
manuscript submitted to Geochemistry, Geophysics, Geosystems

Quantifying diapir ascent velocities in power-law1

viscous rock under far-field stress: Integrating2

analytical estimates, 3D numerical calculations and3

geodynamic applications4

Emilie Macherel1, Yuri Podladchikov1, Ludovic Räss2,3, and Stefan M.5
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Abstract17

Diapirism is crucial for heat and mass transfer in many geodynamic processes. Under-18

standing diapir ascent velocity is vital for assessing its significance in various geodynamic19

settings. Although analytical estimates exist for ascent velocities of diapirs in power-law20

viscous, stress weakening fluids, they lack validation through 3D numerical calculations.21

Here, we improve these estimates by incorporating combined linear and power-law vis-22

cous flow and validate them using 3D numerical calculations. We focus on a weak, buoy-23

ant sphere in a stress weakening fluid subjected to far-field horizontal simple shear. The24

ascent velocity depends on two stress ratios: (1) the ratio of buoyancy stress to charac-25

teristic stress, controlling the transition from linear to power-law viscous flow, and (2)26

the ratio of regional stress associated with far-field shearing to characteristic stress. Com-27

paring analytical estimates with numerical calculations, we find analytical estimates are28

accurate within a factor of two. However, discrepancies arise due to the analytical as-29

sumption that deviatoric stresses around the diapir are comparable to buoyancy stresses.30

Numerical results reveal significantly smaller deviatoric stresses. As deviatoric stresses31

govern stress-dependent, power-law, viscosity analytical estimates tend to overestimate32

stress weakening. We introduce a shape factor to improve accuracy. Additionally, we de-33

termine characteristic stresses for representative mantle and lower crustal flow laws and34

discuss practical implications in natural diapirism, such as sediment diapirs in subduc-35

tion zones, magmatic plutons or exhumation of ultra-high-pressure rocks. Our study en-36

hances understanding of diapir ascent velocities and associated stress conditions, con-37

tributing to a thorough comprehension of diapiric processes in geology.38

Plain Language Summary39

A diapir is a volume of rock that rises within a larger, denser rock mass due to its40

lower density and the force of gravity. Understanding the speed at which diapirs ascend41

is crucial for determining their significance in specific geologic settings, such as subduc-42

tion zones. In this study, we use advanced computer simulations to calculate the ascent43

velocity of a spherical diapir within a denser surrounding material. The surrounding ma-44

terial is subjected to horizontal shearing, and its behaviour resembles that of a nonlin-45

ear fluid, where its resistance to shear, known as viscosity, depends on the applied stress.46

By conducting three-dimensional computer simulations, we not only test the accuracy47

of existing mathematical equations commonly used to estimate diapir velocity but also48
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make improvements to enhance their precision. These equations help us estimate how49

quickly diapirs rise in different geodynamic environments. By advancing our understand-50

ing of diapir ascent velocities, we gain valuable insights into the processes that shape our51

planet’s geological features.52

1 Introduction53

Diaprism is an important mechanism of heat and mass transport in the Earth (e.g.54

Ramberg, 1968; Schubert et al., 2001; Turcotte & Schubert, 2021; Whitehead Jr. & Luther,55

1975). It mainly occurs in viscously deforming rock (e.g. Turcotte & Schubert, 2021),56

but can also be initiated in settings with frictional overburden (e.g. Poliakov et al., 1993,57

1996). Diapirism can occur on various temporal and spatial scales and is a mechanism58

for the ascent of, for example, magma, (e.g. Marsh, 1982; Cruden, 1988; Michail et al.,59

2021; Miller & Paterson, 1999; Rabinowicz et al., 1987; Weinberg & Podladchikov, 1994,60

1995; Burov et al., 2003; Cruden & Weinberg, 2018), rock salt (e.g. Jackson et al., 1990;61

Jackson & Vendeville, 1994; Schultz-Ela et al., 1993; Poliakov et al., 1993), mud (e.g. Mazz-62

ini et al., 2009) or sediments buried at subduction zones (e.g. Klein & Behn, 2021; Marschall63

& Schumacher, 2012; Smye & England, 2023; Behn et al., 2011; Gerya & Yuen, 2003).64

Magma ascent by diapirism is, for example, an important mechanism contributing to the65

volcanic and igneous plumbing systems (e.g. Cruden & Weinberg, 2018). At subduction66

zones, for example, sediment diapirs, which detach from subducting slabs and rise into67

the above, hotter mantle wedge, are presumably the reason for the so-called sediment68

melt signature in arc lavas (e.g. Plank & Langmuir, 1993; Behn et al., 2011). Further-69

more, diaprism was suggested as potential mechanism for the exhumation of some high-70

and ultra-high-pressure, (U)HP, terranes, for which very fast, > 1 cm/yr, exhumation71

velocities have been estimated (e.g. Burov et al., 2001, 2014; Little et al., 2011; Schmal-72

holz & Schenker, 2016; Schwarzenbach et al., 2021). For all the various forms of diapirism,73

the ascent velocity of the diapir is the essential quantity to assess the importance of di-74

apirism for specific geodynamic settings.75

The simplest estimate for the ascent velocity of a diapir is given by the so-called76

Stokes law which is applicable for the ascent, or fall, of a rigid sphere in a denser, or lighter,77

linear viscous fluid (Stokes, 1850). However, diapirs in geodynamics are mostly not rigid78

and are commonly mechanically weaker than the surrounding rocks (e.g. Weinberg &79

Podladchikov, 1994). Furthermore, viscous deformation of natural rock surrounding a80
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rising diapir can occur by dislocation creep, which is described by a non-linear, power-81

law viscous flow flaw (e.g. Weinberg & Podladchikov, 1994). In a power-law viscous fluid,82

the effective viscosity depends on the stress, or alternatively the strain rate, in the fluid83

(e.g. Fletcher, 1974; Turcotte & Schubert, 2021; Schmalholz & Fletcher, 2011). For rocks,84

higher stresses cause smaller effective viscosities (e.g. Hirth & Kohlstedt, 2003; Karato,85

2008). Here, we refer to the decrease of the effective viscosity caused by an increase in86

stress as stress weakening (e.g. Christensen, 1983). For diapirism, there are two funda-87

mental mechanisms by which the stress, and hence the effective viscosity, in rocks sur-88

rounding a diapir can change (Figure 1): (1) The rock unit in which the diapir is rising89

undergoes a far-field deformation, for example due to horizontal simple shear in a strike-90

slip environment (e.g. Michail et al., 2021; Nahas et al., 2023) or corner flow in a man-91

tle wedge (e.g. Klein & Behn, 2021). The far-field, or regional, stresses associated with92

the regional deformation can modify the effective viscosity of the rocks surrounding the93

diapir. (2) The deformation in the surrounding rocks, caused by the rising diapir, gen-94

erates stress variations around the diapir (e.g. Weinberg & Podladchikov, 1994). Such95

local stress variations around the diapir are related to the diapir’s buoyancy stress and96

cause variations in the effective viscosity of the surrounding rock.97

Analytical estimates of the ascent velocity of a diapir in a power-law viscous fluid98

have been presented by Weinberg and Podladchikov (1994). Weinberg and Podladchikov99

