Literature Cited
Abt, M. C., & Pamer, E. G. (2014). Commensal bacteria mediated defenses against pathogens. Current Opinion in Immunology , 29 , 16–22. https://doi.org/10.1016/j.coi.2014.03.003
Addesso, A. M., Harvey, J. A., Vaziri, G. J., Verrett, T. B., Albert, L., Arthur, C., Chernicky, K., Simons, S. R., Chaves, J., & Knutie, S. A. (2020). Effect of introduced parasites on the survival and microbiota of nestling cactus finches (Geospiza scandens) in the Galápagos Islands.Journal of Ornithology , 161 (4), 1011–1019. https://doi.org/10.1007/s10336-020-01793-6
Berlow, M., Phillips, J. N., & Derryberry, E. P. (2021). Effects of Urbanization and Landscape on Gut Microbiomes in White-Crowned Sparrows.Microbial Ecology , 81 (1), 253–266. https://doi.org/10.1007/s00248-020-01569-8
Bodawatta, K. H., Klečková, I., Klečka, J., Pužejová, K., Koane, B., Poulsen, M., Jønsson, K. A., & Sam, K. (2022). Specific gut bacterial responses to natural diets of tropical birds. Scientific Reports ,12 (1), 713. https://doi.org/10.1038/s41598-022-04808-9
Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs ,27 (4), 325–349. https://doi.org/10.2307/1942268
Brodin, A., & Watson, H. (2023). Feather corticosterone reveals that urban great tits experience lower corticosterone exposure than forest individuals during dominance-rank establishment. Conservation Physiology , 11 (1), coad033. https://doi.org/10.1093/conphys/coad033
Brooks, M., E., Kristensen, K., Benthem, K., J. ,van, Magnusson, A., Berg, C., W., Nielsen, A., Skaug, H., J., Mächler, M., & Bolker, B., M. (2017). GlmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal ,9 (2), 378. https://doi.org/10.32614/RJ-2017-066
Bulgarella, M., Knutie, S. A., Voss, M. A., Cunninghame, F., Florence-Bennett, B. J., Robson, G., Keyzers, R. A., Taylor, L. M., Lester, P. J., Heimpel, G. E., & Causton, C. E. (2020). Sub-lethal effects of permethrin exposure on a passerine: Implications for managing ectoparasites in wild bird nests. Conservation Physiology ,8 (1), coaa076. https://doi.org/10.1093/conphys/coaa076
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods , 13 (7), 581–583. https://doi.org/10.1038/nmeth.3869
Chen, C.-Y., Chen, C.-K., Chen, Y.-Y., Fang, A., Shaw, G. T.-W., Hung, C.-M., & Wang, D. (2020). Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests.Microbiome , 8 (1), 129. https://doi.org/10.1186/s40168-020-00896-9
Davidson, G. L., Wiley, N., Cooke, A. C., Johnson, C. N., Fouhy, F., Reichert, M. S., De La Hera, I., Crane, J. M. S., Kulahci, I. G., Ross, R. P., Stanton, C., & Quinn, J. L. (2020). Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Scientific Reports , 10 (1), 20783. https://doi.org/10.1038/s41598-020-77256-y
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data.Microbiome , 6 (1), 226. https://doi.org/10.1186/s40168-018-0605-2
De León, L. F., Podos, J., Gardezi, T., Herrel, A., & Hendry, A. P. (2014). Darwin’s finches and their diet niches: The sympatric coexistence of imperfect generalists. Journal of Evolutionary Biology , 27 (6), 1093–1104. https://doi.org/10.1111/jeb.12383
De León, L. F., Sharpe, D. M. T., Gotanda, K. M., Raeymaekers, J. A. M., Chaves, J. A., Hendry, A. P., & Podos, J. (2019). Urbanization erodes niche segregation in Darwin’s finches. Evolutionary Applications ,12 (7), 1329–1343. https://doi.org/10.1111/eva.12721
Deviche, P., Sweazea, K., & Angelier, F. (2023). Past and future: Urbanization and the avian endocrine system. General and Comparative Endocrinology , 332 , 114159. https://doi.org/10.1016/j.ygcen.2022.114159
Ding, J., Liao, N., Zheng, Y., Yang, L., Zhou, H., Xu, K., Han, C., Luo, H., Qin, C., Tang, C., Wei, L., & Meng, H. (2020). The Composition and Function of Pigeon Milk Microbiota Transmitted From Parent Pigeons to Squabs. Frontiers in Microbiology , 11 , 1789. https://doi.org/10.3389/fmicb.2020.01789
Fessl, B., Couri, M. S., & Tebbich, S. (2001). Philornis downsi Dodge & Aitken, new to the Galapagos Islands (Diptera, Muscidae).Studia Dipterologica , 8 , 317–322.
