REFERENCES
1. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know.Int J Infect Dis. 2020;94:44-48.
2. Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The Architecture of
SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914-921 e910.
3. Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2
spike proteins on intact virions. Nature. 2020;588(7838):498-502.
4. Shirbhate E, Pandey J, Patel VK, et al. Understanding the role of
ACE-2 receptor in pathogenesis of COVID-19 disease: a potential approach
for therapeutic intervention. Pharmacol Rep.2021;73(6):1539-1550.
5. Cai Y, Zhang J, Xiao T, et al. Distinct conformational states of
SARS-CoV-2 spike protein. Science. 2020;369(6511):1586-1592.
6. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the
2019-nCoV spike in the prefusion conformation. Science.2020;367(6483):1260-1263.
7. Zhang J, Cai Y, Xiao T, et al. Structural impact on SARS-CoV-2 spike
protein by D614G substitution. Science. 2021;372(6541):525-530.
8. Ren W, Lan J, Ju X, et al. Mutation Y453F in the spike protein of
SARS-CoV-2 enhances interaction with the mink ACE2 receptor for host
adaption. PLoS Pathog. 2021;17(11):e1010053.
9. Su C, He J, Han P, et al. Molecular Basis of Mink ACE2 Binding to
SARS-CoV-2 and Its Mink-Derived Variants. J Virol.2022;96(17):e0081422.
10. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike
receptor-binding domain bound to the ACE2 receptor. Nature.2020;581(7807):215-220.
11. Shang J, Ye G, Shi K, et al. Structural basis of receptor
recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224.
12. Wang Q, Zhang Y, Wu L, et al. Structural and Functional Basis of
SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020;181(4):894-904
e899.
13. Mannar D, Saville JW, Zhu X, et al. SARS-CoV-2 Omicron variant:
Antibody evasion and cryo-EM structure of spike protein-ACE2 complex.Science. 2022;375(6582):760-764.
14. Benton DJ, Wrobel AG, Xu P, et al. Receptor binding and priming of
the spike protein of SARS-CoV-2 for membrane fusion. Nature.2020;588(7837):327-330.
15. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated
with a new coronavirus of probable bat origin. Nature.2020;579(7798):270-273.
16. Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the
newly identified coronavirus 2019-nCoV. J Med Virol.2020;92(4):433-440.
17. McAloose D, Laverack M, Wang L, et al. From People to Panthera:
Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo.mBio. 2020;11(5).
18. Patterson EI, Elia G, Grassi A, et al. Evidence of exposure to
SARS-CoV-2 in cats and dogs from households in Italy. Nat Commun.2020;11(1):6231.
19. Ruiz-Arrondo I, Portillo A, Palomar AM, et al. Detection of
SARS-CoV-2 in pets living with COVID-19 owners diagnosed during the
COVID-19 lockdown in Spain: A case of an asymptomatic cat with
SARS-CoV-2 in Europe. Transbound Emerg Dis. 2021;68(2):973-976.
20. Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs,
and other domesticated animals to SARS-coronavirus 2. Science.2020;368(6494):1016-1020.
21. Sit THC, Brackman CJ, Ip SM, et al. Infection of dogs with
SARS-CoV-2. Nature. 2020;586(7831):776-778.
22. Munster VJ, Feldmann F, Williamson BN, et al. Respiratory disease in
rhesus macaques inoculated with SARS-CoV-2. Nature.2020;585(7824):268-272.
23. Woolsey C, Borisevich V, Prasad AN, et al. Establishment of an
African green monkey model for COVID-19 and protection against
re-infection. Nat Immunol. 2021;22(1):86-98.
24. Lam TT, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related
coronaviruses in Malayan pangolins. Nature.2020;583(7815):282-285.
25. Badiola JJ, Otero A, Sevilla E, et al. SARS-CoV-2 Outbreak on a
Spanish Mink Farm: Epidemiological, Molecular, and Pathological Studies.Front Vet Sci. 2021;8:805004.
26. Hammer AS, Quaade ML, Rasmussen TB, et al. SARS-CoV-2 Transmission
between Mink (Neovison vison) and Humans, Denmark. Emerg Infect
Dis. 2021;27(2):547-551.
