Figure 9. The 2-m temperature downscaling example for a lead time of 1 day on 6 December 583 

2019, with the (a) low-resolution forecast, (b) high-resolution observation, (c) LR downscaling 584 

result, (d) U-Net downscaling result and (e) UNR-Net downscaling result. The value in the 585 

upper-right title is the MSE of the three downscaled results. 586 

The performance of a method in capturing extreme values is also an important criterion for 587 

assessing its effectiveness in the context of low-temperature rain and snow events. From Figure 588 

10, it is evident that for 6 December 2019, the downscaled results of the LR method consistently 589 

deviate from the red line. The values tend to be higher overall, indicating lower accuracy. 590 

Furthermore, the distribution of points appears to be widely scattered especially in the low-591 

temperature range. The two deep learning methods exhibit significant improvements in accuracy 592 

compared to LR. The extent of deviation from the red line is reduced, and the points generally 593 
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align along the line. Additionally, the distribution of points is much more concentrated compared 594 

to the LR method. For the two deep learning methods, UNR-Net demonstrates a better 595 

performance than U-Net in the low-temperature range. The points are more concentrated, with 596 

the distribution center aligning closely with the red line. 597 

 598 

Figure 10. Scatter plot density of the downscaled results for the three methods on 6 December 599 

2019, with a 24-h lead time derived from (a)LR, (b) U-Net, and (c) UNR-net. 600 

As illustrated in the above example, for the majority of days in the testing dataset, the 601 

performance of the three methods is characterized by LR being the poorest and UNR-Net being 602 

the best (Figure 11). However, when considering the performance over the entire year in the 603 

testing dataset, noticeable seasonal variations can be observed. Regarding NSE and PCC, the 604 

performance of the low-resolution forecast data is not stable. It exhibits significant fluctuations 605 

and lower scores, particularly around the summer season. However, after downscaling using the 606 

three methods, the scores of the results remain stable throughout the year. This indicates a 607 

significant improvement in the fitting and correlation between the predicted and observed fields, 608 

particularly during the summer season. In terms of RMSE, although the error of the low-609 

resolution forecast data fluctuates significantly at the beginning and end of the year and remains 610 

relatively constant throughout the middle of the year, the overall numerical value remains 611 

consistent. However, the error values of the downscaled results using the three methods do not 612 

exhibit a constant distribution. They generally show a pattern of being lower during the middle 613 

of the year and higher at the beginning and end of the year. However, the fluctuations are 614 
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relatively evenly distributed throughout the year. In terms of SSIM, the low-resolution forecast 615 

data generally exhibits slightly higher scores during the middle of the year compared to the 616 

beginning and end of the year, with less pronounced fluctuations. However, there are significant 617 

differences in the distribution of results for the three downscaled methods. The scores are 618 

noticeably higher and more stable during the middle of the year compared to the beginning and 619 

end of the year. Hence, it is necessary to conduct further analysis based on seasons to gain 620 

deeper insights. 621 

 622 

Figure 11. The error performance of the downscaled results for the three methods in the whole 623 

testing dataset and the GEFS data with a 1-d lead time for (a) NSE, (b) PCC, (c) RMSE, and (d) 624 

SSIM. 625 
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4.2 Error decomposition 626 

The decomposition of MSE into four seasons (spring, summer, autumn, and winter) for lead 627 

times of 1–7 days is illustrated in Figure 12. For the low-resolution forecast data, as the lead time 628 

increases, the error also increases. However, the rate of increase is the smallest during the 629 

summer season. The difference in error between a lead time of 7 days and 1 day is 1.10 in the 630 

summer season, while it is 2.10 in the spring season, 1.58 in the autumn season, and 1.50 in the 631 

winter season. Moreover, as the lead time increases, the error of the LR method becomes closer 632 

to the error of the low-resolution forecast data in all four seasons. The difference between the 633 

two decreases by 0.13, 0.22, 0.06, and 0.11 in the spring, summer, autumn, and winter seasons, 634 

respectively, when comparing a lead time of 7 days to a lead time of 1 day. Particularly, the error 635 

in the autumn and winter seasons shows a closer growth rate to that of the low-resolution 636 

forecast data. As for the two deep learning methods, the difference between their errors and the 637 

errors of the low-resolution forecast data changes differently compared to the performance of the 638 

