References
Abers, G. A., van Keken, P. E., & Hacker, B. R. (2017). The cold and
relatively dry nature of mantle forearcs in subduction zones. Nature
Geosci- ence, 10(5), 333–337. https://doi.org/10.1038/ngeo2922
Avouac, J.P., 2015. From geodetic imaging of seismic and aseismic fault
slip to dy- namic modeling of the seismic cycle. Annu. Rev. Earth
Planet. Sci. 43, 233–271.
https://doi.org/10.1146/annurev-earth-060614-105302.
Barbot, S., Fialko, Y., & Bock, Y. (2009). Postseismic deformation due
to the Mw 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault
with spatially variable rate-and-state friction parameters. Journal of
Geophysical Research, 114, B07405.
https://doi.org/10.1029/2008JB005748
Barbot, S., Moore, J. D. P., & Lambert, V. (2017). Displacement and
stress associated with distributed anelastic deformation in a
half‐space. Bulletin of the Seismological Society of America, 107(2),
821–855. https://doi.org/10.1785/0120160237
Bécel, A., Shillington, D. J., Delescluse, M., Nedimović, M. R., Abers,
G. A., Saffer, D. M., Webb, S. C., Keranen, K. M., Roche, P. H., Li, J.,
& Kuehn, H. (2017). Tsunamigenic structures in a creeping section of
the Alaska subduction zone. Nature Geoscience, 10(8), 609– 613.
https://doi.org/10.1038/ngeo2990
Benjamin A. Brooks et al. ,Rapid shallow megathrust afterslip from the
2021 M8.2 Chignik, Alaska earthquake revealed by seafloor geodesy.
Sci.Adv.9,eadf9299(2023).DOI:10.1126/sciadv.adf9299
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N.,
Hemberger, D., et al., 2020. GipsyX/RTGx, a new tool set for space
geodetic operations and research. Adv. Space Res. 66 (3), 469–489.
https://doi.org/10.1016/j.asr.2020.04.015.
Bürgmann, R., Pollard, D. D., & Martel, S. J. (1994). Slip
distributions on faults: Effects of stress gradients, inelastic
deformation, heterogeneous
host-rock stiffness, and fault interaction. Journal of Structural
Geology, 16(12), 1675–1690.
https://doi.org/10.1016/0191-8141(94)90134-1
Cross, R. S., & Freymueller, J. T. (2008). Evidence for and
implications of a Bering plate based on geodetic measurements from the
Aleutians and
Western Alaska. Journal of Geophysical Research, 113, B07405.
https://doi.org/10.1029/2007JB005136
Davies, J., Sykes, L., House, L., & Jacob, K. (1981). Shumagin seismic
gap, Alaska Peninsula: History of great earthquakes, tectonic
setting,and evidence for high seismic potential. Journal of Geophysical
Research, 86(B5), 3821–3855.
https://doi.org/10.1029/JB086iB05p03821
DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current
plate motions. Geophysical Journal International, 181, 1–80.
https://doi.org/10.1111/j.1365-246x.2009.04491.x
Droof, C., & Freymueller, J. T. (2021). New constraints on slip deficit
on the Aleutian megathrust and inflation at Mt. Veniamino, Alaska from
repeat GPS measurements. Geophysical Research Letters, 48,
e2020GL091787. https://doi.org/10.1029/2020GL091787
Elliott, J., & Freymueller, J. T. (2020). A block model of present-day
kinematics of Alaska and Western Canada. Journal of Geophysical
Research: Solid Earth, 125, e2019JB018378.
https://doi.org/10.1029/2019JB018378
Elliott, J. L., Grapenthin, R., Parameswaran, R. M., Xiao, Z.,
Freymueller, J. T., & Fusso, L. (2022). Cascading rupture of a
megathrust. Science Advances, 8(18), eabm4131.
https://doi.org/10.1126/sciadv.abm4131
Fournier, T.J., Freymueller, J.T., 2007. Transition from locked to
creeping subduction in the Shumagin region, Alaska. Geophys. Res. Lett.
34 (6)
https://doi.org/10.1029/2006GL029073.L06303.
Freymueller, J. T., Suleimani, E. N., & Nicolsky, D. J. (2021).
