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Abstract 17 

We present simulation results of the vertical structure of Large Scale Traveling Ionospheric 18 
Disturbances (LSTIDs) during synthetic geomagnetic storms. These data are produced using a 19 
one-way coupled SAMI3/GITM model, where GITM (Global Ionosphere Thermosphere Model) 20 
provides thermospheric information to SAMI3 (SAMI3 is Another Model of the Ionosphere), 21 
allowing the production and propagation of LSTIDs. We show simulation results which 22 
demonstrate that the traveling atmospheric disturbances (TADs) generated in GITM propagate to 23 
the topside ionosphere in SAMI3 as LSTIDs. The speed and wavelength (900 m/s and 10º-20º 24 
latitude) are consistent with LSTID observations in storms of similar magnitudes. We 25 
demonstrate the LSTIDs reach altitudes beyond the topside ionosphere with amplitudes of <5% 26 
over background which will facilitate the use of plasma measurements from the topside 27 
ionosphere to supplement measurements from GNSS in the study of TIDs. Additionally, we 28 
demonstrate the dependence of the characteristics of these TADs and TIDs on longitude. 29 

Plain Language Summary 30 

LSTIDs are a type of wave that occurs in the ionosphere, a layer of the atmosphere dominated by 31 
plasma where the motions of particles are highly subject to the magnetic field, during 32 
geomagnetic storms. We utilize two models of Earth’s atmosphere and ionosphere to show how 33 
these waves behave and show that their location, timing, and speed is dependent on various 34 
storm characteristics, timing, and location. We also show that a high-altitude satellite measuring 35 
plasma density in the ionosphere should be able to detect the characteristics of these waves. 36 

1 Introduction 37 

During geomagnetic storms, Traveling Atmospheric Disturbances (TADs), are generated 38 
by locally heating the thermosphere within the auroral zone and propagating the deposited 39 
energy outwards. The energy is deposited primarily through Joule heating caused by 40 
precipitating particles colliding with neutrals, which results in frictional heating and momentum 41 
exchange with ions and electrons (Brekke & Kamide, 1996; Hunsucker, 1982; Strangeway, 42 
2012; J. Zhu et al., 2016). TADs propagate as variations in density, temperature, and winds in the 43 
neutral atmosphere. These neutral wind perturbations drive their ionospheric counterpart, 44 
Traveling Ionospheric Disturbances (TIDs), through ion-drag forcing. TADs/TIDs can also be 45 
driven from below by volcanos, thunderstorms, thermospheric turbulence, etc. which form 46 
atmospheric gravity waves (AGWs) in the lower thermosphere (Borchevkina et al., 2021; Cheng 47 
& Huang, 1992; Nicholls & Pielke, 2000; Pradipta et al., 2023; Zhang et al., 2022). Few 48 
observations exist of AGWs due to their location in the lower thermosphere, however TADs 49 
have been observed with satellites such as the Gravity field and steady-state Ocean Circulation 50 
Explorer (GOCE) and the Challenging Minisatellite Payload (CHAMP) (Trinh et al., 2018). 51 
Most of the studies of TIDs are performed with data from ground-based networks such as 52 
ionosondes (Hajkowicz, 1991), radars (Bowman, 1990; Fukao et al., 1991; Oliver et al., 1995), 53 
and airglow imagers (Shiokawa et al., 2004). Recently, Ground-based Global Navigation 54 
Satellite System (GNSS) networks have allowed investigations on a more global scale 55 
(Figueiredo et al., 2018; Pradipta et al., 2016). However, such measurements are altitude 56 
integrated and cannot decipher the wave characteristics at different altitudes. Ionospheric 57 
measurements from satellites can provide information on TIDs where GNSS receivers cannot be 58 
placed, but such measurements typically do not correlate well with GNSS perturbation TEC 59 
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measurements where they do coincide (Ren et al., 2022). Thus, it is important to understand the 60 
characteristics of the altitude dependence of TIDs. 61 

