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Key points  23 

 A machine learning based passive microwave (PMW) land PWV retrieval method 24 

is developed using the latest enhanced GPS PWV dataset 25 

 With the addition of new features with clear physical meaning, the PWV retrieval 26 

accuracy improves by about 30% 27 

 The proposed model performs well in areas that have been excluded in previous 28 

studies, such as open waters and permanently frozen areas 29 



 30 

Abstract 31 

Accurately retrieving precipitable water vapor (PWV) over wide-area land surface 32 

remains challenging. Unlike passive infrared remote sensing, passive microwave 33 

(PMW) remote sensing provides almost all-weather PWV retrievals. This study 34 

developed a PMW-based land PWV retrieval algorithm using the automated machine 35 

learning (AutoML). Data from the Advanced Microwave Scanning Radiometer 2 36 

(AMSR-2) serves as the main predictor variables and high-quality Global Positioning 37 

System (GPS) PWV data as the target variable. Unprecedentedly large GPS training 38 

samples (over 50 million) from more than 12,000 stations worldwide are used to train 39 

the AutoML model. New predictors with clear physical mechanisms enable PWV 40 

retrieval over almost any land surface type, including snow cover and near open water. 41 

Validation shows good agreement between PWV retrievals and ground observations, 42 

with a root mean square error of 3.1 mm. This encouraging outcome suggests that the 43 

algorithm’s potential for application with other PMW radiometers with similar 44 

wavelengths. 45 

Plain Language Summary 46 

Precipitable water vapor plays a critical role in the global hydrological cycle, but 47 

retrieving its value from remote-sensed data is challenging, especially for scientific 48 

purposes requiring high resolution and accuracy. This work proposes a new retrieval 49 

algorithm, which is attractive on three accounts. First is the use of information from 50 

the microwave radiometer onboard a solar-synchronous-orbit satellite, which has a 51 

high spatio-temporal resolution. The second attraction is the use of automated 52 

machine learning (AutoML), which could circumvent the complex model selection 53 

and tuning processes that are typically involved in machine-learning tasks. Thirdly, an 54 

unprecedentedly large ground-based dataset is gathered from GPS stations worldwide, 55 

which is to be used as target variables for AutoML training. The validation results 56 

reveal that the PWV retrieval is remarkably successful over all land surface types, 57 

which is previously rarely seen. The proposed algorithm can also be transferred and 58 

used with radiometers onboard other satellites. 59 



  60 



1. Introduction 61 

Albeit water vapor accounts for only a small fraction of the total amount of water 62 

in the atmosphere, the role it plays in many atmospheric processes such as 63 

atmospheric radiation or hydrological cycle must not be deemed at any rate 64 

unimportant. Water vapor is also Earth’s most abundant greenhouse gas, in that, it 65 

contributes 70% of the total atmospheric radiation absorption, and thereby exerting 66 

significant positive feedbacks on climate warming (Bedka et al., 2010; Held and 67 

Soden, 2000; Wentz et al., 2007). Due to the high spatial and temporal variability, 68 

increasing the spatio-temporal resolution at which water vapor information can be 69 

acquired has attracted continuous attention of atmospheric scientists (Huntington, 70 

2006; Lindstrot et al., 2014).  71 

For precipitable water vapor (PWV), its ground-based measurements can be 72 

realized through the Global Positioning System (GPS). Although GPS measurements 73 

generally provide the most reliable and accurate results, their limited spatio-temporal 74 

coverage may not be sufficient for scientific studies. Considering the trade-off 75 

between accuracy and coverage, satellite remote sensing is almost always preferred. 76 

There are three classes of passive methods based on a satellite’s solar reflectance (SR) 77 

channels, thermal-infrared (TIR) channels, and microwave (MW) channels, 78 

respectively. Underpinning all these three classes of methods is the fact that radiation 79 

is absorbed by water vapor as it transports in the atmosphere. Thus, the three distinct 80 

retrieval methods exploit different water vapor absorption bands (i.e., 0.9–1.0 µm for 81 