(1994) show that the reduction of the effective viscosity due to local stress weakening100

is essential for magma diapirs to be able to ascent with velocities of 10 to 100 m/yr. Such101

high velocities are needed so that magma diapirs can reach the upper crust before so-102

lidification. Similar high velocities have been suggested for the rise of sediment diapirs103

across the mantle wedge, also enabled by stress weakening in power-law viscous man-104

tle rocks (Klein & Behn, 2021). High velocities due to stress weakening in power-law vis-105

cous material are supported by two-dimensional (2D) numerical simulations of mantle106

convection (e.g. Larsen & Yeun, 1997). However, the analytical estimates derived by Weinberg107

and Podladchikov (1994) have never been tested and compared to results of full 3D nu-108

merical calculations.109

Here, we perform full 3D numerical calculations to quantify the ascent velocity of110

a weak diapir in a stronger and deforming fluid. The flow law of the surrounding fluid111

is a combination of linear and power-law viscous flow. Such combined flow law can de-112

scribe rock deformation by a combination of diffusion and dislocation creep (e.g. Karato,113
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2008). Our numerical algorithm is based on the staggered finite difference method and114

employs an iterative solution strategy. We programmed the algorithm in the Julia lan-115

guage and use GPUs for the numerical solution. In the numerical calculations, we con-116

sider effective viscosity variations in the surrounding fluid due to both regional stresses117

and local stress variations around the diapir. The regional stresses are caused by strike-118

slip shearing and the local stresses are caused by the upward movement of the diapir.119

We further elaborate the analytical estimates of Weinberg and Podladchikov (1994) by120

(i) implementing a combined linear and power-law viscous flow law, and (ii) consider-121

ing both regional tectonic stress and local buoyancy stress. We then compare the ana-122

lytical estimates with the 3D numerical calculations.123

The aims of our study are to (i) elaborate, test and improve analytical estimates124

for diapiric ascent velocities in a deforming power-law viscous fluid, (ii) make a system-125

atic quantification of the ascent velocity based on two dimensionless stress ratios and (iii)126

discuss the applicability of the results to typical crustal and mantle flow laws as well as127

to various diapir scenarios.128

2 Model129

2.1 Flow law and effective viscosity130

We consider a non-linear, power-law viscous flow law of the general form (Fletcher,131

1974; Karato, 2008):132

ϵ̇ =
1

2
Bτn , (1)133

with ϵ̇ being the deviatoric strain rate, τ being the deviatoric stress, n being the power-134

law stress exponent and B being a material parameter. We reformulate Equation (1) to:135

τ = 2B−1τ (1−n)ϵ̇ . (2)136

Next, we multiply the right-hand side of the Equation 2 by τ
(1−n)
C /τ

(1−n)
C , with τC be-137

ing a characteristic stress magnitude, and rearrange Equation 2 to:138

τ = 2η

(
τ

τC

)(1−n)

ϵ̇ , (3)139

where η = B−1τ
(1−n)
C . Introducing the characteristic stress τC has two benefits: (1) The140

parameter η has units of a viscosity, i.e. Pa·s, and (2) the impact of τ on the flow law141

is normalized by the magnitude of τC. The additional usefulness of introducing τC is pre-142

sented further below. Equation 3 reduces to a linear viscous flow law for n = 1. A lin-143
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Figure 1. Sketch of two geodynamic settings in which diapirism can occur in deforming and

stressed rock: a) Sediment diapirs rising in a mantle wedge (after Klein & Behn, 2021). b) Pluton

rising in a crustal strike-slip zone (after Michail et al., 2021)
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ear flow law typically describes diffusion creep (e.g. Karato, 2008; Turcotte & Schubert,144

2021). A power-law viscous flow law typically describes dislocation creep (e.g. Karato,145

2008; Turcotte & Schubert, 2021) but can also effectively describe exponential flow laws146

describing, for example, low temperature plasticity (e.g. Schmalholz & Fletcher, 2011).147

In nature, both creep mechanisms can occur simultaneously and, hence, a combination148

of a linear and a power-law viscous flow law is often applied in geodynamic applications149

(e.g. Karato, 2008). The effective viscosity, ηE, for such combined flow law is represented150

by the pseudo-harmonic mean of the linear (Equation 3 with n = 1) and power-law (Equa-151

tion 3 with n > 1) viscosities and is given by (e.g. Schmalholz & Podladchikov, 2013;152

Gerya, 2019):153

ηE =
η

1 +
(

τ
τC

)(n−1)
. (4)154

The general flow law we use in this study reads (e.g. Schmalholz & Podladchikov, 2013;155

Gerya, 2019):156

τ = 2ηEϵ̇ . (5)157

In the combined linear and power-law viscous flow law, the magnitude of τC determines158

the transition from a linear viscous flow to a power-law viscous flow. Examples of mag-159

nitudes of τC for crustal and mantle flow laws, determined by rock deformation exper-160

iments, are presented in the Discussion (Section 4).161

2.2 Analytical estimates for diapir ascent velocity in deforming power-162

law viscous medium163

The ascent velocity of a diapir is controlled mostly by the effective viscosity of the164

surrounding medium and not by the effective viscosity of the material forming the di-165

apir (e.g. Weinberg & Podladchikov, 1994). We assume that the effective viscosity of the166

surrounding medium, ηE, is given by Equation 4. We also assume that the effective vis-167

cosity of the diapir is smaller than the effective viscosity of the surrounding medium by168

a factor Ω, which is termed the viscosity ratio. For a spherical diapir with an effective169

viscosity that is smaller than the effective viscosity of the surrounding medium, the ve-170

locity of ascent, V , is given by (e.g. Hadamard, 1911; Rybczynski, 1911; Weinberg & Pod-171

ladchikov, 1994):172

V =
1

3

∆ρgR2

ηE
CR , (6)173
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where ∆ρ is the density difference between the surrounding medium and the rising di-174

apir, g is the gravitational acceleration, R is the radius of the sphere and the constant175

CR is defined as (e.g. Weinberg & Podladchikov, 1994)176

CR =
ηE + ηE/Ω

ηE + 3
2ηE/Ω

=
1 + 1/Ω

1 + 3/(2Ω)
. (7)177

If τ/τC = 0, then ηE = η (see Equation 4) and the velocity V corresponds to the as-178

cent velocity of a linear viscous diapir rising in a linear viscous medium. We will use fur-179

ther below this velocity for linear viscous flow as reference velocity, V0, to normalize the180

ascent velocities for power-law viscous flow. The reference velocity is181

V0 =
1

3

∆ρgR2

η
CR . (8)182

Since for a power-law viscous flow law ηE depends on τ , the value of τ has to be esti-183

mated to calculate V . We consider two scenarios to estimate V : (1) There is a homo-184

geneous regional deformation in the surrounding medium, for example a shear deforma-185

tion in a strike-slip environment, which generates a regional stress τR. This value of τR186

is used to calculate the effective viscosity of the surrounding medium, ηE(τ = τR), and187

to calculate the rising velocity under a regional stress field, VR, with Equations 6 and188

7, so that189

VR = V (τ = τR) . (9)190

(2) Local stress variations around the diapir are caused by the diapir rising in a deformable191

medium. We assume that these local stress magnitudes, τL, have the same magnitude192

as the buoyancy stress of the diapir, ∆ρgR (Weinberg & Podladchikov, 1994). The ris-193

ing velocity for which the impact of local stress variations in the surrounding medium194

are considered, VL, has been derived by Weinberg and Podladchikov (1994) for a power-195

law viscous flow law and is given by:196

VL =
1

3

∆ρgR2

ηEL
CL , (10)197

where198

CL =

(
G+ 1/Ω

Xsol(GM + 3/(2Ω))

)n

, (11)199

with200

G = 2.39− 5.15m+ 3.77m2
201

M = 0.76 + 0.24m (12)202

Xsol = 1.3(1−m2) +m ,203

–8–



manuscript submitted to Geochemistry, Geophysics, Geosystems

where m = 1/n. The parameter CL is only a function of the two dimensionless param-204

eters n and Ω. The effective viscosity ηEL for local stress variations is:205

ηEL = 2Sη

(
6τC

∆ρgR

)(n−1)

, (13)206

where η is the viscosity parameter inside the effective viscosity (Equation 4) of the sur-207

rounding medium and S is a shape factor. The value of S will be discussed in Section208

3.3. Finally, the velocity estimate for a weak diapir rising in a deforming medium with209

a flow law combining diffusion and dislocation creep is:210

VD = VR + VL . (14)211

We normalize VD by V0 which yields212

VD

V0
=

VR

V0
+

VL

V0
= 1 +

(
τR
τC

)(n−1)