Large Scale TIDs (LSTIDs) are TIDs with wavelengths greater than ~1000 km and are 62 
normally associated with geomagnetic storms, although they have been observed at 63 
geomagnetically quiet times with smaller amplitudes (Bruinsma & Forbes, 2010; Hedin & Mayr, 64 
1987). The electron and ion density perturbations associated with LSTIDs are mainly observed 65 
with ground-based radars and GNSS receivers (Pradipta et al., 2016; van de Kamp et al., 2014; 66 
Zakharenkova et al., 2016), with the clear disadvantage that these observations can only be 67 
acquired over land and in areas with sufficient power and communication infrastructure. The 68 
ionosphere is a medium whose refractive index is dependent on the integrated electron density 69 
along the path of the radio wave. GNSS receivers measure the delay associated with the 70 
integrated electron density along the line-of-sight to the GNSS satellites which is processed into 71 
integrated Total Electron Content (TEC) and subsequently geometrically converted to vertical 72 
TEC. TEC measurements yield little insight into the vertical structure of LSTIDs and the lack of 73 
data over the oceans prevents a global view of LSTID propagation during geomagnetic storms. 74 
While work is being done to form a more complete global picture of LSTID propagation using 75 
low power GNSS receivers and amateur radio networks, these are not yet widespread and still 76 
lack coverage over the oceans.  77 

Satellite observations of LSTIDs have been performed, but the link between 78 
measurements made at different altitudes in the ionosphere and the vertically integrated TEC is 79 
unclear (Ren et al., 2022). Analysis of Dynamic Explorer (DE 2) data yielded observations of 80 
wavelike fluctuations, only in the high-latitude regions (Innis & Conde, 2002). The Global 81 
Ultraviolet Imager (GUVI) instrument onboard the Thermosphere Ionosphere Mesosphere 82 
Energetics and Dynamics (TIMED) satellite has recently been used to identify 83 
GWs/LSTIDs/LSTADs and link them to observations by ground-based interferometers and 84 
radars; however, these observations do not extend into the topside ionosphere (Bossert et al., 85 
2022). Sounding from satellites above the F-peak is possible and Gross (1985) compared topside 86 
sounding observations to in-situ ionization density measurements suggesting that perturbations 87 
follow flux tubes vertically, but was not able to prove if the perturbations seen were travelling or 88 
stationary. 89 

The use of global circulation ionosphere and thermosphere models is therefore necessary 90 
to link observations between measurements made in different layers of the atmosphere and to 91 
understand the behavior of LSTIDs both vertically and longitudinally. The thermosphere–92 
ionosphere–electrodynamics general circulation model (TIE-GCM) has been used to model 93 
LSTADs/LSTIDs (Jonah et al., 2020; Richmond, 2003; Roble & Ridley, 1994). However TIE-94 
GCM does not model altitudes above ~500-700 km (depending on solar activity), well short of 95 
satellites with capabilities to measure properties of the topside ionosphere (720 km and 840 km 96 
for COSMIC-2 and DMSP, respectively). The Whole Atmosphere Community Climate Model 97 
with thermosphere and ionosphere extension (WACCM-X) has been used to model LSTIDs as 98 
well (Liu et al., 2018), but reaches altitudes similar to that of TIE-GCM.  99 

Investigations using SAMI3 (SAMI is another model of the ionosphere) have 100 
demonstrated that it can sustain high-altitude TIDs using the HIgh Altitude Mechanistic general 101 
Circulation Model (HIAMCM) (Huba et al., 2023) and WACCM-X (Huba & Liu, 2020) for the 102 
neutral dynamics to simulate GWs generated in the lower atmosphere. In this study, we use the 103 
Global Ionosphere-Thermosphere Model (GITM), which can self consistently generate TADs, as 104 
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a seeding mechanism for SAMI3. When coupled, we can use the results from SAMI3 to 105 
investigate how LSTIDs, seeded by LSTADs, behave in the ionosphere up to topside and 106 
exospheric altitudes. 107 

2 Methodology 108 

2.1 GITM 109 

GITM is a global-scale 3-dimensional model with an adjustable, radially-aligned 110 
orthogonal geographic, grid. GITM solves the coupled continuity, momentum, and energy 111 
equations for the neutral and ion species in a user-specified grid stretched in altitude. GITM 112 
differs from most thermospheric models in that it does not assume hydrostatic equilibrium in the 113 
vertical velocity solver, which allows the realistic generation of TADs due to Joule and particle 114 
heating in the auroral zone. GITM allows different models of high-latitude electric fields, auroral 115 
particle precipitation, solar EUV, and particle energy deposition to be used (Ridley et al., 2006). 116 
The work presented here uses the Weimer (2005) model, driven by solar wind inputs for the 117 
high-latitude electric potential, and Fuller-Rowell and Evans (1987) model, driven by the 118 
Hemispheric Power Index (HPI) for the auroral particle heating, which drives TAD production. 119 
The initial state of the model is set by the Mass Spectrometer and Incoherent Scatter radar 120 
(MSIS) neutral atmosphere model and the International Reference Ionosphere (IRI) model. 121 