Fessl, B., & Tebbich, S. (2002). Philornis downsi- a recently discovered parasite on the Galápagos archipelago—A threat for Darwin’s finches?: A recently discovered parasite for Darwin’s finches.Ibis , 144 (3), 445–451. https://doi.org/10.1046/j.1474-919X.2002.00076.x
Fessl, B., Young, G. H., Young, R. P., Rodríguez-Matamoros, J., Dvorak, M., Tebbich, S., & Fa, J. E. (2010). How to save the rarest Darwin’s finch from extinction: The mangrove finch on Isabela Island.Philosophical Transactions of the Royal Society B: Biological Sciences , 365 (1543), 1019–1030. https://doi.org/10.1098/rstb.2009.0288
Fox, J., & Weisberg, S. (2018). An R Companion to Applied Regression . SAGE Publications.
Gomaa, E. Z. (2020). Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek , 113 (12), 2019–2040. https://doi.org/10.1007/s10482-020-01474-7
Grond, K., Sandercock, B. K., Jumpponen, A., & Zeglin, L. H. (2018). The avian gut microbiota: Community, physiology and function in wild birds. Journal of Avian Biology , 49 (11), e01788. https://doi.org/10.1111/jav.01788
Harvey, J. A., Chernicky, K., Simons, S. R., Verrett, T. B., Chaves, J. A., & Knutie, S. A. (2021). Urban living influences the nesting success of Darwin’s finches in the Galápagos Islands. Ecology and Evolution , 11 (10), 5038–5048. https://doi.org/10.1002/ece3.7360
Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions Between the Microbiota and the Immune System. Science ,336 (6086), 1268–1273. https://doi.org/10.1126/science.1223490
Jarvis, K. G., Daquigan, N., White, J. R., Morin, P. M., Howard, L. M., Manetas, J. E., Ottesen, A., Ramachandran, P., & Grim, C. J. (2018). Microbiomes Associated With Foods From Plant and Animal Sources.Frontiers in Microbiology , 9 , 2540. https://doi.org/10.3389/fmicb.2018.02540
Kato, L. M., Kawamoto, S., Maruya, M., & Fagarasan, S. (2014). The role of the adaptive immune system in regulation of gut microbiota.Immunological Reviews , 260 (1), 67–75. https://doi.org/10.1111/imr.12185
Kerr, S., Cardenas, S., & Hendy, J. (2004). Migration and the Environment in the Galapagos: An Analysis of Economic and Policy Incentives Driving Migration, Potential Impacts from Migration Control, and Potential Policies to Reduce Migration Pressure. SSRN Electronic Journal . https://doi.org/10.2139/ssrn.512062
Kleindorfer, S., & Dudaniec, R. Y. (2016). Host-parasite ecology, behavior and genetics: A review of the introduced fly parasite Philornis downsi and its Darwin’s finch hosts. BMC Zoology , 1 (1), 1. https://doi.org/10.1186/s40850-016-0003-9
Knutie, S. A. (2018). Relationships among introduced parasites, host defenses, and gut microbiota of Galapagos birds. Ecosphere ,9 (5). https://doi.org/10.1002/ecs2.2286
Knutie, S. A. (2020). Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species.Journal of Applied Ecology , 57 (3), 536–547. https://doi.org/10.1111/1365-2664.13567
Knutie, S. A., Chaves, J. A., & Gotanda, K. M. (2019). Human activity can influence the gut microbiota of Darwin’s finches in the Galapagos Islands. Molecular Ecology , 28 (9), 2441–2450. https://doi.org/10.1111/mec.15088
Knutie, S. A., Owen, J. P., McNew, S. M., Bartlow, A. W., Arriero, E., Herman, J. M., DiBlasi, E., Thompson, M., Koop, J. A. H., & Clayton, D. H. (2016). Galápagos mockingbirds tolerate introduced parasites that affect Darwin’s finches. Ecology , 97 (4), 940–950. https://doi.org/10.1890/15-0119.1
Knutie, S. A., Webster, C. N., Vaziri, G. J., Albert, L., Harvey, J. A., LaRue, M., Verrett, T. B., Soldo, A., Koop, J. A. H., Chaves, J. A., & Wegrzyn, J. L. (2023). Urban living can rescue Darwin’s finches from the lethal effects of invasive vampire flies [Preprint]. Ecology. https://doi.org/10.1101/2023.03.06.531275