+
3

6nS

CL

CR

(
∆ρgR

τC

)(n−1)

. (15)213

We will test the analytical estimate for VD with 3D numerical calculations which are de-214

scribed below.215

2.3 3D Mathematical model216

We assume incompressible flow under gravity. The components of the total stress217

tensor, σij , are decomposed into a pressure (mean stress), P , and deviatoric stress ten-218

sor components, τij , so that σij = −δijP+τij , whereby indexes i and j run from 1 to219

3 and indicate the three spatial directions, and δij is the Kronecker delta (Turcotte &220

Schubert, 2021). The equations for the conservation of mass for an incompressible fluid221

and for the conservation of linear momentum are:222

0 =
∂Vi

∂xi
(16)223

0 =
∂τij
∂xj

− ∂P

∂xi
+ ρgi , (17)224

where Vi is the component of the velocity vector in direction xi, ρ the density and gi the225

gravity vector component. Components of the deviatoric stress tensor are defined as:226

τij = 2ηEϵ̇ij = 2ηE

(
1

2

(
∂Vi

∂xj
+

∂Vj

∂xi

))
, (18)227

where ϵ̇ij are the components of the deviatoric strain rate tensor and ηE is defined in Equa-228

tion 4. For the studied 3D flow, the value of τ used in Equation 4 is quantified by the229

square root of the second stress invariant230

τII =
√
τ2xx + τ2yy + τ2zz + τ2xy + τ2xz + τ2yz , (19)231

which is independent of the coordinate system.232
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2.4 Numerical method233

To numerically solve the system of governing equations (Equations 16 and 17) we234

discretize the differential equations using the finite difference method on a staggered grid235

with constant spacing (e.g. Gerya, 2019; Räss et al., 2022). We apply the pseudo-transient236

(PT) method to solve the discretized, non-linear equations in a matrix free fashion (e.g.237

Räss et al., 2022; Wang et al., 2022). The PT method is one of many iterative methods238

that exist since the 1950’s (Frankel, 1950) and is used to solve stationary problems. The239

concept of the PT method is to add a pseudo-time derivative to the steady-state gov-240

erning equations (e.g. Räss et al., 2022):241

1

K̃

∂P

∂τPT
=

∂Vi

∂xi
242

ρ̃
∂Vi

∂τPT
=

∂τij
∂xj

− ∂P

∂xi
+ ρgi (20)243

1

2G̃

∂τij
∂τPT

= − τij
2ηE

+
1

2
(∇iVj +∇jVi) ,244

where K̃, ρ̃ and G̃ are numerical parameters and τPT is a pseudo-time. K̃ and G̃ can be245

considered as pseudo-bulk and pseudo-shear modulus respectively, and ρ̃ is a pseudo-density.246

With the pseudo-time derivatives, Equations 20 can be considered as pseudo-acoustic247

and inertial approximations of the mass and momentum balance equations, respectively.248

The initial guess of the pressure and velocity fields do not satisfy the steady state equa-249

tions, hence the PT method consists in iterating until the imbalance is sufficiently small,250

that is when the PT time derivatives (Equations 20) are sufficiently small and have all251

reached a specific tolerance value. A detailed description of the applied PT method with252

examples of 3D calculations is given in Räss et al. (2022). For completeness, we present253

a numerical resolution and tolerance test in Appendix D. For the presented results, we254

used a numerical resolution of 207×207×207 and a tolerance for the iterative solver of255

5·10−7. The results of the resolution and tolerance test show that these values provide256

velocities which do not change significantly anymore for higher resolution or smaller tol-257

erance.258

We have also numerical algorithms for the studied 3D power-law viscous flow which259

are based on the governing equations formulated in cylindrical and spherical coordinates.260

These equations are given in Appendix A and Appendix B. To test our numerical im-261

plementation, we will perform numerical calculations for the same model configuration262

based on the governing equations in Cartesian, cylindrical and spherical coordinates. In263
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the limit of negligible curvature and for the same boundary and initial conditions the264

numerical results based on cylindrical and spherical coordinates must be identical to the265

results based on Cartesian coordinates. The model configuration for cylindrical and spher-266

ical coordinates is described in Appendix C.267

2.5 Model configuration268

The model configuration is a cube of dimension [−L/2, L/2]×[−L/2, L/2]×[−L/2, L/2]269

containing a sphere of diameter L/3 at its center, with L indicating the model width,270

length and height (Figure 2). The viscosity parameter, η, of the sphere is always 100 times271

smaller than the one of the surrounding fluid. The applied flow law is the combined flow272

law given in Equation 4 and the power-law exponent is always 5. The sphere is always273

less dense than the surrounding fluid and we vary ∆ρ for different calculations.274

We apply horizontal far-field simple shearing parallel to the horizontal x-direction275

(Figure 2). The boundary conditions are (i) free slip on the top and bottom faces of the276

cube, (ii) on the lateral sides parallel to the shearing the velocities in y- and z-direction277

are zero and in the x-direction they correspond to the applied far-field shearing veloc-278

ity Vs (Vx = −Vs for y = −L/2 and Vx = Vs for y = L/2), and (iii) on the lateral279

sides orthogonal to the shearing the velocities in y- and z-direction are zero and the ve-280

locities in the x-direction vary linearly in the y-direction from −Vs to Vs.281

The model is configured in dimensionless form and also results will be displayed282

in dimensionless form. For the non-dimensionalization, we use three characteristic scales:283

one scale for length, which is the radius of the sphere R; one scale for stress, which is284

the buoyancy stress of the sphere ∆ρgR; and one scale for viscosity, which is the applied285

value of η in the surrounding medium, termed ηm. To describe the results, we will fur-286

ther use two dimensionless ratios, namely the ratio of the applied regional stress to char-287

acteristic stress, τR/τC, and the ratio of buoyancy stress to characteristic stress, ∆ρgR/τC.288

τR is the magnitude of the homogeneous shear stress in the model when the sphere has289

the same material properties as the surrounding material. Hence, τR represents the far-290

field stress which is not affected by the weak sphere.291

The aims of the simulations are (i) to compare magnitudes of buoyancy stress and292

deviatoric stress around the sphere, (ii) to perform systematic simulations to quantify293

the ascent velocity of the sphere in a strike slip environment, by varying ∆ρ and τC (Equa-294
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Figure 2. Model configuration: cube of size [−L/2;L/2] × [−L/2;L/2] × [−L/2;L/2], with

a less dense and weaker spherical inclusion of diameter L/3 at the model center. The entire

model cube is sheared horizontally, parallel to the x-direction, and gravity acts in the vertical,

z-direction.

tion 15), and (iii) to compare the numerically calculated velocities with the analytical295

estimates from Equation 15 and to improve these estimates if possible.296

3 Results297

3.1 Distribution of stress, pressure and effective viscosity298

For each presented simulation, we have calculated one time step to obtain the full299

3D velocity and stress field. First, we show the distribution of the resulting effective vis-300

cosity, ηE, the second stress invariant, τII, and the pressure, P , for a representative sim-301

ulation (Figure 3). In Figure 3, 1/8th of the cubic model domain is presented. The sphere302

is less dense than its surrounding and, hence, moves upwards as indicated by the veloc-303

ity arrows in Figure 3b. In the following, we refer to the sphere as diapir. The applied304

simple shear is visible on the horizontal slice through the model domain (Figure 3b). The305

effective viscosity shows a decrease of about one order of magnitude directly above the306

diapir (Figure 3b). There are two regions on the sides of the diapir where the effective307
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Figure 3. Representative numerical results for τR/τC = 1 and ∆ρgR/τC = 10: a) Location of

1/8th of the model shown in panels b), c) and d). b) Effective viscosity ηE normalized by ηm, the

linear viscosity of the surrounding medium. Arrows indicate the velocity field. c) Second invari-

ant of deviatoric stress, τII, normalized by the buoyancy stress ∆ρgR. d) Pressure, P , normalized

by buoyancy stress ∆ρgR.