2.2 SAMI3 122 

SAMI3 is a 3-dimensional, physics-based model of the ionosphere. SAMI3 also solves 123 
the coupled continuity, momentum, and energy equations, however it only models ions and 124 
electrons (not neutral species). By default, SAMI3 uses NRLMSISE00 (Picone et al., 2002) for 125 
neutral densities and the HWM14 (Drob et al., 2015) for the neutral wind; it has been modified 126 
to use GITM neutral densities and winds to allow more accurate representations of neutral 127 
dynamics and generation of TADs. SAMI3 also uses Weimer for high-latitude electric potential. 128 

SAMI3 is configured to read the density of the neutral species N2, O2, O, NO, N4S, H, 129 
and He, as well as the zonal and meridional neutral winds and neutral temperature from GITM 130 
every five minutes. This data is interpolated from the geographic grid used by GITM to the 131 
geomagnetic grid used by SAMI3 with magnetic Apex coordinates (Richmond, 1995; VanZandt 132 
et al., 1972). Because SAMI3 extends above the GITM domain, the neutral velocities and 133 
temperatures in this region are assumed to be constant, while the densities are assumed to 134 
decrease hydrostatically. SAMI3 is set to output data at a five-minute cadence as well. 135 

2.3 Synthetic Geomagnetic Storm 136 

We use a synthetic geomagnetic storm to investigate our ability to produce LSTIDs using 137 
the coupled GITM/SAMI3 model and examine their characteristics in altitude, local time, and 138 
longitude. We have chosen a day with very low background geomagnetic activity (May 21, 139 
2011) and run the models with the quiet-time indices and seasonally appropriate conditions 140 
associated with this time. Representing a moderate to large geomagnetic storm, we increase the 141 
background values of Bz=-2 nT and HPI=10 GW to Bz=-20 nT and HPI=200 GW as a step 142 
function. All other geomagnetic indices were kept at constant values. Both models were run for 143 
at least 24 hours before the onset of the simulated storm to eliminate transients and reach steady 144 
state. 145 
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perturbations seen in the electron density and why satellite measurements in the topside 249 
ionosphere typically do not correlate well with GNSS perturbation TEC measurements. 250 

4 Conclusions 251 

Through a one-way coupled GITM and SAMI3 model, we have utilized a synthetic 252 
geomagnetic storm to investigate TAD and LSTID behavior. We have shown that, due to the 253 
location of their formation in the auroral zone, there is a longitudinal dependence of TAD/LSTID 254 
location associated with the location of maximum Joule heating. TADs/LSTIDs can be seen 255 
forming immediately after storm onset and propagating both equatorward and poleward with 256 
speeds and amplitudes that vary with altitude. The most intense LSTID and TAD occurred at 257 
120° W longitude. This region does not correspond to the most intense Joule heating, but near 258 
sunrise when the neutral temperatures are the lowest, and thus where the perturbations over 259 
background are largest. LSTIDs produced in the SAMI3 results show speeds that are consistent 260 
with detrended TEC data from GNSS observations in geomagnetic storms of similar amplitude 261 
in Bz and HPI. They propagate equatorward, however the locations where LSTIDs produced in 262 
each hemisphere meet with respect to the geographic equator vary with longitude due the offset 263 
of the geomagnetic and geographic equators. The LSTIDs are seen to extend well into the 264 
topside ionosphere; however, the sign of the associated density perturbations reverses near the F-265 
peak, explaining why satellite measurements in the topside ionosphere typically do not correlate 266 
well with GNSS perturbation TEC measurements. 267 

The simulated storm can be further utilized to model LSTIDs during different seasons 268 
and with different storm onset times, allowing us to determine the role of the offset between the 269 
geographic and geomagnetic poles on LSTID characteristics. Our results aid our understanding 270 
of the longitudinal, altitudinal, and hemispherical behavior/distribution of LSTIDs as well as 271 
various aspects of IT coupling during geomagnetic storms. Using the modeled results in the 272 
topside ionosphere, we will be able to deconvolve the differences between TEC and satellite 273 
measurements and utilize observations from satellites, such as DMSP, to fill gaps in TEC 274 
observations in areas where GNSS receivers cannot be placed. 275 
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