SR, 6.5–8.7 µm for TIR, and 1.64–13.5 mm for MW). Indeed, passive methods based 82 

on TIR satellite data have been widely used as a basis for PWV retrieving, with 83 

uncertainties ranging from 5 to 10% (Gao and Kaufman, 2003; Kaufman and Gao, 84 

1992), but the retrieval is easily impacted by the presence of atmospheric aerosols and 85 

clouds (Du et al., 2015). Such dependence on clear-sky situations also affects methods 86 

based on SR satellite data. In contrast, microwave can penetrate clouds and even rain, 87 

thus enabling the retrieval of PWV under all-sky conditions, and making passive 88 



microwave (PMW) an indispensable ingredient within the omni-source PWV 89 

observing system (Wentz, 1997; Wang et al., 2009; Gao et al., 2022; Ji et al., 2017).  90 

PWV retrieval from PMW satellite observations is mature over the ocean, and 91 

operational products have been available for more than three decades (Deeter, 2007; 92 

Wentz, 1997). However, despite the attempts with varying levels of success, it 93 

remains a challenge over land originated from the low contrast between signals from 94 

the surface and atmosphere, as well as the strong heterogeneity of surface emissivity 95 

(Prakash et al., 2018). Among the most notable pioneer works on this matter is the one 96 

by Deeter (2007), who proposed a PWV retrieval method solely based on the 97 

polarization difference between brightness temperature (Tb) values, i.e., ΔTb = Tb
V – 98 

Tb
H, where the superscripts V and H annotate vertically and horizontally polarized Tb. 99 

The polarization-difference signal can be acquired from the space-borne instruments 100 

with dual-polarization scanning capabilities, such as the Advanced Microwave 101 

Scanning Radiometer 2. The retrieval mechanism is that ΔTb can be concisely and 102 

precisely parameterized by PWV, liquid water path (LWP), surface temperature (Ts), 103 

as well as emissivity polarization difference (Δε = εV – εH). By assuming Δε18.7= Δε23.8 104 

(Ruston, 2004), Ts, and LWP are known, PWV could be analytically expressed as a 105 

function of the ratio of ΔTb at 18.7 GHz to that at 23.8 GHz (termed as the microwave 106 

atmospheric water vapor index (MAWVI) by Jones et al. (2010)) and thus retrieved. 107 

The root mean square error (RMSE) of this method was about 6 mm over land with 108 

Δε > 0.03, but the retrieval accuracy deteriorates substantially for scenarios with Δε < 109 

0.03. The is therefore defined as the ratio of the satellite-measured ΔTb at 18.7 GHz to 110 

that at 23.8 GHz, as to derive PWV.  111 

 Inspired by this pioneer work, a rich literature on PWV retrieval seeks to express 112 

PWV as some analytic functions of predictor variables. For instance, Du et al. (2015) 113 

devised a multiple linear relationship between PWV and several parameters, such as 114 

altitude, surface temperature, or cloud liquid water (CLW), but not MAWVI. 115 

Although MAWVI was not utilized, a slight improvement in PWV retrieval accuracy 116 

(an RMSE of 4.7 mm) as compared to the value reported by Deeter (2007) was 117 



achieved. Kazumori et al. (2018) developed a simple linear relationship between 118 

PWV and the logarithm of MAWVI, i.e., ln(MAWVI) = a×PWV + b; the RMSE was 119 

approximately 5.8 mm over scenes with large Δε. It merits noting, however, that these 120 

aforementioned studies all make the assumption that the ratio of Δε at 18.7 GHz to 121 

that at 23.8 GHz being equal to 1, which is usually suitable only for the bare soil. In 122 

fact, the value of Δε18.7/Δε23.8 varies between 0.6 and 1.5 depending on the type of 123 

surface and the season (Ji et al., 2014). This assumption thus limits the accuracy and 124 

application range of PWV retrieval, especially in areas with dense vegetation cover 125 

and ice cover. Considering that Δε is not a constant and therefore its variability should 126 

be taken into account, Ji et al. (2014) developed a parameterization of Δε using other 127 

satellite data as well as surface elevation. Consequently, the modified algorithm is 128 

able to retrieve PWV with an RMSE of 4.85 mm when compared to the ground-based 129 