viscosity is even larger than the ambient viscosity. The variations in ηE can be explained308

by the distribution of τII (Figure 3c). Values of ηE are directly linked to τII (Equation309

4): where the stresses are large, such as above the diapir, the effective viscosity decreases310

and where stresses are smaller, the effective viscosity does not change or even increases.311

The large stresses above the diapir are due to its upwards movement.312

Figure 3d depicts the pressure field. We only consider the dynamic part of the pres-313

sure, which means that we subtract the lithostatic pressure, because only deviations from314

the static pressure field can cause movement. An interesting feature is the strong pres-315

sure gradient inside the diapir. Similar to the deviatoric stress, the pressure in the sur-316

rounding medium is largest directly above the diapir.317
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3.2 Stress decomposition and magnitudes318

The total vertical stress is decomposed into the pressure and the vertical deviatoric319

stress, σvert = −P+τvert. We quantify σvert, P and τvert and compare the magnitudes320

with the buoyancy stress (Figure 4). This quantification is important because the an-321

alytical estimates for the diapir velocity use the buoyancy stress as proxy for the devi-322

atoric stress which is used in the power-law flow law.323

The vertical continuity of σvert across the diapir boundary in the horizontal mid-324

dle of the model (at Y = 0) results from the requirement of the vertical force balance.325

In contrast, both P and τvert can be discontinuous across the diapir boundary. Indeed,326

P and τvert show a discrete jump across the boundary of the diapir. The absolute max-327

imal values of σvert are close to the value of ∆ρgR, since the maximal value of their ra-328

tio is approximately one (Figure 4a). τvert is essentially zero inside the diapir since the329

effective viscosity inside the diapir is 100 times smaller than the one of the surrounding330

medium. Consequently, the absolute magnitudes of P are high inside the diapir at the331

top and bottom, in order to generate a continuous σvert required by the vertical force332

balance. Maximal values of P inside the diapir are, hence, close to the magnitudes of ∆ρgR.333

Outside the diapir, directly above and below, maximal magnitudes of τvert are sig-334

nificantly smaller than magnitudes of σvert at the same positions. The effective viscos-335

ity in the analytical estimate is calculated with the magnitude of ∆ρgR while in the nu-336

merical simulation it is controlled by the correct magnitude of τII. The magnitude of τII337

is smaller than ∆ρgR (Figure 3c) and τII is also strongly variable around the diapir. We,338

therefore, expect that the analytical estimates for the diapir velocity will be different to339

the numerically calculated ones, because the stress magnitude which controls the effec-340

tive viscosity is different in the analytical estimates compared to the numerical simula-341

tion.342

The results presented in figure 4 are reproduced by the numerical calculations based343

on cylindrical and spherical coordinates and are presented in Appendix C. The agree-344

ment between results calculated by three different numerical algorithms indicates the cor-345

rect numerical implementation of the governing equations.346
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Figure 4. Numerical results for τR/τC = 1 and ∆ρgR/τC = 10. Vertical cross sections at

position X/R = 0 (see Figure 3a) of a) vertical total stress, b) pressure, and c) vertical deviatoric

stress. All stresses are normalized by the buoyancy stress ∆ρgR.

3.3 Comparison of analytical and numerical ascent velocities347

We compare the analytical estimates for the ascent velocity of a weak and less dense348

sphere, Equation 15, with our numerical results. The analytical estimates (details in Sec-349

tion 2.2) only provide the vertical velocity of the raising sphere and do not provide the350

spatial distribution of stresses. Hence, for each numerical simulation, we select the max-351

imum vertical velocity obtained for the diapir and consider this velocity as the ascent352

velocity of the diapir. We normalize the vertical velocities by the corresponding values353

of V0 which is the velocity of a linear viscous diapir rising in a linear viscous medium (see354

Equation 8).355

The ascent velocity depends on the two stress ratios τR/τC and ∆ρgR/τC (Equa-356

tion 15). Figure 5 presents the comparison between analytical estimates and the numer-357

ical results. Figure 5a displays vertical velocities of the diapir for various values of ∆ρgR/τC358

and a fixed value τR/τC = 1. For ∆ρgR/τC < ∼10 the velocity is controlled by VR,359

for which the regional stress controls the effective viscosity, while for ∆ρgR/τC > ∼10360

it is controlled by VL, for which the buoyancy stress controls the effective viscosity (see361

Section 2.2). The velocity is constant in the domain dominated by the regional stress362

and increases significantly in the buoyancy dominated domain. The numerical results363

agree with VR and they capture the change in slope of the velocity with increasing ∆ρgR/τC.364

However, for ∆ρgR/τC > ∼10 the numerical velocities are smaller than the analytically365
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Figure 5. Comparison of numerical results (symbols, see legend) with analytical estimates

from Equation 15 (lines, see legend). Analytical estimates are presented in Section 2.2. Vertical

axis is the ascent velocity normalized by V0 (see Equation 8). Horizontal axis is in a) ∆ρgR/τC

for a value of τR/τC = 1, and in b) τR/τC for ∆ρgR/τC = 10.

estimated ones. For ∆ρgR/τC > ∼10, the ascent velocities vary by approximately two366

orders of magnitude while applied values of ∆ρgR/τC vary by a factor of approximately367

4 only.368

Figure 5b displays the vertical velocity for various values of τR/τC and a fixed value369

of ∆ρgR/τC = 10. The characteristic stress marks the stress at which the deformation370

behaviour changes from linear viscous creep to power-law viscous creep. For τR/τC <371

∼1 the velocity is controlled by VL while for τR/τC > ∼1 it is controlled by VR. For372

τR/τC > ∼1 the velocities strongly increase with increasing τR/τC.373

We also performed a systematic comparison between the analytically estimated and374

the numerically calculated velocities by varying ∆ρgR/τC and τR/τC (Figure 6). Fig-375

ure 6a and b display the vertical velocities of the diapir obtained with the analytical es-376

timates and the numerical simulations, respectively. The numerical results show the same377

trend of the velocity with varying values of ∆ρgR/τC and τR/τC as the analytical esti-378

mates. For normalized velocities > ∼104, the numerical algorithm did not converge any-379
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more due to the significant nonlinearities and the associated significant variations of the380

effective viscosity around the diapir.381

Figure 7 is similar to Figure 5a, but shows analytical estimates for different shape382

factors, S (see Equation 13). The value S = 1 was used in the original derivation of383

Weinberg and Podladchikov (1994). Increasing S allows to better predict the ascent ve-384

locity in the buoyancy dominated deformation regime, that is for ∆ρgR/τC > 10. How-385

ever, too large values of S lead to an underestimation of the velocities. For three values386

of S we present the correspondence between the numerical and the analytical results. For387

S = 1, analytical estimates tend to overestimate the large velocities, for S = 2.5 the388

estimations fit better and for S = 5 the analytical estimates generally underestimate389

the ascent velocity.390

A plot of all the numerically calculated velocities versus the corresponding analyt-391

ical estimates, for the same parameters, shows that the analytical estimates capture well392

the first order trend of the numerical results (Figure 8a to c). The maximal relative er-393

ror between the analytical estimate and an individual numerical result is only 72% for394

S = 1. Hence, all analytical estimates deviate by less than a factor of 2 from the nu-395

merical results. We varied S between 0.25 and 10 in the analytical estimate and calcu-396

lated for each value of S the average relative error between the estimates and the nu-397

merical results (Figure 8d). The smallest average error occurs for S = 1.6 and is 18%.398

4 Discussion399

4.1 Characteristic stresses for experimentally derived flow laws400

The characteristic stress, τC, is the stress at which the deformation behaviour changes401

from linear viscous flow, such as diffusion creep, to power-law viscous flow, such as dis-402

location creep. Hence, τC has a significant impact on the ascent velocity of a diapir.403