LR method as the lead time increases. For the U-Net method, the difference between the two 639 

decreases by 0.035 and 0.017 in the autumn and winter seasons, respectively, when comparing a 640 

lead time of 7 days to a lead time of 1 day. However, in the spring and summer seasons, the 641 

difference increases by 0.20 and 0.10, respectively. On the other hand, for the UNR-Net method, 642 

the difference between its error and the error of the low-resolution forecast data increases in all 643 

four seasons as the lead time increases. The difference at a lead time of 7 days compared to a 644 

lead time of 1 day increases by 0.45, 0.20, 0.08, and 0.20 in the spring, summer, autumn, and 645 

winter seasons, respectively. This not only highlights the advantages of the two deep learning 646 

methods, particularly UNR-Net, over the LR method but also further emphasizes that as the lead 647 

time increases, the advantages of the deep learning methods, especially UNR-Net, become more 648 

significant and comprehensive. Additionally, both deep learning methods demonstrate greater 649 

advantages in the spring and summer seasons. 650 

  651 
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 652 

Figure 12. The decomposition of errors averaged over North China for each season across lead 653 

times of 1 to 7 days, with (a) MSE, (b) spring, (c) summer, (d) autumn, and (e) winter. 654 

As shown in Figure 13, when decomposing the errors for the four seasons, it can be observed 655 

that the three downscaled methods exhibit significant improvements in the Bias and Distribution 656 

components. For the Bias term, the average values of the LR method across the four seasons are 657 

0.02, 0.03, 0.02, and 0.06, respectively. The average values of the U-Net method across the four 658 

seasons are 0.009, 0.03, 0.01, and 0.02, respectively. As for UNR-Net, the average values across 659 

the four seasons are 0.007, 0.007, 0.009, and 0.006, respectively. Indeed, it can be observed that 660 

UNR-Net has the smallest Bias term, with values below 0.01 in all four seasons. Particularly in 661 

the winter season, the difference between the LR method and the two deep learning methods is 662 

much more significant compared to the other three seasons. For the Distribution term, the 663 

average values of the LR method across the four seasons are 0.212, 0.124, 0.297, and 0.328, 664 

respectively. The average values of the U-Net method across the four seasons are 0.171, 0.215, 665 

0.246, and 0.182, respectively. As for UNR-Net, the average values across the four seasons are 666 

0.164, 0.124, 0.197, and 0.165, respectively. The patterns for the Distribution term are similar to 667 

those of the Bias term. UNR-Net consistently exhibits the lowest error, and in the winter season, 668 

the difference between the LR method and the two deep learning methods is significantly larger 669 

compared to the other three seasons. 670 
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 671 

Figure 13. The values of Bias (a–d), Sequence (e–h), and Distribution (i–l) error components 672 

decomposed for lead times of 1 to 7 days for each season, (a, e, i) spring, (b, f, j) summer, (c, g, 673 

k) autumn, and (d, h, l) winter, averaged over North China. 674 

As for the Sequence term, the LR method shows limited capability, especially at longer lead 675 

times, where the improvement relative to the low-resolution forecast data is minimal. At a lead 676 

time of 7 days, the difference between the low-resolution forecast and the LR method is only 677 

0.034, 0.083, 0.057, and 0.103 across the four seasons, respectively. On the other hand, at a lead 678 

time of 1 day, the difference between the two is 0.163, 0.177, 0.167, and 0.150 in the respective 679 

seasons. Clearly, as the lead time increases, the correction capability of the LR method becomes 680 

weaker. Indeed, both deep learning methods demonstrate advantages over the LR method. The 681 

discrepancies between the U-Net method and the low-resolution forecasts for the four seasons 682 

are as follows: at a lead time of 1 day, they are 0.327, 0.289, 0.356, and 0.294, and at a lead time 683 

of 7 days, they are 0.414, 0.832, 0.221, and 0.104. It can be observed that as the lead time 684 
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increases, the accuracy improvement of U-Net becomes more prominent during the spring and 685 

summer seasons. The disparities between the UNR-Net method and the low-resolution forecasts 686 

for the four seasons are as follows: at a lead time of 1 day, they are 0.329, 0.279, 0.354, and 687 