GPS PWV product. 130 

Whereas using analytic relationships are conducive to interpreting the retrieval 131 

mechanism, such mathematical functions might lack flexibility. In PWV retrieval, 132 

land elevation and CLW have usually been simplified, if not ignored, in the process of 133 

deriving the physical model, leading to additional errors. On this point, Machine 134 

Learning (ML) is an emerging technology that opens new possibilities for satellite 135 

retrieval by using training data as much as possible to automatically learn a very 136 

complex function of the target variable on physically related predictors. For example, 137 

Gao et al. (2022) proposed a neural network method to retrieve PWV from PMW 138 

measurements with MAWVI, Ts, elevation, CLW, latitude, and longitude as input 139 

layers, which shows satisfactory results (an RMSE of 2.4 mm). Nevertheless, it is 140 

well known that the success of ML-based retrieval algorithms depends on the 141 

availability of high quality, complete and relevant training data. In this regard, 142 

previous studies in this area have often used very limited ground-based data, e.g., only 143 

150 GPS stations are used by Gao et al. (2022), which may limit the eventual retrieval 144 

performance. In addition to the quality of training data, the choice of estimator, 145 

hyperparameters, sample size, and resampling strategy are also critical to the 146 



construction of ML models, which directly affects the quality of prediction. 147 

Fortunately, with the automated machine learning (AutoML) framework, which 148 

balances the cost of data training and error evaluation, it is possible to find the "best" 149 

model faster and more accurately (Wang et al., 2021). In the atmospheric science 150 

community, this would be a very welcoming and useful tool. Indeed, Zheng et al. 151 

(2023) used the AutoML approach to estimate PM2.5 over India, and the result 152 

demonstrated the bright prospects of AutoML in the atmosphere and environment. 153 

Consolidating the limitations of previous works, the overarching aim of this 154 

paper is to develop a satellite-PMW-based PWV retrieval algorithm that is applicable 155 

to all types of land surfaces. With the most up-to-date enhanced GPS PWV product, a 156 

very large set of high-quality ground-based PWV data covering 16 surface types over 157 

land is used as the target variable in the AutoML-based PWV retrieval algorithm. To 158 

obtain comprehensive PWV retrieval over land, additional features which sensitive to 159 

the surface conditions are added to improve the accuracy of model prediction. The 160 

novelty of this work is threefold: (1) The latest enhanced GPS PWV dataset with high 161 

spatio-temporal resolution and accuracy is used as the target variable for AutoML. 162 

The dataset comes from 12,552 GPS sites worldwide, over the year 2020. To the best 163 

of our knowledge, this is the first time that such big training data is used in ML-based 164 

PWV retrieval algorithm development. (2) New predictors with a clear physical 165 

meaning are added to the AutoML-based retrieval algorithm, improving the 166 

generalizability and performance of the algorithm. (3) No external data other than 167 

satellite PMW measurements are used as predictors, making the proposal easily 168 

applicable to any other satellite PMW measurements.  169 

 170 

2. Data  171 

Four types of data were used to develop and validate the PWV retrieval 172 

algorithm: the Tb of AMSR-2, the land cover type from the Moderate Resolution 173 



Imaging Spectroradiometer (MODIS), the enhanced GPS PWV product, and the 174 

Integrated Global Radiosonde Archive Version 2 (IGRA2) PWV data. 175 

Tb, which is an essential parameter for PWV retrieval, is sourced from AMSR-2 176 

onboard the Global Change Observation Mission-Water (GCOM-W1) solar 177 

synchronous orbit satellite launched in 2012 (Imaoka et al., 2012). AMSR-2 provides 178 

long-term and continuous data records to serve a better understanding on the global 179 

water cycle mechanism and the effects of climate change (Al-Yaari et al., 2014). 180 

AMSR-2 provides horizontal and vertical polarization Tb at 6 frequencies, i.e., 6.925, 181 

10.65, 18.7, 23.8, 36.5 and 89.0 GHz and switches its descent and ascent orbits at 182 