To estimate values of τC in the mantle, we use the flow laws of olivine from Hirth404

and Kohlstedt (2003), their Table 1, for diffusion creep (wet olivine with constant COH405

and 10 mm grain size) and dislocation creep (wet olivine with constant COH) (Figure406

9a). We vary systematically pressure, P , and temperature, T , and determine the stress407

for which the effective viscosities for diffusion and dislocation creep are equal. For P be-408

tween 1 and 10 GPa and T between 500 and 1650 ◦C, values of τC are approximately409

between 0.1 and 100 MPa (Figure 9a).410
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Figure 6. Analytical and numerical ascent velocities for a systematic variation of ∆ρgR/τC

and τR/τC. Ascent velocities are normalized by V0 (see Equation 8). a) Analytical estimates and

b) numerically calculated velocities. The stars represent the values of ∆ρgR/τC and τR/τC for

which numerical calculations were performed.
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Figure 7. Comparison of numerically and analytically calculated ascent velocities for different

shape factors S (see Equation 13 and legend). X-axis displays ∆ρgR/τC and the vertical axis the

ascent velocity normalized by V0 (see Equation 8). Results are obtained for τR/τC = 1. Only VL

depends on the shape factor.
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Figure 8. Comparison of analytically estimated velocities on the horizontal axis and the

numerically calculated velocities on the vertical axis for different shape factors. a) S = 1, b)

S = 2.5, and c) S = 5. The solid line represent the equivalence between analytical and numer-

ical results. d) The average relative error of the analytical estimates compared to the numerical

results for values of S between 0.25 and 10. The vertical red dashed line indicates the minimum

relative error of ≈18 % for S = 1.6.
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To estimate values of τC in the lower crust, we use the flow laws for diffusion and411

dislocation creep of wet anorthite from Rybacki and Dresen (2000), their Table 2 (Fig-412

ure 9b). These flow laws are insensitive to P so we vary systematically T and the grain413

size to determine τC. For T between 500 and 1000 ◦C and grain size between 10 µm and414

10 mm, values of τC are between 1 and 500 MPa.415

Quartz is a representative mineral to estimate the effective flow law for upper crustal416

rocks. Many studies indicate that a power-law viscous flow law describes well the defor-417

mation of quartz under upper crustal conditions (e.g. Hirth et al., 2001). For extremely418

small grain sizes (≈20 µm), such as observed in ultramylonites, quartz can also deform419

by diffusion creep (Kilian et al., 2011). We did here not estimate τC for quartz since most420

studies suggest a power-law viscous flow law for quartz.421

Assuming that the flow laws considered above are representative for the mantle litho-422

sphere and the lower crust and assuming that typical regional flow stresses, represent-423

ing τR, in the mantle are between 0.1 and 10 MPa and in the lower crust between 1 and424

100 MPa, ratios of τR/τC between 0.1 and 100 seem feasible.425

Furthermore, assuming that typical values of ∆ρ for diapirs vary between 20 and426

200 kg/m3 and values of R between 1 and 100 km (see next Section), provides values of427

∆ρgR between 0.2 and 200 MPa. Therefore, stress ratios of ∆ρgR/τC between 0.05 and428

50 seem also feasible.429

4.2 Increase of diapir ascent velocity by two types of stress weakening430

In our model, the nonlinear fluid surrounding the diapir is a stress weakening fluid431

for n > 1 because the effective viscosity decreases when the stress magnitude, quan-432

tified by τII, in the fluid increases. The applied, combined linear and power-law viscous433

flow law can describe diffusion and dislocation creep in crustal and mantle rocks (e.g.434

Karato, 2008; Kohlstedt & Hansen, 2015). Furthermore, the applied power-law viscous435

flow law can also describe low temperature plasticity for which apparent stress exponents436

can be much larger than 3 (e.g. Dayem et al., 2009; Schmalholz & Fletcher, 2011). Hence,437

the applied combined flow law is applicable to a wide range of rocks and deformation438

mechanisms.439
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Figure 9. Color plots of characteristic stress, τC in Equation 4. a) τC as function of pressure

and temperature for upper mantle flow laws. The flow laws for diffusion (wet with constant COH

and 10mm grainsize) and dislocation (wet with constant COH) creep of olivine from Hirth and

Kohlstedt (2003) (their Table 1) were used. b) τC as function of grain size and temperature for

lower crustal flow laws. The flow laws for diffusion and dislocation creep of wet anorthite from

Rybacki and Dresen (2000) (their Table 2) were used.

In the analytical estimate for the ascent velocity we consider the impact of two types440

of stresses: regional stresses, τR, associated with far-field tectonic deformation in the rocks441

surrounding the diapir and buoyancy stresses, ∆ρgR, causing deformation locally around442

the rising diapir. Both stresses can cause stress weakening. If τR/τC > 1 and/or ∆ρgR/τC >443

1 both stresses can increase the ascent velocity significantly (Figure 10a). For values of444

n = 3 and Ω = 100, values of ∆ρgR/τC > ∼10 are required to generate values of VD/V0 >445

1 and, hence, an increase in ascent velocity with respect to the velocity for linear vis-446

cous flow. The reason is the pre-factor of 3CL/6
n/S/CR in front of the term (∆ρgR/τC)

n−1
447

in the analytical velocity estimate (Equation 9). This pre-factor is 0.007 for n = 3 and448

Ω = 100 and, hence, reduces the impact of the factor ∆ρgR/τC on the velocity increase449

(Figure 10a). Since there is no pre-factor in front of τR/τC, values of τR/τC > 1 cause450

values of VD/V0 > 1 (Figure 10a).451

In the velocity estimate of Weinberg and Podladchikov (1994) only the impact of452

∆ρgR is considered. Hence, diapirs with small R or small ∆ρ can have values of small453

∆ρgR which might not cause a significant velocity increase. Our solution shows that also454
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dapirs associated with small values of ∆ρgR can have fast ascent velocities if they rise455

in a tectonically active region with regional stresses τR/τC > 1. Hence, the onset of tec-456

tonic deformation, such as strike-slip shearing, transpression or transtension can trig-457

ger a faster ascent of diapirs which had insignificant ascent velocities before the onset458

of tectonic activity and associated stresses. Indeed, for example many plutons have been459

emplaced in tectonically active regions suggesting a potential causal link between plu-460

ton ascent and tectonic stress (e.g. Berdiel et al., 1997; Berger et al., 1996; Brown & So-461

lar, 1999; Hutton & Reavy, 1992; Michail et al., 2021). We discuss the potential appli-462

cation of our velocity estimate to the ascent of plutons in the next Section.463

For the numerical calculations, we consider a scenario with horizontal far-field sim-464

ple shear. We do not model finite deformations but calculate the instantaneous veloc-465

ity field. Hence, for our calculations mainly the magnitude of τR is important and not466

the orientation of the stress field. Therefore, our instantaneous solution for the far-field467

horizontal simple shear is approximately applicable to any scenario for which the far-field468

deformation causes deviatoric stresses in rocks surrounding a diapir. For example, for469

the ascent of diapirs within a deforming mantle wedge (e.g. Klein & Behn, 2021).470

To illustrate the results with dimensional numbers, we further assume ∆ρg = 2000471