0.284, and at a lead time of 7 days, they are 0.794, 0.748, 0.389, and 0.337. It can be observed 688 

that as the lead time increases, the differences between the downscaled results of UNR-Net and 689 

the low-resolution forecasts intensify across all four seasons. This indicates that the UNR-Net 690 

method exhibits a greater degree of improvement over low-resolution forecasts with longer lead 691 

times. This observation indicates that the Sequence component highlights the advantages of 692 

nonlinear methods to a greater extent. Deep learning methods primarily improve the accuracy of 693 

downscaling tasks in the temporal domain. 694 

The proportion of errors for each component after error decomposition is illustrated in Figure 14. 695 

For the errors associated with the Bias, Sequence, and Distribution components, Bias has the 696 

smallest proportion. The average proportions for the LR method, U-Net, and UNR-Net across the 697 

four seasons are 0.59%, 0.42%, and 0.21% for Bias, respectively. Next, is the Distribution 698 

component, with average proportions of 4.86%, 5.04%, and 4.43% for the LR method, U-Net, 699 

and UNR-Net across the four seasons, respectively. The dominant component is Sequence, with 700 

average proportions of 19.55%, 19.54%, and 20.36% for the LR method, U-Net, and UNR-Net 701 

across the four seasons, respectively. Therefore, the Sequence component plays a more 702 

significant role in determining the performance of the methods. 703 

As the lead time increases, the proportion of the Sequence component gradually increases. For a 704 

lead time of 1 day, the average proportions of the three methods across the four seasons are 705 

18.30%, 18.04%, and 19.74% respectively. For a lead time of 4 days, the average proportions are 706 

19.51%, 19.56%, and 20.44% respectively. For a lead time of 7 days, the average proportions are 707 

20.84%, 21.02%, and 20.91% respectively. This trend may be attributed to the fact that the errors 708 

in the forecast data in terms of temporal variability increase with longer lead times, resulting in a 709 

higher proportion of temporal errors in the downscaled results of the three methods. 710 

Furthermore, there have been changes in the proportions across seasons. For a lead time of 1 day, 711 

the average proportions of the three methods across the four seasons are 7.98%, 6.17%, 8.59%, 712 

and 10.58% respectively. It can be observed that the majority of errors are concentrated in the 713 

winter season. When the lead time increases to 4 days, the average proportions across the four 714 
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seasons are 9.43%, 6.76%, 7.75%, and 9.40% respectively. For a lead time of 7 days, the average 715 

proportions across the four seasons are 10.37%, 5.98%, 8.54%, and 8.44%, respectively. It can 716 

be noted that with the increase in lead time, the seasons with higher proportions of errors 717 

gradually shift toward the spring season. 718 

 719 

Figure 14. The decomposed 12 error components averaged over North China, represented as 720 

percentages with lead times of (a, d, g) 1, (b, e, h) 4, and (c, f, i) 7 days, derived from (a–c) LR, 721 

(d–f) U-Net, and (g–i) UNR-Net. The vertical axis represents errors for physical significance and 722 

the horizontal axis represents errors for the four seasons. 723 

The numerical values for the decomposed error components are depicted in Figure 15. Based on 724 

the numerical values of the 12 error components, as the lead time increases, for lead times of 1, 725 

4, and 7 days, the average values of the Bias component for the three methods across the four 726 

seasons are 0.011, 0.019, and 0.013, respectively. The average values of the Sequence 727 



Earth and Space Science 

 

component are 0.388, 0.771, and 1.551, respectively. The average values of the Distribution 728 

component are 0.123, 0.191, and 0.305, respectively. It can be observed that the Sequence and 729 

Distribution components show significant increases, while the Bias component remains 730 

relatively stable. Furthermore, across all components and lead times, U-Net outperforms LR, and 731 

UNR-Net outperforms U-Net. 732 

 733 

Figure 15. The decomposed error values of the 12 components averaged over North China with 734 

lead times of (a–c) 1, (d–f) 4, and (g–i) 7 days. The vertical axis represents errors from three 735 

different methods and the horizontal axis represents the seasonal error. 736 

For different seasons, the average values of the Bias component across the three lead times are 737 

0.013, 0.017, 0.014, and 0.030, respectively. Although the Bias component is almost twice as 738 

large in the winter season compared to the other three seasons, its contribution to the overall 739 

MSE is relatively small. Therefore, the winter season does not exhibit significantly higher errors 740 

compared to the other three seasons due to this component. The average values of the 741 

Distribution component across the three lead times are 0.185, 0.166, 0.260, and 0.237, 742 

respectively. The errors in the spring and summer seasons are smaller than the other two seasons. 743 
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The average values of the Sequence component across the three lead times are 1.135, 0.689, 744 

