Literature Cited
Abt, M. C., & Pamer, E. G. (2014). Commensal bacteria mediated defenses
against pathogens. Current Opinion in Immunology , 29 ,
16–22. https://doi.org/10.1016/j.coi.2014.03.003
Addesso, A. M., Harvey, J. A., Vaziri, G. J., Verrett, T. B., Albert,
L., Arthur, C., Chernicky, K., Simons, S. R., Chaves, J., & Knutie, S.
A. (2020). Effect of introduced parasites on the survival and microbiota
of nestling cactus finches (Geospiza scandens) in the Galápagos Islands.Journal of Ornithology , 161 (4), 1011–1019.
https://doi.org/10.1007/s10336-020-01793-6
Berlow, M., Phillips, J. N., & Derryberry, E. P. (2021). Effects of
Urbanization and Landscape on Gut Microbiomes in White-Crowned Sparrows.Microbial Ecology , 81 (1), 253–266.
https://doi.org/10.1007/s00248-020-01569-8
Bodawatta, K. H., Klečková, I., Klečka, J., Pužejová, K., Koane, B.,
Poulsen, M., Jønsson, K. A., & Sam, K. (2022). Specific gut bacterial
responses to natural diets of tropical birds. Scientific Reports ,12 (1), 713. https://doi.org/10.1038/s41598-022-04808-9
Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest
Communities of Southern Wisconsin. Ecological Monographs ,27 (4), 325–349. https://doi.org/10.2307/1942268
Brodin, A., & Watson, H. (2023). Feather corticosterone reveals that
urban great tits experience lower corticosterone exposure than forest
individuals during dominance-rank establishment. Conservation
Physiology , 11 (1), coad033.
https://doi.org/10.1093/conphys/coad033
Brooks, M., E., Kristensen, K., Benthem, K., J. ,van, Magnusson, A.,
Berg, C., W., Nielsen, A., Skaug, H., J., Mächler, M., & Bolker, B., M.
(2017). GlmmTMB Balances Speed and Flexibility Among Packages for
Zero-inflated Generalized Linear Mixed Modeling. The R Journal ,9 (2), 378. https://doi.org/10.32614/RJ-2017-066
Bulgarella, M., Knutie, S. A., Voss, M. A., Cunninghame, F.,
Florence-Bennett, B. J., Robson, G., Keyzers, R. A., Taylor, L. M.,
Lester, P. J., Heimpel, G. E., & Causton, C. E. (2020). Sub-lethal
effects of permethrin exposure on a passerine: Implications for managing
ectoparasites in wild bird nests. Conservation Physiology ,8 (1), coaa076. https://doi.org/10.1093/conphys/coaa076
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.
J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference
from Illumina amplicon data. Nature Methods , 13 (7),
581–583. https://doi.org/10.1038/nmeth.3869
Chen, C.-Y., Chen, C.-K., Chen, Y.-Y., Fang, A., Shaw, G. T.-W., Hung,
C.-M., & Wang, D. (2020). Maternal gut microbes shape the early-life
assembly of gut microbiota in passerine chicks via nests.Microbiome , 8 (1), 129.
https://doi.org/10.1186/s40168-020-00896-9
Davidson, G. L., Wiley, N., Cooke, A. C., Johnson, C. N., Fouhy, F.,
Reichert, M. S., De La Hera, I., Crane, J. M. S., Kulahci, I. G., Ross,
R. P., Stanton, C., & Quinn, J. L. (2020). Diet induces parallel
changes to the gut microbiota and problem solving performance in a wild
bird. Scientific Reports , 10 (1), 20783.
https://doi.org/10.1038/s41598-020-77256-y
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan,
B. J. (2018). Simple statistical identification and removal of
contaminant sequences in marker-gene and metagenomics data.Microbiome , 6 (1), 226.
https://doi.org/10.1186/s40168-018-0605-2
De León, L. F., Podos, J., Gardezi, T., Herrel, A., & Hendry, A. P.