Pa/m and τC = 1 MPa (Figure 10b). For τR increasing above 1 MPa, the diapir ve-472

locity, VD, increases with respect to the velocity for linear viscous flow, V0. Concerning473

buoyancy stresses, values of R > ∼ 5 km are required to obtain a velocity increase (Fig-474

ure 10b). For τR = 100 MPa the velocity would increase by four orders of magnitude475

and for R ≈ 15 km the velocity would increase by one order of magnitude.476

4.3 Applications to sediment diapirs, mantle plumes, (U)HP terranes477

and plutons478

We discuss next some applications of our velocity estimate to different geodynamic479

settings involving diapirism. A dimensionless stress ratio which is frequently used in ap-480

plications of analytical solutions to geodynamic processes is the so-called Argand num-481

ber (e.g. England & McKenzie, 1982; Schmalholz et al., 2002). The Argand number is482

the ratio of gravity stress to stress caused by tectonic deformation (e.g. England & McKen-483

zie, 1982; Schmalholz et al., 2002). For the considered scenario of diapirism in tecton-484

ically active regions the Argand number corresponds to the ratio ∆ρgR/τR (black con-485
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Figure 10. Color plots of analytical ascent velocities. a) Velocities (normalized by V0) as

function of ∆ρgR/τC and τR/τC for n = 3 and Ω = 100. b) Velocities (normalized by V0) as

function of R and τR for n = 3, Ω = 100, ∆ρg = 2000 Pa/m and τC = 1 MPa. Black contour lines

in both subplots indicate the corresponding values of ∆ρgR/τR.
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tours in Figure 10). The analytical estimate of Equation 15 can be modified so that the486

velocity becomes an explicit function of ∆ρgR/τR:487

VD

V0
= 1 +

(
τR
τC

)(n−1)
(
1 +

3

6nS

CL

CR

(
∆ρgR

τR

)(n−1)
)

. (21)488

Values of ∆ρgR/τR for specific geodynamic settings may be more reliably estimated than489

values of ∆ρgR/τC because they do not require knowledge of the rheology.490

We apply the formula for the ascent velocity, Equation 21, to sediment diapirs in491

subduction zones (e.g. Klein & Behn, 2021), mantle plumes (e.g. Schubert et al., 2001),492

exhumed (U)HP units (e.g. Burov et al., 2014) and magmatic plutons associated with493

crustal deformation (e.g. Michail et al., 2021) (Figure 11). For all scenarios, the values494

of the required parameters, such as ∆ρ, R or τR/τC, are uncertain and we chose repre-495

sentative values to illustrate particular applications of Equation 21. We plot VD versus496

R and versus the corresponding value of the Argand number for different values of the497

linear viscosity of the rocks surrounding the diapir, ηm (Figure 11). For the presented498

velocity calculations, we assume τR = 10 MPa, n = 3, τC = 1 or 10 MPa, and ∆ρ = 20499

or 200 kg/m3 (Figure 11).500

For sediment diapirs in subduction zones, representative values of R range between501

1 and 4 km and we assume ∆ρ = 200 kg/m3 as feasible value (example 4.1.1 in Klein502

& Behn, 2021). Klein and Behn (2021) combined the solution of Weinberg and Podlad-503

chikov (1994) with heat transfer calculations and a melting thermodynamic model. They504

show that their calculated velocities for rising sediment diapirs, or relamination, can be505

between 10 and 100 m/yr (Figure 11a and c). To obtain such velocities, values of ηm must506

be significantly smaller than 1017 Pa·s, if τC = 10 MPa and, hence, τR/τC = 1 (Fig-507

ure 11a). However, if τC = 1 MPa, values of ηm can be in the order of 1018 Pa·s to ob-508

tain the same velocities (Figure 11c). The plots in Figure 11 show that for a specific ve-509

locity a decrease of τC by one order of magnitude increases the corresponding values of510

ηm by approximately two orders of magnitude. In other words, for the same ηm, a de-511

crease of τC by one order of magnitude decreases the ηeff by two orders of magnitude and,512

hence, increases the velocity by two orders of magnitude. For n > 3 (e.g. Klein and Behn513

(2021) used a flow law with n = 3.5), the stress weakening and velocity increase would514

be larger. The above example can of course be done with smaller values of τR and τC.515

The results suggest that to achieve the high velocities for sediment diapirs, stress weak-516
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ening in the surrounding rock is essential. Flow stresses in the mantle wedge, for exam-517

ple due to corner flow, likely contribute to the stress weakening.518

For the application to mantle plumes, we assume R between 100 and 200 km and519

∆ρ = 20 kg/m3 (Schubert et al., 2001) (Figure 11b and d). The ascent velocity of plumes520

may range between few cm/yr up to 1 m/yr (Schubert et al., 2001). To achieve such ve-521

locities, ηm needs to be between 1020 and 1021 Pa·s which agrees with viscosity estimates522

for the mantle (Table 11.3 in Schubert et al., 2001). Deviatoric stresses due to mantle523

convection may range between 0.1 and 1 MPa (e.g. Hirth & Kohlstedt, 2003) and τC for524

olivine ranges between 0.1 and 0.5 MPa for pressures between 4 and 10 GPa (Figure 9a).525

Therefore, values of τR/τC could be >1 which would increase the corresponding ascent526

velocities. However, the velocities estimated for mantle plumes can be obtained with-527

out stress weakening so that for mantle plumes stress weakening seems not essential.528

(U)HP crustal units, or terranes, have been exhumed in many places worldwide (e.g.529

Burov et al., 2014; Kylander-Clark et al., 2012). The mechanisms of exhumation are still530

disputed and may vary for different geodynamic settings (e.g. Hacker & Gerya, 2013; War-531

ren, 2013). Exhumation by diapirism has been suggested as potential exhumation mech-532

anism (e.g. Burov et al., 2001, 2014; Little et al., 2011; Schmalholz & Schenker, 2016;533

Schwarzenbach et al., 2021) because dapirism is able to explain the sometimes high es-534

timates for ascent velocities of > 1 cm/yr (e.g. Hermann & Rubatto, 2014), sometimes535

even > 10 cm/yr (e.g. Schwarzenbach et al., 2021). Such high exhumation velocities are536

typically estimated for the deeper part of the exhumation path, where ambient rock pres-537

sures are >≈ 1 GPa. Estimates for ∆ρ for the exhumation of (U)HP units are commonly538

between 20 and 200 kg/m3 and representative spherical radii, which would generate the539

same spherical volume as the observed (U)HP rock volume, are between 4 and 20 km540

(e.g. Kylander-Clark et al., 2012; Schwarzenbach et al., 2021). Stress weakening as mech-541

anism to significantly increase ascent velocities has also been suggested as explanation542

for potentially fast exhumation velocities (e.g. Burov et al., 2014; Schmalholz & Schenker,543

2016). For example, Schmalholz and Schenker (2016) proposed that oblique subduction544

and associated strike-slip shearing could have caused stress weakening along the subduc-545

tion interface which might explain the high exhumation velocity, along the subduction546

interface, of a small UHP unit, namely the Brossasco-Isasca sub-unit in the Dora Maira547

massif, Western Alps.548
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The mechanisms of pluton ascent in the continental crust are still disputed and ve-549

locities of pluton ascent are less constrained than exhumation velocities of (U)HP units.550

Two commonly proposed mechanisms are diapirsm and dike intrusion associated with551

fracture propagation (e.g. Clemens & Mawer, 1992; Miller & Paterson, 1999; Petford,552

1996; Rubin, 1993). A main argument against diapirism is that estimated ascent veloc-553

ities are so slow that the pluton would loose significant heat during ascent, consequently554

solidify and stop ascending (e.g. Marsh, 1982; Clemens & Mawer, 1992; Petford, 1996).555

However, Weinberg and Podladchikov (1994) suggested that stress weakening due to buoy-556

ancy stress can increase the ascent velocity sufficiently to avoid significant heat loss dur-557

ing ascent. Furthermore, many plutons ascended in tectonically active regions exhibit-558

ing some component of strike-slip, transpression or transtension (e.g. Berdiel et al., 1997;559

Berger et al., 1996; Brown & Solar, 1999; Hutton & Reavy, 1992; Michail et al., 2021).560