1:30 am and 1:30 pm, respectively. In this study, the AMSR-2 L1C product in 2020 is 183 

used.  184 

The International Geosphere Biosphere Programme (IGBP) land cover type 185 

obtained from the MODIS product (MCD12C1) is employed as an additional 186 

predictor. The IGBP land cover type resides on a regular grid with a spatial resolution 187 

of 0.05° (Justice et al., 2002). There is a total of 17 IGBP land cover categories, the 188 

GPS sites included in this study cover 16 IGBP types (Figure S1 in support 189 

information S1); the only type that is not covered is the Deciduous Needleleaf Forests, 190 

because there are no GPS stations located on this surface type. 191 

The GPS PWV product employed herein is an enhanced version of the 192 

operational GPS PWV dataset provided by the Nevada Geodetic Laboratory (NGL; 193 

Yuan et al., 2023), which serves as the target variable of the ML-based retrieval 194 

algorithm. It consists of high-quality global PWV measurements from 12,552 GPS 195 

stations (Figure S1 in Supporting Information S1). For the year 2020 alone, there are 196 

more than one billion data points. With the addition of the ERA-5, the spatiotemporal 197 

resolution of the product has been significantly improved. Compared to the 198 

operational version of GPS PWV, the mean absolute bias and standard deviation of 199 

the enhanced GPS PWV have been reduced by an average of 19.5% and 6.2%, 200 

respectively, using the situ measurements provided by radiosonde as a baseline (Yuan 201 

et al., 2023).  202 



Aside from the GPS PWV, the radiosonde PWV measurements, which are widely 203 

used as the truth for validating other humidity measurements, are used as an 204 

independent calibration dataset. In this regard, the IGRA2 is the most comprehensive 205 

radiosonde dataset consisting of more than 770 stations worldwide in 2020 with 206 

regular daily observations at 00:00 and 12:00 UTC. PWV is calculated from the 207 

moisture profile when the profiles reach the surface and the pressure level at the top is 208 

at least 300 hPa and the pressure gaps should be less than 200 hPa. 209 

 210 

3. Physical basis and ML algorithm development 211 

3.1. Theoretical Basis 212 

Ignoring the cosmic background radiation and atmospheric scattering, radiation 213 

received by satellite microwave radiometers can be characterized in a simple way 214 

(Merrikhpour and Rahimzadegan, 2017): 215 

)],(1[),(),,( θθεθ fΓTfΓTpfT aaa
p

sb −×+××= ,      (1) 216 

where f, p, θ denote frequency, polarization, and incident angle, respectively. Tb, as 217 

mentioned in the introduction, is the measured brightness temperature, which is a 218 

function of f, p, and θ. Ts is the surface temperature, εp is the land surface emissivity, 219 

Ta is the optical depth weighted effective atmospheric temperature, and Γa represents 220 

the atmospheric transmittance. The first term of the right hand of Eq. (1) represents 221 

the convolution effects of atmosphere and land surface on Tb, whereas the second 222 

term represents the upper emission of the atmosphere. The polarization difference in 223 

Tb, that is, ΔTb = Tb
V

 −Tb
H, can be approximated as follows (Jones et al., 2010, Du et 224 

al., 2015). 225 

asb ΓTT ××Δ=Δ ε .    (2) 226 

Recall the definition of MAWVI, it is the ratio of the satellite-measured ΔTb at 227 

18.7 GHz to that at 23.8 GHz. Then following the approximation in Eq. (2), the 228 

following approximation obtains: 229 
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The ratio of Δε23.8 to Δε18.7, relating to the land surface emissivity at different 231 

polarization and frequencies, is generally assumed to be a constant (close to 1). As 232 

such, MAWVI is extremely sensitive to the ratio of atmospheric transmittances at 23.8 233 

and 18.7 GHz. It should be noted that the atmospheric transmittance is related to 234 

oxygen absorption, CLW and PWV. PWV can be directly derived directly from Eq. (1) 235 

if CLW and Δε are all known. Note that Eq. (1) is only applicable to scenes of bare 236 

soil. For the surface covered by vegetation, the emission and absorption of the plant 237 

canopy should be carefully considered (Mo et al., 1982). In areas where the land is 238 