27. Koopmans M. SARS-CoV-2 and the human-animal interface: outbreaks on
mink farms. Lancet Infect Dis. 2021;21(1):18-19.
28. Fritz M, de Riols de Fonclare D, Garcia D, et al. First Evidence of
Natural SARS-CoV-2 Infection in Domestic Rabbits. Vet Sci.2022;9(2).
29. Oreshkova N, Molenaar RJ, Vreman S, et al. SARS-CoV-2 infection in
farmed minks, the Netherlands, April and May 2020. Euro Surveill.2020;25(23).
30. Domanska-Blicharz K, Orlowska A, Smreczak M, et al. Mink SARS-CoV-2
Infection in Poland - Short Communication. J Vet Res.2021;65(1):1-5.
31. Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, et al. Transmission
of SARS-CoV-2 on mink farms between humans and mink and back to humans.Science. 2021;371(6525):172-177.
32. Larsen CS, Paludan SR. Corona’s new coat: SARS-CoV-2 in Danish minks
and implications for travel medicine. Travel Med Infect Dis.2020;38:101922.
33. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS
coronavirus spike glycoprotein in complex with its host cell receptor
ACE2. PLoS Pathog. 2018;14(8):e1007236.
34. Zhou B, Thao TTN, Hoffmann D, et al. SARS-CoV-2 spike D614G change
enhances replication and transmission. Nature.2021;592(7852):122-127.
35. Hsieh CL, Goldsmith JA, Schaub JM, et al. Structure-based design of
prefusion-stabilized SARS-CoV-2 spikes. Science.2020;369(6510):1501-1505.
36. Heller LK, Gillim-Ross L, Olivieri ER, Wentworth DE. Mustela vison
ACE2 functions as a receptor for SARS-coronavirus. Adv Exp Med
Biol. 2006;581:507-510.
37. Ulrich L, Halwe NJ, Taddeo A, et al. Enhanced fitness of SARS-CoV-2
variant of concern Alpha but not Beta. Nature.2022;602(7896):307-313.
38. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC:
algorithms for rapid unsupervised cryo-EM structure determination.Nat Methods. 2017;14(3):290-296.
39. Gui M, Song W, Zhou H, et al. Cryo-electron microscopy structures of
the SARS-CoV spike glycoprotein reveal a prerequisite conformational
state for receptor binding. Cell Res. 2017;27(1):119-129.
40. Wang J, Youkharibache P, Zhang D, et al. iCn3D, a web-based 3D
viewer for sharing 1D/2D/3D representations of biomolecular structures.Bioinformatics. 2020;36(1):131-135.
41. Laurini E, Marson D, Aulic S, Fermeglia A, Pricl S. Computational
Mutagenesis at the SARS-CoV-2 Spike Protein/Angiotensin-Converting
Enzyme 2 Binding Interface: Comparison with Experimental Evidence.ACS Nano. 2021;15(4):6929-6948.
42. Laurini E, Marson D, Aulic S, Fermeglia A, Pricl S. Molecular
rationale for SARS-CoV-2 spike circulating mutations able to escape
bamlanivimab and etesevimab monoclonal antibodies. Sci Rep.2021;11(1):20274.
43. Lu L, Sikkema RS, Velkers FC, et al. Adaptation, spread and
transmission of SARS-CoV-2 in farmed minks and associated humans in the
Netherlands. Nat Commun. 2021;12(1):6802.
44. Xu C, Wang Y, Liu C, et al. Conformational dynamics of SARS-CoV-2
trimeric spike glycoprotein in complex with receptor ACE2 revealed by
cryo-EM. Sci Adv. 2021;7(1).
45. Yi C, Sun X, Lin Y, et al. Comprehensive mapping of binding hot
spots of SARS-CoV-2 RBD-specific neutralizing antibodies for tracking
immune escape variants. Genome Med. 2021;13(1):164.
46. Geng Q, Shi K, Ye G, Zhang W, Aihara H, Li F. Structural Basis for
Human Receptor Recognition by SARS-CoV-2 Omicron Variant BA.1. J
Virol. 2022;96(8):e0024922.