(2014). Darwin’s finches and their diet niches: The sympatric
coexistence of imperfect generalists. Journal of Evolutionary
Biology , 27 (6), 1093–1104. https://doi.org/10.1111/jeb.12383
De León, L. F., Sharpe, D. M. T., Gotanda, K. M., Raeymaekers, J. A. M.,
Chaves, J. A., Hendry, A. P., & Podos, J. (2019). Urbanization erodes
niche segregation in Darwin’s finches. Evolutionary Applications ,12 (7), 1329–1343. https://doi.org/10.1111/eva.12721
Deviche, P., Sweazea, K., & Angelier, F. (2023). Past and future:
Urbanization and the avian endocrine system. General and
Comparative Endocrinology , 332 , 114159.
https://doi.org/10.1016/j.ygcen.2022.114159
Ding, J., Liao, N., Zheng, Y., Yang, L., Zhou, H., Xu, K., Han, C., Luo,
H., Qin, C., Tang, C., Wei, L., & Meng, H. (2020). The Composition and
Function of Pigeon Milk Microbiota Transmitted From Parent Pigeons to
Squabs. Frontiers in Microbiology , 11 , 1789.
https://doi.org/10.3389/fmicb.2020.01789
Fessl, B., Couri, M. S., & Tebbich, S. (2001). Philornis downsi Dodge
& Aitken, new to the Galapagos Islands (Diptera, Muscidae).Studia Dipterologica , 8 , 317–322.
Fessl, B., & Tebbich, S. (2002). Philornis downsi- a recently
discovered parasite on the Galápagos archipelago—A threat for Darwin’s
finches?: A recently discovered parasite for Darwin’s finches.Ibis , 144 (3), 445–451.
https://doi.org/10.1046/j.1474-919X.2002.00076.x
Fessl, B., Young, G. H., Young, R. P., Rodríguez-Matamoros, J., Dvorak,
M., Tebbich, S., & Fa, J. E. (2010). How to save the rarest Darwin’s
finch from extinction: The mangrove finch on Isabela Island.Philosophical Transactions of the Royal Society B: Biological
Sciences , 365 (1543), 1019–1030.
https://doi.org/10.1098/rstb.2009.0288
Fox, J., & Weisberg, S. (2018). An R Companion to Applied
Regression . SAGE Publications.
Gomaa, E. Z. (2020). Human gut microbiota/microbiome in health and
diseases: A review. Antonie van Leeuwenhoek , 113 (12),
2019–2040. https://doi.org/10.1007/s10482-020-01474-7
Grond, K., Sandercock, B. K., Jumpponen, A., & Zeglin, L. H. (2018).
The avian gut microbiota: Community, physiology and function in wild
birds. Journal of Avian Biology , 49 (11), e01788.
https://doi.org/10.1111/jav.01788
Harvey, J. A., Chernicky, K., Simons, S. R., Verrett, T. B., Chaves, J.
A., & Knutie, S. A. (2021). Urban living influences the nesting success
of Darwin’s finches in the Galápagos Islands. Ecology and
Evolution , 11 (10), 5038–5048. https://doi.org/10.1002/ece3.7360
Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions
Between the Microbiota and the Immune System. Science ,336 (6086), 1268–1273. https://doi.org/10.1126/science.1223490
Jarvis, K. G., Daquigan, N., White, J. R., Morin, P. M., Howard, L. M.,
Manetas, J. E., Ottesen, A., Ramachandran, P., & Grim, C. J. (2018).
Microbiomes Associated With Foods From Plant and Animal Sources.Frontiers in Microbiology , 9 , 2540.
https://doi.org/10.3389/fmicb.2018.02540
Kato, L. M., Kawamoto, S., Maruya, M., & Fagarasan, S. (2014). The role
of the adaptive immune system in regulation of gut microbiota.Immunological Reviews , 260 (1), 67–75.
https://doi.org/10.1111/imr.12185
Kerr, S., Cardenas, S., & Hendy, J. (2004). Migration and the
Environment in the Galapagos: An Analysis of Economic and Policy
Incentives Driving Migration, Potential Impacts from Migration Control,
and Potential Policies to Reduce Migration Pressure. SSRN
Electronic Journal . https://doi.org/10.2139/ssrn.512062
Kleindorfer, S., & Dudaniec, R. Y. (2016). Host-parasite ecology,
behavior and genetics: A review of the introduced fly parasite Philornis
downsi and its Darwin’s finch hosts. BMC Zoology , 1 (1), 1.
