References
1. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med . 2020;8(5):475-481. doi:10.1016/S2213-2600(20)30079-5
2. Rello J, Belliato M, Dimopoulos M-A, et al. Update in COVID-19 in the intensive care unit from the 2020 HELLENIC Athens International symposium. Anaesthesia, Crit Care Pain Med . 2020;39(6):723. doi:10.1016/J.ACCPM.2020.10.008
3. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev . 2005;69(4):635-664. doi:10.1128/MMBR.69.4.635-664.2005
4. S U, P S, AV R, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J . 2020;96(1142):753-758. doi:10.1136/POSTGRADMEDJ-2020-138234
5. Heymann DL, Shindo N. COVID-19: what is next for public health?Lancet (London, England) . 2020;395(10224):542-545. doi:10.1016/S0140-6736(20)30374-3
6. Ge H, Wang X, Yuan X, et al. The epidemiology and clinical information about COVID-19. Eur J Clin Microbiol Infect Dis . 2020;39(6):1011-1019. doi:10.1007/S10096-020-03874-Z
7. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England) . 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
8. Fisher D, Heymann D. Q&A: The novel coronavirus outbreak causing COVID-19. BMC Med . 2020;18(1). doi:10.1186/S12916-020-01533-W
9. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nat 2020 5797798 . 2020;579(7798):265-269. doi:10.1038/s41586-020-2008-3
10. Sahu P. Closure of Universities Due to Coronavirus Disease 2019 (COVID-19): Impact on Education and Mental Health of Students and Academic Staff. Cureus . 2020;12(4). doi:10.7759/CUREUS.7541
11. Sanyaolu A, Okorie C, Hosein Z, et al. Global Pandemicity of COVID-19: Situation Report as of June 9, 2020. Infect Dis (Auckl) . 2021;14:1178633721991260. doi:10.1177/1178633721991260
12. Hua W, Xiaofeng L, Zhenqiang B, Jun R, Ban W, Liming L. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi . 2020;41(2):297-300. doi:10.3760/CMA.J.ISSN.0254-6450.2020.02.003
13. C W, X C, Y C, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med . 2020;180(7):934-943. doi:10.1001/JAMAINTERNMED.2020.0994
14. MC P, S S, P D, et al. COVID-19-related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids.Am J Respir Crit Care Med . 2020;202(1):83-90. doi:10.1164/RCCM.202003-0821OC
15. Chong WP, Ip WE, Tso GHW, et al. The interferon gamma gene polymorphism +874 A/T is associated with severe acute respiratory syndrome. BMC Infect Dis 2006 61 . 2006;6(1):1-4. doi:10.1186/1471-2334-6-82
16. Yuan FF, Boehm I, Chan PKS, et al. High Prevalence of the CD14-159CC Genotype in Patients Infected with Severe Acute Respiratory Syndrome-Associated Coronavirus. Clin Vaccine Immunol . 2007;14(12):1644. doi:10.1128/CVI.00100-07
17. Torre-Fuentes L, Matías-Guiu J, Hernández-Lorenzo L, et al. ACE2, TMPRSS2, and Furin variants and SARS-CoV-2 infection in Madrid, Spain.J Med Virol . 2021;93(2):863-869. doi:10.1002/JMV.26319
18. R Y, Y Z, Y L, L X, Y G, Q Z. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science . 2020;367(6485):1444-1448. doi:10.1126/SCIENCE.ABB2762
19. RAS S, WO S, AC A, et al. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev . 2018;98(1):505-553. doi:10.1152/PHYSREV.00023.2016
20. K K, Y I, JM P. Angiotensin-converting enzyme 2 in lung diseases.Curr Opin Pharmacol . 2006;6(3):271-276. doi:10.1016/J.COPH.2006.03.001
21. K K, B S, B Z, et al. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection. Infect Genet Evol . 2020;84. doi:10.1016/J.MEEGID.2020.104498
22. Ortiz-Fernández L, López-Mejias R, Carmona FD, et al. The role of a functional variant of TYK2 in vasculitides and infections. Clin Exp Rheumatol . 2020;38(5):949-955.