mixed with open water, the satellite measured Tb is a weighted average of the 239 

radiation from land and water, therefore, the fraction of open water should also be 240 

considered (Jones et al., 2010). 241 

From the literature review it can be summarized that the formerly published 242 

linear models and ML algorithms commonly use MAWVI, Ts, CLW, and altitude of 243 

the station as predictors for PWV retrieval, while ignoring the influence of vegetation, 244 

snow and open water. This is precisely the reason why these methods cannot perform 245 

very well in areas with small Δε values, e.g., over vegetation cover. If the ratio of Δε 246 

at 23.8 and 18.7 GHz was not accounted for carefully, large PWV retrieval errors 247 

ought to be expected (Ji et al., 2014). To increase the applicability of the retrieval 248 

model and improve the retrieval accuracy, we follow Jones et al. (2010) and introduce 249 

two additional input features to the ML algorithm, namely, FH and P, to express 250 

vegetation transmissivity and open water fraction in terms of the simplified emission 251 

model. The derivation of FH and P is given as follows: 252 
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The ratio of 23.8 GHz and 18.7 GHz in horizontal polarization is more 254 

responsive to vegetation canopy absorption, while the ratio of 18.7 GHz in horizontal 255 



polarization and vertical polarization is sensitive to surface conditions. The advantage 256 

of using these parameters is that they can be directly derived from PMW 257 

measurements. The impacts of Ts and CLW on PWV retrieval are also accounted. For 258 

surface temperature Ts, the polarized brightness temperature Tb
V,36.5 may be used as a 259 

proxy (Jones et al., 2010). The 36.5 GHz and 89 GHz polarization difference ratio is 260 

very sensitive to CLW and is therefore used as a predictor to represent CLW effect 261 

(Jones et al., 2010). Given that PWV shows obvious seasonal and spatial variations, 262 

additional inputs to the ML algorithm include variables DOY (the sine of the ratio of 263 

day of year to 365), latitude, longitude and IGBP land type. Last but not least, PWV is 264 

also closely related to the altitude (h). Therefore, exp(–h) is also used as a predictor 265 

(Gao et al., 2022). Table S1 summarizes the input feature selection. 266 

3.2. Collocation 267 

As PWV exhibits strong spatio-temporal variation, collocation of data from 268 

various sources is thought to be important. In this work, the general criterion is that 269 

the maximum distance difference should not exceed 10-km and maximum time 270 

difference should not exceed 10-min when matching AMSR-2 Tb and GPS PWV. 271 

Samples from all sites are split into training and test sites according to the ratio of 4:1, 272 

where the number of test sites under different land cover types is directly proportional 273 

to the total number of sites of that land cover type in the world. The distribution of 274 

training and test sites is shown in Figure S1 in Supporting Information S1. 275 

3.3. ML algorithm development 276 

ML models extract relevant information from training data to make predictions. 277 

To achieve optimal performance, several critical considerations including model 278 

selection, hyperparameter tuning, feature selection, must be made. Numerous AutoML 279 

packages have, therefore, been developed to automate as far as possible (Wang et al., 280 

2021). Among them, the Fast and Lightweight AutoML (FLAML) developed by 281 

Wang et al. (2021) is able to boost the rapidity of experimentation and facilitate 282 

efficient model optimization. FLAML focuses not only on the optimization of model 283 



parameters, the model selection and the size of the dataset used, but also on the 284 

runtime of the model. It consists of two layers, an ML layer containing the candidate 285 

models and an AutoML layer, which includes a model proposer, a hyperparameter and 286 

sample size proposer, a validation strategy proposer and a controller. 287 

In the predictor selection module, light gradient boosting machine (LGBM), 288 

extreme gradient boosting (XGBOOST), and random forest (RF) models are selected 289 

candidate models. The detailed model introduction is in Text S1 in Supporting 290 

Information S1. In the configuration of FLAML, we select the determination 291 

coefficient (R2) as the optimizing metric and set the time budget to 3600s (note that 292 

FLAML also focuses on the runtime of the model). Two experiments with different 293 

input features are designed to illustrate the superiority of the new features introduced 294 

in section 3.1. The first case, which is taken as the control experiment, uses MAVWI, 295 