https://doi.org/10.1186/s40850-016-0003-9
Knutie, S. A. (2018). Relationships among introduced parasites, host
defenses, and gut microbiota of Galapagos birds. Ecosphere ,9 (5). https://doi.org/10.1002/ecs2.2286
Knutie, S. A. (2020). Food supplementation affects gut microbiota and
immunological resistance to parasites in a wild bird species.Journal of Applied Ecology , 57 (3), 536–547.
https://doi.org/10.1111/1365-2664.13567
Knutie, S. A., Chaves, J. A., & Gotanda, K. M. (2019). Human activity
can influence the gut microbiota of Darwin’s finches in the Galapagos
Islands. Molecular Ecology , 28 (9), 2441–2450.
https://doi.org/10.1111/mec.15088
Knutie, S. A., Owen, J. P., McNew, S. M., Bartlow, A. W., Arriero, E.,
Herman, J. M., DiBlasi, E., Thompson, M., Koop, J. A. H., & Clayton, D.
H. (2016). Galápagos mockingbirds tolerate introduced parasites that
affect Darwin’s finches. Ecology , 97 (4), 940–950.
https://doi.org/10.1890/15-0119.1
Knutie, S. A., Webster, C. N., Vaziri, G. J., Albert, L., Harvey, J. A.,
LaRue, M., Verrett, T. B., Soldo, A., Koop, J. A. H., Chaves, J. A., &
Wegrzyn, J. L. (2023). Urban living can rescue Darwin’s finches
from the lethal effects of invasive vampire flies [Preprint].
Ecology. https://doi.org/10.1101/2023.03.06.531275
Koop, J. A. H., Huber, S. K., Laverty, S. M., & Clayton, D. H. (2011).
Experimental Demonstration of the Fitness Consequences of an Introduced
Parasite of Darwin’s Finches. PLoS ONE , 6 (5), e19706.
https://doi.org/10.1371/journal.pone.0019706
Koop, J. A. H., Owen, J. P., Knutie, S. A., Aguilar, M. A., & Clayton,
D. H. (2013). Experimental demonstration of a parasite-induced immune
response in wild birds: Darwin’s finches and introduced nest flies.Ecology and Evolution , 3 (8), 2514–2523.
https://doi.org/10.1002/ece3.651
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., &
Schloss, P. D. (2013). Development of a Dual-Index Sequencing Strategy
and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq
Illumina Sequencing Platform. Applied and Environmental
Microbiology , 79 (17), 5112–5120.
https://doi.org/10.1128/AEM.01043-13
Li, Y., Xu, Q., Huang, Z., Lv, L., Liu, X., Yin, C., Yan, H., & Yuan,
J. (2016). Effect of Bacillus subtilis CGMCC 1.1086 on the growth
performance and intestinal microbiota of broilers. Journal of
Applied Microbiology , 120 (1), 195–204.
https://doi.org/10.1111/jam.12972
Littleford-Colquhoun, B. L., Clemente, C., Whiting, M. J.,
Ortiz-Barrientos, D., & Frère, C. H. (2017). Archipelagos of the
Anthropocene: Rapid and extensive differentiation of native terrestrial
vertebrates in a single metropolis. Molecular Ecology ,26 (9), 2466–2481. https://doi.org/10.1111/mec.14042
Littleford‐Colquhoun, B. L., Weyrich, L. S., Jackson, N., & Frere, C.
H. (2019). City life alters the gut microbiome and stable isotope
profiling of the eastern water dragon ( Intellagama lesueurii ).Molecular Ecology , 28 (20), 4592–4607.
https://doi.org/10.1111/mec.15240
Liu, Y., Feng, Y., Yang, X., Lv, Z., Li, P., Zhang, M., Wei, F., Jin,
X., Hu, Y., Guo, Y., & Liu, D. (2023). Mining chicken ileal microbiota
for immunomodulatory microorganisms. The ISME Journal ,17 (5), 758–774. https://doi.org/10.1038/s41396-023-01387-z
Loo, W. T., Dudaniec, R. Y., Kleindorfer, S., & Cavanaugh, C. M.