23. Semiz S. SIT1 transporter as a potential novel target in treatment of COVID-19. Biomol Concepts . 2021;12(1):156-163. doi:10.1515/BMC-2021-0017
24. Hurtado-Guerrero I, Hernáez B, Pinto-Medel MJ, et al. Antiviral, Immunomodulatory and Antiproliferative Activities of Recombinant Soluble IFNAR2 without IFN-ß Mediation. J Clin Med . 2020;9(4). doi:10.3390/JCM9040959
25. L L, D X, G Y, et al. Positive RT-PCR Test Results in Patients Recovered From COVID-19. JAMA . 2020;323(15):1502-1503. doi:10.1001/JAMA.2020.2783
26. Zhang JC, Wang S Bin, Xue YD. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J Med Virol . 2020;92(6):680-682. doi:10.1002/JMV.25742
27. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study.Lancet Infect Dis . 2020;20(4):425-434. doi:10.1016/S1473-3099(20)30086-4
28. K X, H C, Y S, et al. [Management of corona virus disease-19 (COVID-19): the Zhejiang experience]. Zhejiang Da Xue Xue Bao Yi Xue Ban . 2020;49(1):147-157. doi:10.3785/J.ISSN.1008-9292.2020.02.02
29. O M, B C. Use of antiviral drugs to reduce COVID-19 transmission.Lancet Glob Heal . 2020;8(5):e639-e640. doi:10.1016/S2214-109X(20)30114-5
30. EJ G-B, MG N, N R, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe . 2020;27(6):992-1000.e3. doi:10.1016/J.CHOM.2020.04.009
31. van Doremalen N, Miazgowicz KL, Milne-Price S, et al. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol . 2014;88(16):9220-9232. doi:10.1128/JVI.00676-14
32. SF A, AA Q, MR M. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses . 2020;12(3). doi:10.3390/V12030254
33. Alekseyev YO, Fazeli R, Yang S, et al. A Next-Generation Sequencing Primer-How Does It Work and What Can It Do? Acad Pathol . 2018;5. doi:10.1177/2374289518766521
34. Schulert GS, Blum SA, Cron RQ. Host genetics of pediatric SARS-CoV-2 COVID-19 and multisystem inflammatory syndrome in children. Curr Opin Pediatr . 2021;33(6):549-555. doi:10.1097/MOP.0000000000001061
35. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med . 2013;369(16):1502-1511. doi:10.1056/NEJMOA1306555
36. Tokuriki N, Tawfik DS. Stability effects of mutations and protein evolvability. Curr Opin Struct Biol . 2009;19(5):596-604. doi:10.1016/J.SBI.2009.08.003
37. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res . 2000;87(5). doi:10.1161/01.RES.87.5.E1
38. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med . 2020;76:14-20. doi:10.1016/J.EJIM.2020.04.037
39. Chen YY, Zhang P, Zhou XM, et al. Relationship between genetic variants of ACE2 gene and circulating levels of ACE2 and its metabolites. J Clin Pharm Ther . 2018;43(2):189-195. doi:10.1111/JCPT.12625
40. Stopsack KH, Mucci LA, Antonarakis ES, Nelson PS, Kantoff PW. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention?Cancer Discov . 2020;10(6):779-782. doi:10.1158/2159-8290.CD-20-0451
41. Strope JD, PharmD CHC, Figg WD. TMPRSS2: Potential Biomarker for COVID-19 Outcomes. J Clin Pharmacol . 2020;60(7):801-807. doi:10.1002/JCPH.1641
42. Paniri A, Hosseini MM, Akhavan-Niaki H. First comprehensive computational analysis of functional consequences of TMPRSS2 SNPs in susceptibility to SARS-CoV-2 among different populations. J Biomol Struct Dyn . 2021;39(10):1-18. doi:10.1080/07391102.2020.1767690
43. Strobl B, Stoiber D, Sexl V, Mueller M. Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front Biosci (Landmark Ed . 2011;16(9):3224-3232. doi:10.2741/3908
44. Akbari M, Akhavan-Bahabadi M, Shafigh N, et al. Expression analysis of IFNAR1 and TYK2 transcripts in COVID-19 patients. Cytokine . 2022;153. doi:10.1016/J.CYTO.2022.155849
45. Dendrou CA, Cortes A, Shipman L, et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med . 2016;8(363). doi:10.1126/SCITRANSLMED.AAG1974
46. Yao Y, Ye F, Li K, et al. Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19. Signal Transduct Target Ther . 2021;6(1). doi:10.1038/S41392-021-00519-1
47. Bae M, Roh JD, Kim Y, et al. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med . 2021;13(2). doi:10.15252/EMMM.202012632
48. Takanaga H, Mackenzie B, Suzuki Y, Hediger MA. Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. J Biol Chem . 2005;280(10):8974-8984. doi:10.1074/JBC.M413027200
49. Fricke-Galindo I, Martínez-Morales A, Chávez-Galán L, et al. IFNAR2 relevance in the clinical outcome of individuals with severe COVID-19.Front Immunol . 2022;13. doi:10.3389/FIMMU.2022.949413
50. Smieszek SP, Polymeropoulos VM, Xiao C, Polymeropoulos CM, Polymeropoulos MH. Loss-of-function mutations in IFNAR2 in COVID-19 severe infection susceptibility. J Glob Antimicrob Resist . 2021;26:239-240. doi:10.1016/J.JGAR.2021.06.005
Supporting information
Additional supporting information may be found online in the Supporting Information section.