The regional stresses associated with these tectonic activities could have also contributed561

to stress weakening and velocity increase.562

To evaluate whether stress weakening can enable a pluton to rise a significant dis-563

tance without significant cooling, say ten times its radius, we estimate the critical ve-564

locity, VC, required for such rise, taking into account the heat loss during ascent. We per-565

form here a very simple, back-of-the-envelope, calculation to estimate VC. The time, or566

duration, of ascent of a diapir can be calculated by ta = d/VD whereby d is the distance567

of ascent. To avoid thermal cooling during ascent, the diapir must essentially rise faster568

than it cools. Assuming first cooling by heat conduction only, the time of cooling of a569

diapir with radius R is tc = R2/κ, whereby κ is the thermal diffusivity. Considering570

also enhancement of cooling by advection, tc can be modified by using the Nusselt num-571

ber, Nu (e.g. Marsh, 1982), to get tc = R2/κ/Nu. Solving tc = ta for the velocity pro-572

vides a critical velocity, VC, for which the pluton rises as fast as it cools:573

VC = Nu
dκ

R2
. (22)574

The pluton velocity, VD, must be faster than VC to avoid large heat loss during ascent.575

Assuming here that a pluton should be able to rise at least a distance of ten times its576

radius, d = 10R, yields as condition for pluton ascent by diaprism:577

VD > Nu
10κ

R
. (23)578

To plot also VC versus R in Figure 11 we assume typical values Nu = 2 and κ = 10−6
579

m2/s (e.g. Marsh, 1982). We further assume R between 2 and 10 km and ∆ρ = 200 kg/m3
580
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as feasible values for crustal plutons (e.g. Miller & Paterson, 1999; Michail et al., 2021).581

Based on the above calculation, the velocity for plutons must be larger than approximately582

10 cm/yr (black segment on dotted lines in Figure 11). For linear viscous flow, ηm of the583

surrounding rocks must then be smaller than approximately 1019 Pa·s (Figure 11a). For584

stress weakening due to tectonic deformation with τR/τC = 10, ηm must be smaller than585

approximately 1021 Pa·s (Figure 11c). If ηm is 1021 Pa·s and τR/τC = 100, then VD is586

approximately 100 times faster than VC and pluton ascent by diaprism seems possible.587

Our simple calculations suggest that pluton ascent by diapirism is possible if τR is high,588

say between 10 and 100 MPa, and τC is low, say between 0.1 and 1 MPa. More gener-589

ally, tectonic activity may cause regional stresses which are significantly larger than crit-590

ical stresses so that stress weakening can significantly decrease the effective viscosity of591

the surrounding rock. This viscosity decrease can be large enough so that plutons can592

rise as diapirs considerably faster than they cool.593

5 Conclusions594

In this study, we investigated the ascent velocity of a weak and buoyant spherical595

inclusion within a nonlinear viscous fluid under far-field stress, which is relevant to a wide596

range of natural diapirism in tectonically active regions. By deriving analytical estimates597

for the diapir ascent velocity in dimensionless form, we scaled the velocity with the cor-598

responding velocity for linear viscous flow. The ascent velocity is controlled by two stress599

ratios: (1) the ratio of the diapir’s buoyancy stress, ∆ρgR, to the characteristic stress,600

τC, at the transition from linear to power-law viscous flow, and (2) the ratio of regional601

stress, τR, to τC, whereby τR is caused by the far-field tectonic deformation. The equa-602

tion for the analytical estimates shows that both stress ratios can significantly increase603

the velocity because the stress ratios are added and both ratios exhibit the same power-604

law stress exponent of (n−1). The stress ratios start to considerably increase the as-605

cent velocity once they become larger than one. Hence, both local buoyancy and regional606

tectonic stresses can increase the ascent velocity because they can cause stress weaken-607

ing in the rocks surrounding the diapir.608

Comparing the analytical estimates with full 3D numerical calculations, we found609

that the analytical estimates are accurate within a factor of less than two, with a rel-610

ative error smaller than 80%, across a wide range of stress ratios. This highlights the use-611

fulness of the analytical estimates in assessing the importance and impact of diapirism612
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Figure 11. Analytical ascent velocities versus diapir radius and corresponding Argand num-

ber (∆ρgR/τR) for different values of the linear viscosity, ηm, of the fluid surrounding the diapir.

Applied values of τR, τC and ∆ρ are indicated in the figure. For all calculations n=3 and Ω=100

was used. Rectangles indicate range of data reported in literature for different geodynamic set-

tings (see Section 4.3). The dotted line indicates the critical ascent velocity of plutons (Equation

22) for which the diapir rises as fast as it cools. The black line segment indicates the range of

typical radii estimated for plutons (see Section 4.3).
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in diverse geodynamic settings. However, the analytical estimates deviate the most from613

the numerical results when buoyancy stresses dominate the ascent velocity. This discrep-614

ancy arises because the analytical estimates use the diapir’s buoyancy stress as a proxy615

for the deviatoric stress, which is required to calculate the effective, stress-dependent vis-616

cosity in the surrounding fluid. Numerical calculations demonstrate that deviatoric stresses617

around the diapir can be significantly smaller than buoyancy stresses, leading to less in-618

tense stress weakening in the surrounding fluid than predicted by the analytical estimates.619

Introducing a shape factor improves the accuracy of the analytical estimates. The nu-620

merical results further show that the pressure inside the weak diapir deviates from the621

lithostatic pressure and the deviation is on the order of ∆ρgR.622

We calculated τC for typical mantle and lower crustal flow laws and estimated ranges623

of magnitudes for τR and ∆ρgR. Both ratios of τR/τC and ∆ρgR/τC could vary between624

0.1 and 100 in nature. For the applied parameters, a significant increase of the ascent625

velocity caused by stress weakening starts for τR/τC > 1 and ∆ρgR/τC > 10. Our cal-626

culations show that stress weakening can cause ascent velocities of diapirs that are up627

to four orders of magnitude faster compared to ascent velocities calculated for linear vis-628

cous flow. Therefore, lithospheric and mantle stresses as well as temporal and spatial changes629

of these stresses can have a dramatic effect on diapir ascent velocities. Similarly, changes630

in rock rheology, due to for example fluid infiltration or grain size variation, can change631

magnitudes of τC and, consequently, strongly affect ascent velocities. The presented an-632

alytical estimates facilitate the quantification of such stress-induced changes in diapir633

ascent velocities.634
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Appendix A Cylindrical coordinate system644

The equations for conservation of mass and linear momentum for an incompress-645

ible fluid under gravity in cylindrical coordinates are:646

0 = −
(
∂Vr

∂r
+

1

r

∂Vθ
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+

∂Vz

∂z
+

Vr

r
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(A1)650

with Vr, Vθ and Vz being the components of the velocity vector in direction r, θ, and z651

respectively. τij are the (i, j)th components of the deviatoric stress tensor, P is the pres-652

sure, ρ is the density and g the gravitational acceleration. Components of the deviatoric653

stress tensor are defined as:654
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(A2)660

where ϵ̇ij are the (i, j)th components of the strain rate tensor, and ηE is the effective vis-661

cosity used in the numerical calculations (see Section 2.3, Equation 4).662

The numerical implementation used is the same as for the Cartesian coordinates663

(see Section 2.4):664
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(A3)674

where K̃, ρ̃ and G̃ are numerical parameters and τPT is a pseudo-time. K̃ and G̃ can be675

considered as pseudo-bulk and pseudo-shear modulus, respectively, and ρ̃ as a pseudo-676

density. With these parameters, Equation A3 can be considered as acoustic and iner-677

tial approximations of the mass and momentum balance equations respectively.678

Appendix B Spherical coordinates system679

The equations for conservation of mass and linear momentum for an incompress-680

ible fluid under gravity in spherical coordinates are:681
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with Vr, Vθ and Vφ being the components of the velocity vector in direction r, θ, and φ686

respectively. τij are the (i, j)th components of the deviatoric stress tensor, P is the pres-687

sure, σij = −P + τij is the total stress, ρ is the density and g the gravitational accel-688

eration. Components of the deviatoric stress tensor are defined as:689
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(B2)695

where ϵ̇ij are the (i, j)th components of the strain rate tensor, and ηE is the effective vis-696

cosity used in the numerical calculations (see Section 2.3, Equation 4).697

The numerical implementation used is the same as for the Cartesian coordinates698