(2019). An inter-island comparison of Darwin’s finches reveals the
impact of habitat, host phylogeny, and island on the gut microbiome.PLOS ONE , 14 (12), e0226432.
https://doi.org/10.1371/journal.pone.0226432
Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007).
Quantitative and Qualitative β Diversity Measures Lead to Different
Insights into Factors That Structure Microbial Communities.Applied and Environmental Microbiology , 73 (5), 1576–1585.
https://doi.org/10.1128/AEM.01996-06
Lozupone, C., & Knight, R. (2005). UniFrac: A New Phylogenetic Method
for Comparing Microbial Communities. Applied and Environmental
Microbiology , 71 (12), 8228–8235.
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
Macpherson, A. J., & McCoy, K. D. (2015). Independence Day for IgA.Immunity , 43 (3), 416–418.
https://doi.org/10.1016/j.immuni.2015.08.024
Maraci, Ö., Antonatou-Papaioannou, A., Jünemann, S., Castillo-Gutiérrez,
O., Busche, T., Kalinowski, J., & Caspers, B. A. (2021). The Gut
Microbial Composition Is Species-Specific and Individual-Specific in Two
Species of Estrildid Finches, the Bengalese Finch and the Zebra Finch.Frontiers in Microbiology , 12 , 619141.
https://doi.org/10.3389/fmicb.2021.619141
McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for
Reproducible Interactive Analysis and Graphics of Microbiome Census
Data. PLoS ONE , 8 (4), e61217.
https://doi.org/10.1371/journal.pone.0061217
McNew, S. M., & Clayton, D. H. (2018). Alien Invasion: Biology ofPhilornis Flies Highlighting Philornis downsi, an
Introduced Parasite of Galápagos Birds. Annual Review of
Entomology , 63 (1), 369–387.
https://doi.org/10.1146/annurev-ento-020117-043103
MetaHIT Consortium (additional members), Arumugam, M., Raes, J.,
Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G.
R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M., Borruel, N.,
Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M.,
Hayashi, T., … Bork, P. (2011). Enterotypes of the human gut
microbiome. Nature , 473 (7346), 174–180.
https://doi.org/10.1038/nature09944
Michel, A. J., Ward, L. M., Goffredi, S. K., Dawson, K. S., Baldassarre,
D. T., Brenner, A., Gotanda, K. M., McCormack, J. E., Mullin, S. W.,
O’Neill, A., Tender, G. S., Uy, J. A. C., Yu, K., Orphan, V. J., &
Chaves, J. A. (2018). The gut of the finch: Uniqueness of the gut
microbiome of the Galápagos vampire finch. Microbiome ,6 (1), 167. https://doi.org/10.1186/s40168-018-0555-8
Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J., & Velando,
A. (2018). Glucocorticoids modulate gastrointestinal microbiome in a
wild bird. Royal Society Open Science , 5 (4), 171743.
https://doi.org/10.1098/rsos.171743
O’Connor, J. A., Robertson, J., & Kleindorfer, S. (2014). Darwin’s
Finch Begging Intensity Does Not Honestly Signal Need in Parasitised
Nests. Ethology , 120 (3), 228–237.
https://doi.org/10.1111/eth.12196
O’Connor, J. A., Sulloway, F. J., Robertson, J., & Kleindorfer, S.
(2010). Philornis downsi parasitism is the primary cause of nestling
mortality in the critically endangered Darwin’s medium tree finch
(Camarhynchus pauper). Biodiversity and Conservation ,19 (3), 853–866. https://doi.org/10.1007/s10531-009-9740-1
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P.,
Minchin, P. R., O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs,
E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D.,
Carvalho, G., Chirico, M., Caceres, M. D., Durand, S., … Weedon,
J. (2022). vegan: Community Ecology Package (2.6-4).
https://cran.r-project.org/web/packages/vegan/index.html
Paulson, J. N., Stine, O. C., Bravo, H. C., & Pop, M. (2013).
