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Text S1. 

Amongst the “shallow” network structure, tree-based methods have been repeatedly 

shown to be superior in terms of performance (Belgiu and Drăguţ, 2016; Ma et al., 2022). 

To that end, three tree-based ML methods, namely, random forest (RF), extreme gradient 

boosting (XGBOOST), and light gradient boosting machine (LGBM), are selected as the 

candidate methods. In short, RF is an ensemble learning method that combines the outputs 

of multiple base decision trees to make final predictions. Each decision tree is built by 

recursively partitioning the data based on the value ranges of different features. RF models 

have advantages in handling high-dimensional data, outliers and missing data (Liu et al., 

2022; Lundberg et al., 2020). XGBOOST is also an ensemble learning framework, which 

seeks to build an ensemble of weak decision trees and combine them using the gradient 

boosting technique. Each subsequent tree corrects the discrepancies between the prediction 

of the previous tree and the target value. It incorporates regularization techniques to prevent 

overfitting and has gained popularity for its high performance (Chen and Guestrin, 2016; 

Fu et al., 2023). LGBM is another gradient boosting framework that aims to offer faster 

training speed and lower memory usage compared to other implementations. It 

incorporates a technique called “gradient-based one-side sampling” to select the most 

informative samples during the tree building process. Moreover, the histogram-based 

gradient estimation, which leverages the advantage of binning to compute efficiently, is 

applied in LGBM (Choi et al., 2023). 

 

 

Text S2. 

PWV retrievals by the RF model with two sets of learning features are compared to 

the out-of-sample GPS PWV observations in Figure S2, in the form of scatter plots. In 

these scatter plots, the number of samples within a neighborhood is represented by the color 
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of that neighborhood; the identity line and the least-squares linear fit line are also presented; 

lastly, several popular summary statistics that gauge different aspects of prediction quality 

are listed.  

Based on the spread reduction of scatter points in Figure S2, the improvements in 

prediction accuracy due to new features are clearly evident. Quantitatively, the RMSE 

decreases from 5.43 mm to 3.76 mm and the mean absolute error (MAE) decreases from 

4.00 mm to 2.76 mm in two cases of controlled experiments, respectively, and R2 increases 

from 0.75 to 0.89. Collectively, these indicators confirm that the inclusion of the new 

features significantly is able to raise the accuracy of PWV retrieval by approximately 30%. 

Readers are noted that similar comparison experiments have been performed on the other 

two models (XGBOOST and LGBM), though the results are not shown here for brevity, 

the improved performance can also be observed.  

In comparison with RF, LGBM and XGBOOST are updated tree-based models with 

significant improvement in accuracy and computational efficiency. Figure S3 shows that 

the results of XGBOOST and LGBM models validated against the out-of-sample GPS 

PWV observations. In these two models, the R2 values, as compared to that of RF, both 

increase to 0.92. The RMSE and MAE values lower to 3.1 mm and 2.2 mm, respectively. 

In this regard, one may conclude that the utilization of these two models leads to a further 

enhancement in PWV retrieval accuracy.  

As another important way to obtain PWV worldwide, IGRA2 data could be used for 

independent validation. Figure S4 depicts the corresponding results, in that, the accuracy 

of PWV retrieval by all three ML models with IGRA2 as a baseline. Both the XGBOOST 

and LGBM models show an improvement of 0.03 in R2 and a reduction of approximately 

0.5 mm in RMSE as compared to RF model. Among them, the PWV generated by LGBM 

model exhibits the best consistency with IGRA2 PWV data, with an RMSE of 3.64 mm, 

an R2 of 0.87 and an MAE of 2.71 mm.  
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Text S3. 

ML models are usually perceived as “black boxes,” because of the low interpretability 

of the regression mechanisms in contrast to conventional statistical counterparts. To 

understand how the ML model works and gets the predicted values, some methods that 

seek to explain the feature importance have been devised. In this work, the SHapley 

Additive exPlanations (SHAP) method is used to calculate the marginal contribution of 

each feature in the model (Lundberg and Lee, 2017). SHAP method assumes that the 

original ML model can be approximately interpreted by s a linear combination of variables: 

𝑓(𝑥) = 𝜃0 +∑ 𝜃𝑖𝑥𝑖
𝑁
𝑖=1        (1) 

where N is the number of input features, θi is the contribution of feature i and x is an input 

sample. In this way, traditional statistical frameworks for model interpretability could be 

of use. 
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Figure S1. Spatial distribution of 12552 Enhanced GPS PWV sites over the MODIS IGBP 

global land cover map, contain training sites (black dots) and test sites (red dots), used for 

developing and testing the AMSR2 PWV retrieval algorithm. 
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Figure S2. Comparisons between AMSR2 PWV retrievals based on 2 RF models validated 

by GPS PWV, from top (case1: RF model without additional features in training data (a) 

and test data (b)) to bottom (case2: RF with additional FH, P, IGBP, and DOY as new 

features in training data (c) and test data(d)).  
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Figure S3. Comparisons between AMSR2 PWV retrievals based on XGBOOST and 

LGBM validated by GPS PWV, from top (XGBOOST in training data (a) and test data (b)) 

to bottom (LGBM in training data (c) and test data (d)).  
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Figure S4. Independent verification based on IGRA2 PWV of AMSR-2 PWV generated 

by 3 ML models (from left to right: RF (a), XGBOOST (b) and LGBM (c)).  

 

 

 

 

Feature 

name 

Formula Supplement 

Lon Longitude  Longitude of each location 

Lat Latitude Latitude of each location 

MAVWI 

7.18

8.23

b

b

T

T





 

Microwave Atmospheric Water Vapor Index (Du et 

al., 2015) 

Ts 5.36,V

bT
 

Sensitive to land surface temperature (Duan et al., 

2020) 

CLW 
)log(

5.36

89

b

b

T

T





 

Sensitive to cloud liquid water (Du et al., 2015) 

DEM )exp( h−  h represent the altitude of each location (Du et al., 

2015) 

Orbit Ascending or 

descending 

Orbit marker, ascending is 0, descending is 1 

FH 

7.18,

8.23,

H

b

H

b

T

T

 

Determine vegetation transmissivity and open water 

fraction (Jones et al., 2010) 
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P 

7.18,

7.18,

V

b

H

b

T

T

 

Determine vegetation transmissivity and open water 

fraction (Jones et al., 2010) 

DOY 









366
sin

doy

 

doy represents the day of the year for each location. 

IGBP IGBP type IGBP classification from 0 to 16 representing 

different types 

. 

Table S1. Features name and representation.   
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