Koop, J. A. H., Huber, S. K., Laverty, S. M., & Clayton, D. H. (2011). Experimental Demonstration of the Fitness Consequences of an Introduced Parasite of Darwin’s Finches. PLoS ONE , 6 (5), e19706. https://doi.org/10.1371/journal.pone.0019706
Koop, J. A. H., Owen, J. P., Knutie, S. A., Aguilar, M. A., & Clayton, D. H. (2013). Experimental demonstration of a parasite-induced immune response in wild birds: Darwin’s finches and introduced nest flies.Ecology and Evolution , 3 (8), 2514–2523. https://doi.org/10.1002/ece3.651
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Applied and Environmental Microbiology , 79 (17), 5112–5120. https://doi.org/10.1128/AEM.01043-13
Li, Y., Xu, Q., Huang, Z., Lv, L., Liu, X., Yin, C., Yan, H., & Yuan, J. (2016). Effect of Bacillus subtilis CGMCC 1.1086 on the growth performance and intestinal microbiota of broilers. Journal of Applied Microbiology , 120 (1), 195–204. https://doi.org/10.1111/jam.12972
Littleford-Colquhoun, B. L., Clemente, C., Whiting, M. J., Ortiz-Barrientos, D., & Frère, C. H. (2017). Archipelagos of the Anthropocene: Rapid and extensive differentiation of native terrestrial vertebrates in a single metropolis. Molecular Ecology ,26 (9), 2466–2481. https://doi.org/10.1111/mec.14042
Littleford‐Colquhoun, B. L., Weyrich, L. S., Jackson, N., & Frere, C. H. (2019). City life alters the gut microbiome and stable isotope profiling of the eastern water dragon ( Intellagama lesueurii ).Molecular Ecology , 28 (20), 4592–4607. https://doi.org/10.1111/mec.15240
Liu, Y., Feng, Y., Yang, X., Lv, Z., Li, P., Zhang, M., Wei, F., Jin, X., Hu, Y., Guo, Y., & Liu, D. (2023). Mining chicken ileal microbiota for immunomodulatory microorganisms. The ISME Journal ,17 (5), 758–774. https://doi.org/10.1038/s41396-023-01387-z
Loo, W. T., Dudaniec, R. Y., Kleindorfer, S., & Cavanaugh, C. M. (2019). An inter-island comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome.PLOS ONE , 14 (12), e0226432. https://doi.org/10.1371/journal.pone.0226432
Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities.Applied and Environmental Microbiology , 73 (5), 1576–1585. https://doi.org/10.1128/AEM.01996-06
Lozupone, C., & Knight, R. (2005). UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology , 71 (12), 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
Macpherson, A. J., & McCoy, K. D. (2015). Independence Day for IgA.Immunity , 43 (3), 416–418. https://doi.org/10.1016/j.immuni.2015.08.024
Maraci, Ö., Antonatou-Papaioannou, A., Jünemann, S., Castillo-Gutiérrez, O., Busche, T., Kalinowski, J., & Caspers, B. A. (2021). The Gut Microbial Composition Is Species-Specific and Individual-Specific in Two Species of Estrildid Finches, the Bengalese Finch and the Zebra Finch.Frontiers in Microbiology , 12 , 619141. https://doi.org/10.3389/fmicb.2021.619141
McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE , 8 (4), e61217. https://doi.org/10.1371/journal.pone.0061217
McNew, S. M., & Clayton, D. H. (2018). Alien Invasion: Biology ofPhilornis Flies Highlighting Philornis downsi, an Introduced Parasite of Galápagos Birds. Annual Review of Entomology , 63 (1), 369–387. https://doi.org/10.1146/annurev-ento-020117-043103
MetaHIT Consortium (additional members), Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., … Bork, P. (2011). Enterotypes of the human gut microbiome. Nature , 473 (7346), 174–180. https://doi.org/10.1038/nature09944
Michel, A. J., Ward, L. M., Goffredi, S. K., Dawson, K. S., Baldassarre, D. T., Brenner, A., Gotanda, K. M., McCormack, J. E., Mullin, S. W., O’Neill, A., Tender, G. S., Uy, J. A. C., Yu, K., Orphan, V. J., & Chaves, J. A. (2018). The gut of the finch: Uniqueness of the gut microbiome of the Galápagos vampire finch. Microbiome ,6 (1), 167. https://doi.org/10.1186/s40168-018-0555-8
Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J., & Velando, A. (2018). Glucocorticoids modulate gastrointestinal microbiome in a wild bird. Royal Society Open Science , 5 (4), 171743. https://doi.org/10.1098/rsos.171743
O’Connor, J. A., Robertson, J., & Kleindorfer, S. (2014). Darwin’s Finch Begging Intensity Does Not Honestly Signal Need in Parasitised Nests. Ethology , 120 (3), 228–237. https://doi.org/10.1111/eth.12196
O’Connor, J. A., Sulloway, F. J., Robertson, J., & Kleindorfer, S. (2010). Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin’s medium tree finch (Camarhynchus pauper). Biodiversity and Conservation ,19 (3), 853–866. https://doi.org/10.1007/s10531-009-9740-1
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M. D., Durand, S., … Weedon, J. (2022). vegan: Community Ecology Package (2.6-4). https://cran.r-project.org/web/packages/vegan/index.html
Paulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys.Nature Methods , 10 (12), 1200–1202. https://doi.org/10.1038/nmeth.2658
Perry, A. K., Chen, G., Zheng, D., Tang, H., & Cheng, G. (2005). The host type I interferon response to viral and bacterial infections.Cell Research , 15 (6), 407–422. https://doi.org/10.1038/sj.cr.7290309
Petrullo, L., Ren, T., Wu, M., Boonstra, R., Palme, R., Boutin, S., McAdam, A. G., & Dantzer, B. (2022). Glucocorticoids coordinate changes in gut microbiome composition in wild North American red squirrels.Scientific Reports , 12 (1), 2605. https://doi.org/10.1038/s41598-022-06359-5
Phillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution , 6 , 148. https://doi.org/10.3389/fevo.2018.00148
Price, T., Millington, S., & Grant, P. (1983). Helping at the Nest in Darwin’s Finches as Misdirected Parental Care. The Auk ,100 (1), 192–194. https://www.jstor.org/stable/4086293
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools.Nucleic Acids Research , 41 (D1), D590–D596. https://doi.org/10.1093/nar/gks1219
Rausch, S., Midha, A., Kuhring, M., Affinass, N., Radonic, A., Kühl, A. A., Bleich, A., Renard, B. Y., & Hartmann, S. (2018). Parasitic Nematodes Exert Antimicrobial Activity and Benefit From Microbiota-Driven Support for Host Immune Regulation. Frontiers in Immunology , 9 , 2282. https://doi.org/10.3389/fimmu.2018.02282
Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology , 9 (5), 313–323. https://doi.org/10.1038/nri2515
Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R.Bioinformatics , 27 (4), 592–593. https://doi.org/10.1093/bioinformatics/btq706
Shade, A., Jacques, M.-A., & Barret, M. (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology , 37 , 15–22. https://doi.org/10.1016/j.mib.2017.03.010
Snel, J., Heinen, P. P., Blok, H. J., Carman, R. J., Duncan, A. J., Allen, P. C., & Collins, M. D. (1995). Comparison of 16S rRNA Sequences of Segmented Filamentous Bacteria Isolated from Mice, Rats, and Chickens and Proposal of “Candidatus Arthromitus.” International Journal of Systematic Bacteriology , 45 (4), 780–782. https://doi.org/10.1099/00207713-45-4-780
Stensvold, C. R., & Van Der Giezen, M. (2018). Associations between Gut Microbiota and Common Luminal Intestinal Parasites. Trends in Parasitology , 34 (5), 369–377. https://doi.org/10.1016/j.pt.2018.02.004
Stothart, M. R., Palme, R., & Newman, A. E. M. (2019). It’s what’s on the inside that counts: Stress physiology and the bacterial microbiome of a wild urban mammal. Proceedings of the Royal Society B: Biological Sciences , 286 (1913), 20192111. https://doi.org/10.1098/rspb.2019.2111