Ts, CLW, expH, Orbit, Lat and Lon as learning features to develop the tree-based ML 296 

models. In the second case, additional features including FH, P, IGBP, and DOY are 297 

incorporated for comparison. The same training and test samples are used for both 298 

two cases, ensuring a consistent and fair comparison. Note that the matching data in 299 

areas with vegetation cover, open water, and permanent icing have always been 300 

excluded in previous studies, but they are retained here in the ML model development. 301 

This inclusion should improve the algorithm's performance in these specific areas. 302 

 303 

4. Results 304 

In the control experiment, we compare two cases of situations with and without 305 

additional features. The improvements in prediction accuracy due to new features are 306 

clearly evident. Quantitatively, the inclusion of the new features in RF significantly 307 

raises the accuracy of PWV retrieval by approximately 30% (the RMSE decreases 308 

from 5.43 mm to 3.76 mm in Figure S2 in Supporting Information S1). In addition, 309 

three tree-based models (RF, XGBOOST, and LGBM) included in FLAML were also 310 

evaluated and compared. When validated against the out-of-station GPS PWV 311 

observations, the R2 values of XGBOOST and LGBM, as compared to that of RF, 312 



both increase to 0.92 (Figure S3 in Supporting Information S1). In this regard, one 313 

may conclude that the utilization of these two models leads to a further enhancement 314 

in PWV retrieval accuracy.  315 

As another important way to obtain PWV worldwide, IGRA2 data could be used 316 

for independent validation. Figure S4 in Supporting Information S1 depicts the 317 

corresponding results, in that, the accuracy of PWV retrieval by all three ML models 318 

with IGRA2 as a reference. Among them, the PWV generated by LGBM model 319 

exhibits the best consistency with IGRA2 PWV data, with an RMSE of 3.64 mm, an 320 

R2 of 0.87 and an MAE of 2.71 mm. Therefore, LGBM is selected as the best 321 

estimator for the following part of the work. More details are provided in Text S2 in 322 

Supporting Information S1. 323 

4.1 Model performance over different surfaces  324 

To test the applicability of the algorithm under a variety of surface conditions, 325 

validation results over all 16 included IGBP types are shown in Figure 1. For areas 326 

that are covered by ice (Persistent Snow and Ice) and heavily influenced by open 327 

water (such as Water Bodies and Permanent Wetlands), which are often ignored in 328 

previous studies, the RMSEs are 1.27 mm and 2.09 mm, respectively, and the present 329 

model can explain the variability of more than 90% (R2), demonstrating excellent 330 

consistency with ground GPS PWV. In areas with bare soil or sparse vegetation (such 331 

as Barren and Closed Shrublands), the RMSEs are 2.27 mm and 1.85 mm, 332 

respectively, which presents as a significant improvement compared to previously 333 

reported values (4.7 mm in Du et al. 2015; 2.4 mm in Kazumori, 2018). In some 334 

forests densely covered with vegetation (such as Evergreen Needleleaf Forests and 335 

Deciduous Broadleaf Forests), the present algorithm can still maintain relatively high 336 

accuracy (RMSE is approximately 3.5 mm) thanks to the inclusion of new parameters. 337 

The results demonstrate that our algorithm is not only applicable to almost all land 338 

types, but also has excellent performance in all types. 339 

The SHapley Additive exPlanations (SHAP) method (detailed introduction in 340 

Text S3 in Supporting Information S1) is used to calculate the marginal contribution 341 



of each feature in the ML model. Figure 2 shows the SHAP values of all 11 features. 342 

It is evident that the two newly added features (FH and P) hold the top two positions 343 

in terms of importance, which implies their high contribution to the retrieval process 344 

of PWV. Furthermore, their high values dominate the positive change in SHAP values, 345 

indicating that they are positively correlated with the PWV retrievals. Notably, Ts and 346 

Lat have also attained high ranks, which is consistent with our expectations. Ts 347 

exhibits a positive correlation with PWV, whereas Lat shows a negative correlation. 348 