0.927, and 1.046, respectively. The Sequence component exhibits much better performance in 745 

summer compared to the other three seasons. Moreover, the Sequence component has the highest 746 

values numerically, indicating its dominant role in MSE. 747 

5.  Conclusions and discussion 748 

This paper introduces a novel downscaling network called UNR-Net, which integrates a non-749 

local attention mechanism, Res2net (Gao et al., 2019), and terrain information to further enhance 750 

the accuracy and practical value of the results. A downscaling experiment with a downscaling 751 

factor of 10x was conducted for the 2-m temperature forecast over the East China region at lead 752 

times of 1–7 days. The LR and U-Net methods are conducted as benchmarks. To obtain a more 753 

detailed and specific evaluation and enhance the interpretability of the models, the error 754 

decomposition method based on MSE is also proposed. 755 

Generally, the UNR-Net demonstrates superior performance over U-Net and LR methods in 756 

terms of NSE, PCC, RMSE, and SSIM, particularly for longer lead times. Regarding NSE, PCC, 757 

and RMSE, the LR method exhibits the poorest performance, followed by U-Net. The best-758 

performing method is UNR-Net. Both deep learning methods demonstrated a certain 759 

improvement compared to the LR method when forecasting for longer lead times. Moreover, 760 

UNR-Net exhibited a more pronounced enhancement compared to U-Net. For SSIM, the U-Net 761 

method shows the poorest performance, followed by the LR method, while UNR-Net exhibits 762 

the best performance. Therefore, it can be observed that UNR-Net has superior practical 763 

applicability compared to U-Net. In terms of spatial distribution, the errors are primarily 764 

concentrated in regions with complex terrain, such as the Taihang Mountains, Shanxi, central 765 

Shaanxi, and Liaoning. UNR-Net exhibits significantly smaller errors in this area compared to 766 

the other two methods, indicating its greater advantage in complex terrain regions. Furthermore, 767 

it was observed that during the summer season, characterized by lower NSE and PCC values in 768 

the low-resolution data, all three methods exhibited better performance in terms of RMSE and 769 

SSIM. 770 

Consequently, for a more in-depth analysis of the errors, the Mean Squared Error (MSE) is first 771 

decomposed based on time into four seasons: spring, summer, autumn, and winter. Then, it is 772 

further decomposed based on its physical significance into three components: Bias, Sequence, 773 
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and Distribution. Each method’s error is decomposed into 12 constituent components. Indeed, it 774 

can be observed that the three methods showed the lowest errors during the summer season. 775 

Moreover, the deep learning methods, especially UNR-Net, displayed more significant 776 

advantages as the lead time increased. Upon decomposing the errors for each season into Bias, 777 

Sequence, and Distribution components, it can be observed that for the Bias and Distribution 778 

components, all three methods showed significant improvements in downscaling results 779 

compared to low-resolution data, with UNR-Net exhibiting the smallest error. Among the error 780 

composition components, the Sequence component has the largest proportion and plays a 781 

dominant role. Especially for longer lead times, the LR method showed little improvement 782 

compared to low-resolution data, while both deep learning methods demonstrated higher 783 

accuracy, with UNR-Net showing the smallest errors. 784 

The success of UNR-Net in temperature downscaling highlights the feasibility of utilizing deep 785 

learning methods and techniques such as non-local attention mechanisms and residual 786 

connections for handling Earth system data. Although UNR-Net has already incorporated terrain 787 

data, it lacks the utilization of additional meteorological variables. Existing studies have shown 788 

that the integration of diverse meteorological variables can enhance the accuracy of results (Sun 789 

& Tang, 2020; Harris et al., 2022). Therefore, in the future, it is worth considering the 790 

incorporation of more meteorological elements into the downscaling task to further improve its 791 

performance. On the other hand, with the ongoing advancements in deep learning technology, 792 

there exists significant potential for further improvements in result accuracy and exploration of 793 

new possibilities. Moreover, from an analysis of error decomposition, it is evident that the degree 794 

of improvement varies for different error components. Therefore, in the future, it would be 795 

beneficial to consider employing techniques tailored to specific physical meanings or seasons. 796 

Incorporating approaches that target seasonality, mean values, temporal patterns, and 797 

distributions, such as season-based transfer learning, holds the potential to not only enhance 798 

overall error performance but also increase their practical value significantly. 799 
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