Differential abundance analysis for microbial marker-gene surveys.Nature Methods , 10 (12), 1200–1202.
https://doi.org/10.1038/nmeth.2658
Perry, A. K., Chen, G., Zheng, D., Tang, H., & Cheng, G. (2005). The
host type I interferon response to viral and bacterial infections.Cell Research , 15 (6), 407–422.
https://doi.org/10.1038/sj.cr.7290309
Petrullo, L., Ren, T., Wu, M., Boonstra, R., Palme, R., Boutin, S.,
McAdam, A. G., & Dantzer, B. (2022). Glucocorticoids coordinate changes
in gut microbiome composition in wild North American red squirrels.Scientific Reports , 12 (1), 2605.
https://doi.org/10.1038/s41598-022-06359-5
Phillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of
Landscape Urbanization on the Gut Microbiome: An Exploration Into the
Gut of Urban and Rural White-Crowned Sparrows. Frontiers in
Ecology and Evolution , 6 , 148.
https://doi.org/10.3389/fevo.2018.00148
Price, T., Millington, S., & Grant, P. (1983). Helping at the Nest in
Darwin’s Finches as Misdirected Parental Care. The Auk ,100 (1), 192–194. https://www.jstor.org/stable/4086293
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene
database project: Improved data processing and web-based tools.Nucleic Acids Research , 41 (D1), D590–D596.
https://doi.org/10.1093/nar/gks1219
Rausch, S., Midha, A., Kuhring, M., Affinass, N., Radonic, A., Kühl, A.
A., Bleich, A., Renard, B. Y., & Hartmann, S. (2018). Parasitic
Nematodes Exert Antimicrobial Activity and Benefit From
Microbiota-Driven Support for Host Immune Regulation. Frontiers in
Immunology , 9 , 2282. https://doi.org/10.3389/fimmu.2018.02282
Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes
intestinal immune responses during health and disease. Nature
Reviews Immunology , 9 (5), 313–323.
https://doi.org/10.1038/nri2515
Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R.Bioinformatics , 27 (4), 592–593.
https://doi.org/10.1093/bioinformatics/btq706
Shade, A., Jacques, M.-A., & Barret, M. (2017). Ecological patterns of
seed microbiome diversity, transmission, and assembly. Current
Opinion in Microbiology , 37 , 15–22.
https://doi.org/10.1016/j.mib.2017.03.010
Snel, J., Heinen, P. P., Blok, H. J., Carman, R. J., Duncan, A. J.,
Allen, P. C., & Collins, M. D. (1995). Comparison of 16S rRNA Sequences
of Segmented Filamentous Bacteria Isolated from Mice, Rats, and Chickens
and Proposal of “Candidatus Arthromitus.” International Journal
of Systematic Bacteriology , 45 (4), 780–782.
https://doi.org/10.1099/00207713-45-4-780
Stensvold, C. R., & Van Der Giezen, M. (2018). Associations between Gut
Microbiota and Common Luminal Intestinal Parasites. Trends in
Parasitology , 34 (5), 369–377.
https://doi.org/10.1016/j.pt.2018.02.004
Stothart, M. R., Palme, R., & Newman, A. E. M. (2019). It’s what’s on
the inside that counts: Stress physiology and the bacterial microbiome
of a wild urban mammal. Proceedings of the Royal Society B:
Biological Sciences , 286 (1913), 20192111.
https://doi.org/10.1098/rspb.2019.2111
Suzuki, K., Meek, B., Doi, Y., Muramatsu, M., Chiba, T., Honjo, T., &
Fagarasan, S. (2004). Aberrant expansion of segmented filamentous
bacteria in IgA-deficient gut. Proceedings of the National Academy
of Sciences , 101 (7), 1981–1986.
https://doi.org/10.1073/pnas.0307317101
Teyssier, A., Matthysen, E., Hudin, N. S., De Neve, L., White, J., &
Lens, L. (2020). Diet contributes to urban-induced alterations in gut
microbiota: Experimental evidence from a wild passerine.Proceedings of the Royal Society B: Biological Sciences ,287 (1920), 20192182. https://doi.org/10.1098/rspb.2019.2182
Teyssier, A., Rouffaer, L. O., Saleh Hudin, N., Strubbe, D., Matthysen,
E., Lens, L., & White, J. (2018). Inside the guts of the city:
Urban-induced alterations of the gut microbiota in a wild passerine.Science of The Total Environment , 612 , 1276–1286.
https://doi.org/10.1016/j.scitotenv.2017.09.035
Thorsen, J., Brejnrod, A., Mortensen, M., Rasmussen, M. A., Stokholm,
J., Al-Soud, W. A., Sørensen, S., Bisgaard, H., & Waage, J. (2016).