This observation aligns well with the physical law of PWV spatial distribution. On the 349 

other hand, CLW ranks the lowest, showing a slight impact on PWV prediction, which 350 

is related to the exclusion of precipitation areas when training the ML model. 351 

4.2 Global seasonal-averaged PWV distribution 352 

Based on the AMSR-2 Tb and IGBP datasets in 2020, a 0.1°×0.1° resolution daily 353 

global PWV product is made using the trained LGBM model. Figure 3 (b) and (d) 354 

show the seasonal average PWV distributions in winter (December, January, and 355 

February) and summer (June, July, and August). The AIRS L3 product with a spatial 356 

resolution of 1°×1° in the same seasons is selected for comparison, as shown in Figure 357 

3 (a) and (c).  358 

In general, AMSR-2 PWV and AIRS PWV show similar spatial distribution 359 

patterns. The distribution of PWV decreases with increasing latitude. This 360 

phenomenon is consistent with the well-understood physical law (Seidel, 2002). In 361 

addition, the two products also show similar seasonal variations. In winter, as affected 362 

by temperature and solar radiation, the total PWV level in the northern hemisphere is 363 

low, about 5–15 mm. In central Africa and northern Oceania, the intensity of the 364 

AMSR-2 PWV is lower. In summer, the two products also show similar PWV 365 

distributions. Relatively extreme wet atmospheric conditions occur in Southeast Asia, 366 

South Asia, northern South America, and other regions north of the Equator. Similarly, 367 

the PWV of AMSR-2 is lower than that of AIRS in these regions, approximately 5 368 

mm. In addition, it is noted that the spatial variability of PWV of AMSR-2 is more 369 

clearly visible in regions with low PWV values (such as the Qinghai-Tibet Plateau 370 



and western North America). Although differences in estimating the highest PWV 371 

value, the AMSR-2 PWV product finely describes the PWV distribution of the global 372 

land. 373 

 374 

5. Conclusion and discussions 375 

In this work, a ML-based global land PWV retrieval algorithm is developed. 376 

Unlike previous studies, which only use limited samples for training, the most recent 377 

PWV data from more than 10,000 GPS sites are herein considered. Moreover, several 378 

new predictors with clear physical meaning are included as model inputs. As 379 

compared to PWV values retrieved using just traditional parameters, the newly added 380 

parameters (FH, P, DOY, IGBP) improve the PWV retrieval accuracy by about 30%. 381 

At the same time, the SHAP analysis also confirms that the addition of new 382 

parameters makes significant contributions to the improvement of PWV retrieval 383 

accuracy. 384 

When new parameters are added, the proposed ML model performs satisfactorily, 385 

with the RMSE being 3.13 mm and R2 being 0.93. What is more is that our model 386 

also has a relatively stable performance across all 16 IGBP land cover types. The 387 

retrievals over Persistent Snow and Ice, Closed Shrublands land types exhibit the best 388 

performance with the overall RMSE less than 2 mm. Even in the worst performing 389 

areas (such as Evergreen Broadleaf Forest, Deciduous Broadleaf Forest), the RMSE 390 

remains around 3.5 mm, which is lower than the values reported in many former 391 

works. When using IGRA2 data for external verification, the results are also quite 392 

satisfactory (RMSE is 3.64 mm and R2 is 0.87). 393 

The proposed method in this work demonstrates the potential of using machine 394 

learning as an AMSR-2 PWV retrieval tool. It is thought that this method could be 395 

extended to other sensors with similar channels as AMSR-2, enabling the 396 

development of long-term continuous environmental datasets across multiple sensors. 397 

 398 

Open Research 399 



The enhanced GPS PWV product can be found at 400 

https://doi.org/10.5281/zenodo.6973528. The AMSR-2 L1C Tb data can be found at 401 

https://disc.gsfc.nasa.gov/datasets/GPM_1CGCOMW1AMSR2_07/summary?keywor402 

ds=AMSR-2. The IGRA2 data is from 403 

https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-ar404 

chive. The MCD12C1 data is from  405 

https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MCD12C1. The retrieved 406 

global PWV dataset can be accessed online (at https://www.scidb.cn/s/UZbYzq). 407 
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