Constraints on the slip distribution of the 1938 MW 8.3 Alaska Peninsula
earthquake from tsunami modeling. Geophysical Research Letters, 48,
e2021GL092812. https://doi.org/10.1029/2021GL092812
Freymueller, J. T., Woodard, H., Cohen, S. C., Cross, R., Elliott, J.,
Larsen, C. F., et al. (2008). Active deformation processes in Alaska,
based on 15 years of GPS measurements. In J. T.Freymueller, P.
J.Haeussler, R. L.Wesson, & G.Ekström (Eds.), Active tectonics and
seismic potential of Alaska (Vol. 179, pp. 1–42).
https://doi.org/10.1029/179GM02
Fukuda, J., & Johnson, K. M. (2021). Bayesian inversion for a
stress-driven model of afterslip and viscoelastic relaxation: Method and
application to postseismic deformation following the 2011 MW 9.0
Tohoku-Oki earthquake. Journal of Geophysical Research: Solid Earth,
126, e2020JB021620.https://doi.org/10.1029/2020JB021620
Harvey, D. Hemberger, M. Heflin, W. Lu, M. Miller, A. W. Moore, et al.
(2020). GipsyX/RTGx, a new tool set for space geodetic operations and
research, Advances in Space Research 66, no. 3, 469–489, doi:
10.1016/j.asr.2020.04.015.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H.,
Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction
zone geometry model. Science, 362(6410), 58–61.
https://doi.org/10.1126/science.aat4723
Hu, Y., Bürgmann, R., Freymueller, J. T., Banerjee, P., & Wang, K.
(2014). Contributions of poroelastic rebound and a weak volcanic arc to
the postseismic deformation of the 2011 Tohoku earthquake. Earth,
Planets and Space, 66(1), 106.
https://doi.org/10.1186/1880-5981-66-106
Hu, Y., & Freymueller, J. T. (2019). Geodetic observations of
time‐variable Glacial Isostatic Adjustment in southeast Alaska and its
implications for Earth rheology. Journal of Geophysical Research: Solid
Earth, 124(9), 9870–9889. https://doi.org/10.1029/2018JB017028
Huang, K., Hu, Y., & Freymueller, J. T. (2020). Decadal viscoelastic
postseismic deformation of the 1964 Mw9.2 Alaska earthquake. Journal of
Geophysical Research: Solid Earth, 125, e2020JB019649.
https://doi.org/10.1029/2020JB019649
Ji, C., D. J. Wald, and D. V. Helmberger (2002), Source description of
the 1999 Hector Mine, California, earthquake, Part I: Wavelet domain
inversion theory and resolution analysis, Bull. Seismol. Soc. Am.,
92(4), 1192– 1207.
Johnson, K. M., Fukuda, J., & Segall, P. (2012). Challenging the
rate-state asperity model: Afterslip following the 2011 M9 Tohoku-oki,
Japan, earthquake. Geophysical Research Letters, 39, L20302.
https://doi.org/10.1029/2012GL052901
Johnson, K. M., Bürgmann, R., & Freymueller, J. T. (2009). Coupled
afterslip and viscoelastic flow following the 2002 Denali Fault, Alaska
earthquake. Geophysical Journal International, 176(3), 670–682.
https://doi.org/10.1111/j.1365246X.2008.04029.x
Li, J., Shillington, D. J., Bécel, A., Nedimović, M. R., Webb, S. C.,
Saffer, D. M., et al. (2015). Downdip variations in seismic reflection
charac- ter: Implications for fault structure and seismogenic behavior
in the Alaska subduction zone. Journal of Geophysical Research: Solid
Earth, 120(11), 7883–7904. https://doi.org/10.1002/2015JB012338
Li, J., Shillington, D. J., Saffer, D. M., Bécel, A., Nedimović, M. R.,
Kuehn, H., et al. (2018). Connections between subducted sediment,
pore-fluid
pressure, and earthquake behavior along the Alaska megathrust. Geology,
46(4), 299–302. https://doi.org/10.1130/G39557.1
Lindsey, E. O., R. Mallick, J. A. Hubbard, K. E. Bradley, R. Almeida, J.
D. P. Moore, R. Burgmann, and E. M. Hill, Slip rate deficit and
earthquake potential on shallow megathrusts, Nature Geoscience,
doi:10.1038/s41561-021-00736-x, 2021.
Li, S., Freymueller, J.T., 2018. Spatial variation of slip behavior
beneath the Alaska Peninsula along Alaska-Aleutian subduction zone.