Suzuki, K., Meek, B., Doi, Y., Muramatsu, M., Chiba, T., Honjo, T., & Fagarasan, S. (2004). Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proceedings of the National Academy of Sciences , 101 (7), 1981–1986. https://doi.org/10.1073/pnas.0307317101
Teyssier, A., Matthysen, E., Hudin, N. S., De Neve, L., White, J., & Lens, L. (2020). Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine.Proceedings of the Royal Society B: Biological Sciences ,287 (1920), 20192182. https://doi.org/10.1098/rspb.2019.2182
Teyssier, A., Rouffaer, L. O., Saleh Hudin, N., Strubbe, D., Matthysen, E., Lens, L., & White, J. (2018). Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine.Science of The Total Environment , 612 , 1276–1286. https://doi.org/10.1016/j.scitotenv.2017.09.035
Thorsen, J., Brejnrod, A., Mortensen, M., Rasmussen, M. A., Stokholm, J., Al-Soud, W. A., Sørensen, S., Bisgaard, H., & Waage, J. (2016). Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies. Microbiome , 4 (1), 62. https://doi.org/10.1186/s40168-016-0208-8
Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal , 474 (11), 1823–1836. https://doi.org/10.1042/BCJ20160510
Videvall, E., Song, S. J., Bensch, H. M., Strandh, M., Engelbrecht, A., Serfontein, N., Hellgren, O., Olivier, A., Cloete, S., Knight, R., & Cornwallis, C. K. (2019). Major shifts in gut microbiota during development and its relationship to growth in ostriches. Molecular Ecology , 28 (10), 2653–2667. https://doi.org/10.1111/mec.15087
Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S., & Cornwallis, C. K. (2018). Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Molecular Ecology Resources ,18 (3), 424–434. https://doi.org/10.1111/1755-0998.12744
Wang, L., Zhang, D., Xie, J., Chang, O., Wang, Q., Shi, C., Zhao, F., Gong, H., Ren, Y., Musa, N., Lee, K. L., & Pan, H. (2023). Do ectoparasites on fish gills “talk” with gut microbiota far away?Aquaculture , 562 , 738880. https://doi.org/10.1016/j.aquaculture.2022.738880
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology ,73 (16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
Watson, H., Videvall, E., Andersson, M. N., & Isaksson, C. (2017). Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Scientific Reports , 7 (1), 44180. https://doi.org/10.1038/srep44180
Wikelski, M., Foufopoulos, J., Vargas, H., & Snell, H. (2004). Galápagos Birds and Diseases: Invasive Pathogens as Threats for Island Species. Ecology and Society , 9 (1). https://www.jstor.org/stable/26267654
Wilkinson, T. J., Cowan, A. A., Vallin, H. E., Onime, L. A., Oyama, L. B., Cameron, S. J., Gonot, C., Moorby, J. M., Waddams, K., Theobald, V. J., Leemans, D., Bowra, S., Nixey, C., & Huws, S. A. (2017). Characterization of the Microbiome along the Gastrointestinal Tract of Growing Turkeys. Frontiers in Microbiology , 8 , 1089. https://doi.org/10.3389/fmicb.2017.01089
Wright, E. S. (2015). DECIPHER: Harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinformatics ,16 (1), 322. https://doi.org/10.1186/s12859-015-0749-z
Zhang, M., Sun, K., Wu, Y., Yang, Y., Tso, P., & Wu, Z. (2017). Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Frontiers in Immunology , 8 , 942. https://doi.org/10.3389/fimmu.2017.00942
Zheng, A., Luo, J., Meng, K., Li, J., Bryden, W. L., Chang, W., Zhang, S., Wang, L. X. N., Liu, G., & Yao, B. (2016). Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics ,17 (1), 89. https://doi.org/10.1186/s12864-016-2371-5
Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research ,30 (6), 492–506. https://doi.org/10.1038/s41422-020-0332-7
Zhu, Y., Lin, X., Zhao, F., Shi, X., Li, H., Li, Y., Zhu, W., Xu, X., Li, C., & Zhou, G. (2015). Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Scientific Reports ,5 (1), 15220. https://doi.org/10.1038/srep15220