Large-scale benchmarking reveals false discoveries and count
transformation sensitivity in 16S rRNA gene amplicon data analysis
methods used in microbiome studies. Microbiome , 4 (1), 62.
https://doi.org/10.1186/s40168-016-0208-8
Thursby, E., & Juge, N. (2017). Introduction to the human gut
microbiota. Biochemical Journal , 474 (11), 1823–1836.
https://doi.org/10.1042/BCJ20160510
Videvall, E., Song, S. J., Bensch, H. M., Strandh, M., Engelbrecht, A.,
Serfontein, N., Hellgren, O., Olivier, A., Cloete, S., Knight, R., &
Cornwallis, C. K. (2019). Major shifts in gut microbiota during
development and its relationship to growth in ostriches. Molecular
Ecology , 28 (10), 2653–2667. https://doi.org/10.1111/mec.15087
Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S., & Cornwallis,
C. K. (2018). Measuring the gut microbiome in birds: Comparison of
faecal and cloacal sampling. Molecular Ecology Resources ,18 (3), 424–434. https://doi.org/10.1111/1755-0998.12744
Wang, L., Zhang, D., Xie, J., Chang, O., Wang, Q., Shi, C., Zhao, F.,
Gong, H., Ren, Y., Musa, N., Lee, K. L., & Pan, H. (2023). Do
ectoparasites on fish gills “talk” with gut microbiota far away?Aquaculture , 562 , 738880.
https://doi.org/10.1016/j.aquaculture.2022.738880
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve
Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New
Bacterial Taxonomy. Applied and Environmental Microbiology ,73 (16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
Watson, H., Videvall, E., Andersson, M. N., & Isaksson, C. (2017).
Transcriptome analysis of a wild bird reveals physiological responses to
the urban environment. Scientific Reports , 7 (1), 44180.
https://doi.org/10.1038/srep44180
Wikelski, M., Foufopoulos, J., Vargas, H., & Snell, H. (2004).
Galápagos Birds and Diseases: Invasive Pathogens as Threats for Island
Species. Ecology and Society , 9 (1).
https://www.jstor.org/stable/26267654
Wilkinson, T. J., Cowan, A. A., Vallin, H. E., Onime, L. A., Oyama, L.
B., Cameron, S. J., Gonot, C., Moorby, J. M., Waddams, K., Theobald, V.
J., Leemans, D., Bowra, S., Nixey, C., & Huws, S. A. (2017).
Characterization of the Microbiome along the Gastrointestinal Tract of
Growing Turkeys. Frontiers in Microbiology , 8 , 1089.
https://doi.org/10.3389/fmicb.2017.01089
Wright, E. S. (2015). DECIPHER: Harnessing local sequence context to
improve protein multiple sequence alignment. BMC Bioinformatics ,16 (1), 322. https://doi.org/10.1186/s12859-015-0749-z
Zhang, M., Sun, K., Wu, Y., Yang, Y., Tso, P., & Wu, Z. (2017).
Interactions between Intestinal Microbiota and Host Immune Response in
Inflammatory Bowel Disease. Frontiers in Immunology , 8 ,
942. https://doi.org/10.3389/fimmu.2017.00942
Zheng, A., Luo, J., Meng, K., Li, J., Bryden, W. L., Chang, W., Zhang,
S., Wang, L. X. N., Liu, G., & Yao, B. (2016). Probiotic (Enterococcus
faecium) induced responses of the hepatic proteome improves metabolic
efficiency of broiler chickens (Gallus gallus). BMC Genomics ,17 (1), 89. https://doi.org/10.1186/s12864-016-2371-5
Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between
microbiota and immunity in health and disease. Cell Research ,30 (6), 492–506. https://doi.org/10.1038/s41422-020-0332-7
Zhu, Y., Lin, X., Zhao, F., Shi, X., Li, H., Li, Y., Zhu, W., Xu, X.,
Li, C., & Zhou, G. (2015). Meat, dairy and plant proteins alter
bacterial composition of rat gut bacteria. Scientific Reports ,5 (1), 15220. https://doi.org/10.1038/srep15220