Geophys. Res. Lett. 45 (8), 3453–3460.
https://doi.org/10.1002/2017GL076761.
Liu, C., Lay, T., & Xiong, X. (2022). The 29 July 2021 MW 8.2 Chignik,
Alaska Peninsula earthquake rupture inferred from seismic and
geodetic observations: Re-Rupture of the Western 2/3 of the 1938 rupture
zone. Geophysical Research Letters, 49, e2021GL096004.
https://doi.org/10.1029/2021GL096004
Liu, C., Bai, Y., Lay, T., Feng, Y., Xiong, X. (2023)
Megathrust complexity and the up-dip extent of slip during the 2021
Chignik, Alaska Peninsula earthquake, Tectonophysics,
https://doi.org/10.1016/j.tecto.2023.229808.
Luo, H., & Wang, K. (2021). Postseismic geodetic signature of cold
forearc mantle in subduction zones. Nature Geoscience, 14, 104–109.
https://doi.org/10.1038/s41561-020-00679-9
Mulia, I. E., Gusman, A., Heidarzadeh, M., & Satake, K. (2022).
Sensitivity of tsunami data to the up-dip extent of the July 2021 Mw 8.2
Alaska earthquake. Seismological Research Letters, 93(4), 1992–2003.
https://doi.org/10.1785/0220210359
Muto, J., Moore, J. D. P., Barbot, S., Iinuma, T., Ohta, Y., & Iwamori,
H. (2019). Coupled afterslip and transient mantle flow after the 2011
Tohoku earthquake. Science Advances, 5(9), eaaw1164.
https://doi.org/10.1126/sciadv.aaw1164
Nishenko, S., & Jacob, K. (1990). Seismic potential of the queen
charlotte-alaska-aleutian seismic zone. Journal of Geophysical Research,
95(B3), 2511– 2532.
Okada, Y. (1985). Surface deformation due to shear and tensile faults in
a half-space. Bulletin of the seismological society of America, 75(4),
1135-1154.
Perfettini, H., Frank, W. B., Marsan, D. & Bouchon, M. (2018). A model
of aftershock migration driven by afterslip. Geophys. Res. Lett. 45,
2283–2293.
Pollitz, F. F. (2014). Post-earthquake relaxation using a spectral
element method: 2.5-D case. Geophysical Journal International, 198(1),
308–326. https://doi.org/10.1093/gji/ggu114
Pollitz, F. F., Bürgmann, R., & Banerjee, P. (2006). Post-seismic
relaxation following the great 2004 Sumatra-Andaman earthquake on a com-
pressible self-gravitating Earth. Geophysical Journal International,
167(1), 397–420. https://doi.org/10.1111/j.1365-246X.2006.03018.x
Ruppert, N. A., Rollins, C., Zhang, A., Meng, L., Holtkamp, S. G., West,
M. E., & Freymueller, J. T. (2018). Complex faulting and triggered
rupture during the 2018 MW 7.9 offshore Kodiak, Alaska, earthquake.
Geophysical Research Letters, 45, 7533–7541.
https://doi.org/10.1029/2018GL078931
Sandwell, D. T., Xu, X., Mellors, R., Wei, M., Tong, X., & Wessel, P.
(2016). GMTSAR: An InSAR processing system based on generic mapping
tools ( 2nd ed.). Retrieved from
http://topex.ucsd.edu/gmtsar/tar/GMTSAR_2ND_TEX.pdf
Schwartz, S. Y. (1999). Noncharacteristic behavior and complex
recurrence of large subduction zone earthquakes. Journal of Geophysical
Research, 104(B10), 23111–23125.
https://doi.org/10.1029/1999JB900226
Singh, S. K., & Suárez, G. (1988). Regional variation in the number of
aftershocks (mb ≥ 5) of large, subduction-zone earthquakes (MW ≥ 7.0).
Bulletin of the Seismological Society of America, 78, 230–242.
Shillington, D. J., Bécel, A., Nedimović, M. R., Kuehn, H., Webb, S. C.,
Abers, G. A., Keranen, K. M., Li, J., Delescluse, M., &
Mattei-Salicrup, G. A. (2015). Link between plate fabric, hydration and
subduction zone seismicity in Alaska. Nature Geoscience, 8(12), 961–
964. https://doi.org/10.1038/ngeo2586
Shillington, D.J., B ̵́ecel, A., Nedimovic, M.R., 2022. Upper plate
structure and megathrust properties in the Shumagin gap near the July
2020 M7.8 Simeonof event. Geophys. Res. Lett. 49
https://doi.org/10.1029/2021GL096974,32021GL096974.