(see Section 2.4):699
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where K̃, ρ̃ and G̃ are numerical parameters, τPT is a pseudo-time. K̃ and G̃ can be con-710

sidered as pseudo-bulk and pseudo-shear modulus respectively, and ρ̃ as a pseudo-density.711

With these parameters, Equation B3 can be considered as acoustic and inertial approx-712

imations of the mass and momentum balance equations respectively.713
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Appendix C Comparison of Cartesian, cylindrical and spherical co-714

ordinate systems715

C1 Model configuration716

The model configuration in Cartesian coordinates is displayed in Figure 2. In cylin-717

drical coordinates, the r-axis is the radial component, the θ-axis is the angular coordi-718

nate (θ ∈ [0, 2π]) and the z-axis is the height of the cylinder (Figure C1a). Gravity acts719

in the radial direction pointing towards the central axis of the cylinder and shearing oc-720

curs along direction Z, parallel to the cylinder axis. The model configuration is essen-721

tially the same as in Cartesian coordinates (Figure 2), and a pseudo-cube, representing722

the model domain, is taken at the rim of the cylinder (Figure C1a). This method allows723

to decrease the curvature of the model domain by increasing the radius of the cylinder.724

In spherical coordinates, r is the radial distance, θ ∈ [0, π] is the polar angle and φ ∈725

[0, 2π] is the azimuthal angle (Figure C1b). In the spherical model, gravity acts along726

the radial axis, pointing towards the center of the sphere. Shearing occurs along the az-727

imuthal axis φ. The model configuration is again essentially the same as in Cartesian728

coordinates (Figure 2), and a pseudo-cube is taken at the surface of the sphere. As in729

cylindrical coordinates, this method allows to decrease the curvature of the model do-730

main by increasing the radius of the sphere.731

As a first step of comparison of the results of the three different coordinate systems,732

we consider a large radius defining the curvature in the cylindrical and spherical coor-733

dinate systems. Hence, the geometry of the employed model domain for the cylindrical734

and spherical coordinates is essentially the same cube as for the Cartesian coordinate735

system. Consequently, also the applied boundary conditions are essentially identical for736

the three coordinates systems. The aim of these simulations is to compare the results737

obtained for Cartesian, cylindrical and spherical coordinates, which represents a test of738

three different numerical algorithms employing different system of equations. If the re-739

sults from the three algorithms are equal, then the numerical implementation of the em-740

ployed system of equations is correct.741

C2 Results742

We performed the stress quantification with three different numerical algorithms743

for different governing equations that are formulated for Cartesian, cylindrical and spher-744
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Figure C1. Model domain in a) cylindrical and, b) spherical coordinates systems. a) Cylinder

is rotated so the Z-axis becomes a horizontal coordinate and gravity acts in the radial direction.

The cylindrical coordinates (r, θ, Z) are displayed in orange. Model domain of size L × L × L is

taken at the rim of the cylinder (blue area) and shearing occurs in direction Z (yellow arrows). b)

For the spherical coordinates, axis (r, θ, φ) are displayed in orange and gravity points towards the

center of the sphere. The model domain of size L × L × L is at the surface of the sphere (blue

area) and the shearing occurs along the φ-direction (yellow arrows). In both coordinates systems,

the diapir is of size L/3 and is located at the center of the domain (see Figure 2).
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Figure C2. Numerical results for τR/τC = 1 and ∆ρgR/τC = 10. Vertical cross sections at

position X/R = 0 and θ/R = 0 (see Figure 3a) of vertical total stress (a, d, g), pressure (b, e, h)

and vertical deviatoric stress (c, f, i) in Cartesian (a, b, c), cylindrical (d, e, f) and spherical (g,

h, i) coordinates. All stresses are normalized by the buoyancy stress ∆ρgR. For comparison, the

curvature used in the cylindrical and spherical coordinates is so small that it is not visible.

ical coordinates (compare Section 2.3, Appendix A and Appendix B). Figure C2 displays745

the comparison between the three algorithms for the total vertical stress, pressure and746

vertical deviatoric stress (for a detailed explanation of these stresses and their relation-747

ship, see Section 3.2). The numerical results of the three algorithms are identical. This748

agreement suggests that the three algorithms and the three systems of equations are cor-749

rect (Figure C2). This agreement is further confirmed by Figure 5, which shows that the750

maximum vertical velocities calculated by the three algorithms are equal.751
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Appendix D Numerical performances752

Evaluating the performance of an algorithm is a challenging task, especially if one753

seeks at employing some absolute instead of relative metrics. In the present study, we754

are relying on iterative and matrix-free stencil-based solvers. In that particular config-755

uration, we identify three criteria to evaluate performance, namely: (1) the effective mem-756

ory throughput, (2) the scalability of iteration count with resolution, and (3) the par-757

allel efficiency.758

First, the effective memory throughput (Figure D1a) is used to evaluate the amount759

of non-redundant memory transfer that leads to saturating the memory bandwidth, which760

is the limiting factor in our configuration since we are memory-bound (further details761

in Räss et al., 2022). This means that in our implementation, data transfers between com-762

puter units and main GPU memory are the bottleneck, and not the arithmetic opera-763

tions themselves. The effective memory throughput is defined as Teff = Aeff/tit, where764

Aeff is the effective memory access in GB and tit is the time per iteration in seconds. Eval-765

uating Teff as function of resolution, we reach a plateau for resolutions larger 255 (Fig-766

ure D1a). This means that passed this resolution the memory bandwidth is saturated,767

hence the maximal performance is reached. Also, the peak value of Teff , here about 200GB/s768

for an Nvidia A100 GPU, means that we are about 6x below memory copy only rates769

(if not doing any actual computations). Further optimisations such as using shared mem-770

ory to reduce cache misses could lead to bridge most of this gap, especially for 3D com-771

putations.772

Second, we assess the scalability of the iteration count as function of numerical res-773

olution (Figure D1b). The iteration count per time step normalised by the numerical grid774

resolution in one of the spatial direction, iter/nr, remains constant and even slightly drops775

while resolution increases, confirming the (super-)linear scaling of the accelerated pseudo-776

transient method.777

Third, we evaluate the parallel efficiency of our multi-GPU implementation (Fig-778

ure D1c). Multi-GPU configuration is required if the problem we solve is larger than the779

optimal problem size we can fit onto a single GPU. In this case, we use a weak scaling780

approach to increase the computational resources proportionally to the global problem781

size. In this configuration, the parallel efficiency of the solver is important as no time782

should be lost in communication overhead given the distributed memory setup. Our re-783
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Figure D1. Performance evaluation. a) Scaling of the normalised iteration count as function

of the spatial resolution nr, b) effective memory throughput Teff as function of numerical grid

resolution nr evaluated on two different GPUs (Nvidia Tesla P100 and Tesla V100), and c) the

parallel efficiency E evaluated on two different GPUs.

sults show that increasing the number of GPUs has almost no effect on the time per it-784

eration. We achieve this ideal scaling by overlapping MPI communication behind the physics785

calculations. Our algorithm scales ideally up to 2197 GPUs, on the Piz Daint supercom-786

puter at the Swiss National Supercomputing Centre (CSCS). Hence it can be used to787

solve larger problems.788

Finally, we also evaluate the sensitivity of the physical results on the numerical res-789

olution and exit criteria (tolerance) for our iterative solver. The exit criteria represents790

the nonlinear tolerance value we converge the residuals to using the pseudo-transient scheme791

(Equation 20). Figure D2 shows that a spatial resolution of minimum 207 grid points792

in one of the spatial directions (total resolution is 2073) and an exit criteria of maximum793

10−6 are necessary to deliver accurate results.794
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