Stern, R. J., Subduction zones, Rev. Geophys., 40(4), 1012,
doi:10.1029/2001RG000108, 2002.
Sun, T., & Wang, K. (2015). Viscoelastic relaxation following
subduction earthquakes and its effects on afterslip determination.
Journal of Geophysical Research: Solid Earth, 120, 1329–1344.
https://doi.org/10.1002/2014JB011707
Sun, T., Wang, K., & He, J. (2018). Crustal deformation following great
subduction earthquakes controlled by earthquake size and mantle
rheology. Journal of Geophysical Research: Solid Earth, 123, 5323–5345.
https://doi.org/10.1029/2017JB015242
Tian, Z., Freymueller, J. T., & Yang, Z. (2021). Postseismic
deformation due to the 2012 Mw 7.8 Haida Gwaii and 2013 Mw 7.5 Craig
earthquakes and its implications for regional rheological structure.
Journal of Geophysical Research: Solid Earth, 126, e2020JB020197.
https://doi. org/10.1029/2020JB020197
Tian, Z., Freymueller, J. T., Yang, Z., Li, Z., & Sun, H. (2023).
Frictional properties and rheological structure at the Ecuadorian
subduction zone revealed by the postseismic deformation due to the 2016
MW 7.8 Pedernales (Ecuador) earthquake. Journal of Geophysical Research:
Solid Earth, 128, e2022JB025043. https://doi. org/10.1029/2022JB025043.
United States Geological Survey National Earthquake Information Center,
2021. M 8.2–99 km S.E. of Perryville, Alaska.
https://earthquake.usgs.gov/earthquakes/eventpage/ak0219neiszm/finite-fault.
Wang, K., Hu, Y., & He, J. (2012). Deformation cycles of subduction
earthquakes in a viscoelastic Earth. Nature, 484(7394), 327–332.
https://doi.org/10.1038/nature11032
Wang, K., & Bürgmann, R. (2020). Probing fault frictional properties
during afterslip updip and downdip of the 2017 Mw 7.3 Sarpol‐e Zahab
earthquake with space geodesy. Journal of Geophysical Research: Solid
Earth, 125, e2020JB020319. https://doi.org/10.1029/2020JB020319
Wang, K., & Fialko, Y. (2018). Observations and modeling of coseismic
and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal)
earthquake. Journal of Geophysical Research: Solid Earth, 123, 761–779.
https://doi.org/10.1002/2017JB014620
Wei, S. S., Ruprecht, P., Gable, S. L., Huggins, E. G., Ruppert, N.,
Gao, L., & Zhang, H. (2021). Along-strike variations in
intermediate-depth seismicity and arc magmatism along the Alaska
Peninsula. Earth and Planetary Science Letters, 563, 116878.
https://doi.org/10.1016/j.
epsl.2021.116878
Wesson, R. L. (1987). Modelling aftershock migration and afterslip of
the San Juan Bautista, California, earthquake of October 3, 1972.
Tectonophysics 144, 215–229
Xiao, Z., Freymueller, J. T., Grapenthin, R., Elliott, J. L., Drooff,
C., & Fusso, L. (2021). The deep Shumagin gap filled: Kinematic rupture
model and slip budget analysis of the 2020 Mw 7.8 Simeonof earthquake
constrained by GNSS, global seismic waveforms, and floating InSAR. Earth
and Planetary Science Letters, 576, 117241.
https://doi.org/10.1016/j.epsl.2021.117241
Yabe, S. & Ide, S. (2018). Why do aftershocks occur within the rupture
area of a large earthquake? Geophys. Res. Lett.
https://doi.org/10.1029/2018GL077843.
Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H.
Webb (1997). Precise point positioning for the efficient and robust
analysis of GPS data from large networks, Journal of Geophysical
Research: Solid Earth 102 , no. B3, 5005–5017, doi:
10.1029/96JB03860.
Zhao, B., Bürgmann, R., Wang, D., Zhang, J., Yu, J., Li, Q., 2022.
Aseismic slip and recent ruptures of persistent asperities along the
Alaska-Aleutian subduction zone. Nat. Commun.
https://doi.org/10.1038/s41467-022-30883-7.